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ASYMPTOTIC RESEMBLANCE

SH. KALANTARI AND B. HONARI

ABSTRACT. Uniformity and proximity are two different
ways of defining small scale structures on a set. Coarse
structures are large scale counterparts of uniform structures.
In this paper, motivated by the definition of proximity, we
develop the concept of asymptotic resemblance as a relation
between subsets of a set to define a large scale structure
on it. We use our notion of asymptotic resemblance to
generalize some basic concepts of coarse geometry. We
introduce a large scale compactification which, in special
cases, agrees with the Higson compactification. At the end
of the paper we show how the asymptotic dimension of a
metric space can be generalized to a set equipped with an
asymptotic resemblance relation.

1. Introduction and preliminaries. There are several ways to
define small scale structures on a set. In 1937, Weil [10] defined the
concept of uniformity. A few years later, Tukey [9] used the notion
of uniform coverings to find another definition for uniform spaces. In
1950, Efremovich [4, 5] used proximity relations to define a small scale
structure on a set. He axiomatized the relation “A is near B” for
subsets A and B of a set. Let us recall the definition of a proximity
space.

Definition 1.1. A relation δ on the family of all subsets of a nonempty
set X is called a proximity on X if, for all A,B,C ⊆ X, it satisfies the
following properties (by AδB we mean that AδB does not hold.)

(i) If AδB, then BδA.
(ii) ∅δA.
(iii) If A

∩
B ̸= ∅, then AδB.
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(iv) Aδ(B
∪
C) if and only if AδB or AδC.

(v) If AδB, then there is E ⊆ X such that AδE and (X \ E)δB.

The pair (X, δ) is called a proximity space.

There are also some ways of defining large scale structures on a set.
In recent contexts, one can find notions of coarse structures [8], large
scale structures [3] and ball structures [7]. A coarse structure E on a
set X is a family of subsets of X×X such that all subsets of a member
of E are members of E and, for all E,F ∈ E , the sets E−1, E ◦ F and
E
∪
F are in E . The pair (X, E) is called a coarse space. Let us recall

that

E ◦ F = {(x, y) | (x, z) ∈ F, (z, y) ∈ E for some z ∈ X},

and
E−1 = {(x, y) | (y, x) ∈ E}, for all E,F ⊆ X ×X.

A member of E is called an entourage. A coarse structure E is called
unitary if it contains the diagonal ∆ = {(x, x) | x ∈ X}. From now
on, by coarse structure we mean a unitary coarse structure. A coarse
structure is known as a large scale counterpart of a uniformity.

In Section 2, we introduce a large scale counterpart of proximity.
For this reason, the relation A and B are asymptotically alike for two
subsets A and B of a set X is axiomatized and the notion of asymptotic
resemblance is introduced. We call a set equipped with an asymptotic
resemblance relation, an asymptotic resemblance (an AS.R.) space. In
Section 2, we show how one can generalize basic concepts of coarse
geometry (coarse maps, coarse connectedness, coarse subspace, etc.) by
our definition. Also in this section, we show that every coarse structure
on a set X can induce an asymptotic resemblance relation on X.

In Section 3, we investigate the relation between coarse structures
and asymptotic resemblance relations. We give an example of two
different coarse structures on a set X such that they induce the same
asymptotic resemblance relation on X. We show how asymptotic
resemblance relations on a set X can admit an equivalence relation
on the family of all coarse structures on X.

A coarse structure E on a topological spaceX is said to be compatible
with the topology of X if each entourage is contained in an open
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entourage. A compatible coarse structure on a topological space is
called proper if each bounded subset has compact closure. One can
easily check that a unitary coarse structure is compatible with the
topology of a space if and only if it contains an open entourage
containing the diagonal [12]. Let E be a proper coarse structure on
a topological space (X, T ). A continuous and bounded map f : X → C
is called a Higson function if for each E ∈ E and ϵ > 0 there
exists a compact subset K of X such that |f(x) − f(y)| < ϵ for all
(x, y) ∈ E \ (K × K). The family of all Higson functions is denoted
by Ch(X). The Gelfand-Naimark theorem on C∗-algebras shows that
there is a compactification hX of X, such that C(hX) (the family
of all continuous functions on hX) and Ch(X) are isomorphic [8,
subsection 2.3]. The compactification hX of X is called the Higson
compactification of X. The compact set νX = hX \ X is called the
Higson corona of X.

In Section 4, we use our notion of asymptotic resemblance to make
a compactification of a space (the asymptotic compactification) that in
some cases agrees with the Higson compactification of coarse spaces.
We are going to use the Wallman compactification of a topological
space to generate our desired compactification. Let us briefly recall the
Wallman compactification of a topological space ([11]).

Let (X, T ) be a Hausdorff topological space, and let γX be the family
of all closed ultrafilters on X. For each open subset U of X, the set
U∗ = {F ∈ γX | U /∈ F}. It is straightforward to show that F ∈ U∗

if and only if F contains a subset of U . The family B = {U∗ | U is
open in X} is a basis for a topology on γX and γX is compact by this
topology. Let σx denote the unique closed ultrafilter that converges to
x ∈ X. The map σ : X → γX, defined by σ(x) = σx, is a topological
embedding and γX is called the Wallman compactification of X.

A cluster C in a proximity space (X, δ) is a family of subsets of X
such that, for all A,B ∈ C, we have AδB, if A,B ⊆ X and A

∪
B ∈ C,

then A ∈ C or B ∈ C; and, if AδB for all B ∈ C, then A ∈ C. A
proximity space (X, δ) is said to be separated if xδy implies x = y, for
all x, y ∈ X. A proximity δ on a topological space (X, T ) is said to
be compatible with T if a ∈ Ā and aδA are equivalent. Let X denote
the family of all clusters in a separated proximity space (X, δ). For
M,N ⊆ X define Mδ∗N if A ⊆ X absorbs M and B ⊆ X absorbs N,
then AδB. A set D absorbs M ⊆ X means that A ∈ C for all C ∈ M.
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The relation δ∗ is a proximity on X. The pair (X, δ∗) is a compact
proximity space, and it is called the Smirnov compactification of (X, δ)
[6, Section 7].

In Section 5, we introduce a proximity on an AS.R. space such that
its Smirnov compactification agrees with the asymptotic compactifica-
tion.

There are several equivalent definitions for asymptotic dimension of
a metric space ([1]). In this paper, by asymptotic dimension of a metric
space (X, d) we mean the following definition.

Definition 1.2. Let X be a metric space. The inequality asdimX ≤ n
means that for each uniformly bounded cover U of X, there exists a
uniformly bounded cover V ofX such that U refines V and µ(V) ≤ n+1.
For a family M of subsets of a set X, µ(M) denotes the multiplicity
of M, i.e., the greatest number of elements of M that meets a point of
X. By asdimX = n, we mean that asdimX ≤ n and asdimX ≤ n− 1
do not hold. For a metric space X, asdimX is called the asymptotic
dimension of X.

In Section 6, we show how one can generalize the notion of asymp-
totic dimension to AS.R. spaces.

In this paper, we denote the Hausdorff distance between subsets A
and B of a metric space (X, d) by dH(A,B). Let us recall one more
thing here. A proper map f : X → Y between metric spaces (X, d)
and (Y, d′) is said to be a coarse map if, for each r > 0, there exists an
s > 0 such that d(x, x′) < r implies d′(f(x), f(x′)) < s.

2. Asymptotic resemblance.

Definition 2.1. Let X be a metric space. We say that two subsets
A and B of X are asymptotically alike and we denote it by AλB, if
dH(A,B) < ∞. We assume that dH(∅, ∅) = 0 and dH(∅, A) = ∞ for
all ∅ ̸= A ⊆ X.

Let us denote the open ball of radius r > 0 around x ∈ X by
B(x, r), and let B(A, r) =

∪
a∈A B(x, r) for each subset A of X. The
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above definition states that AλB if and only if there is an r > 0 such
that A ⊆ B(B, r) and B ⊆ B(A, r).

Let (xn)n∈N and (yn)n∈N be two sequences in a metric space (X, d).
If there exists a k > 0 such that d(xn, yn) < k for all n ∈ N, then we
have {xi | i ∈ I}λ{yi | i ∈ I} for each I ⊆ N. The converse is also true.

Lemma 2.2. Let (X, d) be a metric space. Suppose that (xn)n∈N and
(yn)n∈N are two sequences in X such that, for each subset I of N, we
have {xi | i ∈ I}λ{yi | i ∈ I}. Then, there exists a k > 0 such that
d(xn, yn) < k, for all n ∈ N.

Proof. Suppose, contrary to our claim, that, for each n ∈ N, there
is some in ∈ N such that d(xin , yin) > n. Without loss of generality,
we can assume that we have in = n for each n ∈ N. We derive a
contradiction by two steps.

Step 1. We claim that, for each x ∈ X and s > 0, the index set
I = {i ∈ N | xi ∈ B(x, s)} is finite. Let C = {xi | i ∈ I} and
D = {yi | i ∈ I}. Then since CλD, let dH(C,D) = r. If j ∈ I, we
have:

i < d(xi, yi) ≤ d(xi, xj) + d(xj , yi) < 2s+ r.

This implies that I is finite. Similarly, we can prove that, for each
bounded subset D of X, the index set J = {j ∈ N | yj ∈ D} is finite.

Step 2. Set Ek = {xn | n ≥ k}
∪
{yn | n ≥ k} for k ∈ N. By Step 1,

for each bounded set D, there is a k ∈ N such that Ek

∩
D = ∅. Let

k1 = 1. For each i ∈ N, choose ki+1 ∈ N such that

Eki+1

∩
B({xki , yki}, ki) = ∅.

Let A = {xki | i ∈ N} and B = {yki | i ∈ N}. We have AλB
so there exists s > 0 such that A ⊆ B(B, s) and B ⊆ B(A, s).
Now, choose ki > s. For j, l ≥ i, let α = min{j, l}. We have
d(ykj , xkl

) ≥ kα ≥ ki > s. Therefore, for each j ≥ i, we have
ykj ∈ B(xkr , s), for some r = 1, . . . , i− 1, which means the set{

j ∈ N | yj ∈
i−1∪
r=1

B(xkr , s)
}

is infinite, and it contradicts Step 1 of the proof. �
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It is well known that a map f : X → Y between metric spaces X
and Y is uniformly continuous if and only if for two subsets A and B
of X, AδB implies f(A)δf(B) [6, subsection 4.8], where δ denotes the
metric proximity, i.e., AδB if and only if d(A,B) = 0. The following
theorem is the large-scale counterpart of this fact.

Theorem 2.3. Let X and Y be two metric spaces. A proper map
f : X → Y is coarse if and only if, for each asymptotically alike subset
A and B of X, f(A) and f(B) are asymptotically alike too.

Proof. Suppose that f : X → Y is a coarse map. Let A and B
be two subsets of X such that A ⊆ B(B, r) and B ⊆ B(A, r) for some
r > 0. By hypothesis, there exists an s > 0 such that d(x, x′) < r yields
d(f(x), f(x′)) < s, so f(A) ⊆ B(f(B), s) and f(B) ⊆ B(f(A), s).

To prove the converse, assume that f is not a coarse map. So there
are r > 0 and sequences xn and yn in X such that d(xn, yn) < r and
d(f(xn), f(yn)) > n. But the sequences (f(xn))n∈N and (f(yn))n∈N
satisfy the hypothesis of Lemma 2.2, a contradiction. �

Proposition 2.4. Let X be a metric space. The relation λ defined in
Definition 2.1 is an equivalence relation on the family of all subsets of
X, and it has following properties:

(i) A1λB1 and A2λB2 imply (A1

∪
A2)λ(B1

∪
B2).

(ii) (B1

∪
B2)λA and B1, B2 ̸= ∅ imply that there are nonempty

subsets A1 and A2 of A such that A = A1

∪
A2, and we have

BiλAi for i ∈ {1, 2}.

Proof. It is straightforward to show that λ is an equivalence relation
on the family of all subsets of X, and it satisfies property (i). For
property (ii), assume that B1

∪
B2 ⊆ B(A, r) and A ⊆ B(B1

∪
B2, r)

for some r > 0 and B1, B2 ̸= ∅. For i ∈ {1, 2}, let Ai = B(Bi, r)
∩
A.

We have
A = A1

∪
A2 and AiλBi for i ∈ {1, 2}. �

Definition 2.5. Let X be a set. We call a binary relation λ on
the power set of X an asymptotic resemblance (an AS.R.) if it is an
equivalence relation on the family of all subsets of X and satisfies
Proposition 2.4 (i) and (ii). For subsets A and B of X, we say that A



ASYMPTOTIC RESEMBLANCE 1237

and B are asymptotically alike if AλB. By AλB, we mean that A and
B are not asymptotically alike. We call the pair (X,λ) an AS.R. space.

In a metric space (X, d), we call the relation defined in Definition 2.1
the AS.R. associated to the metric d on X.

Proposition 2.6. Let (X,λ) be an AS.R. space. If AλB and ∅ ̸= A1 ⊆
A, then there is ∅ ̸= B1 ⊆ B such that A1λB1.

Proof. It is an immediate consequence of Proposition 2.4 (ii). �

Proposition 2.7. Let λ be an AS.R. on a set X. Suppose that
A,B,C ⊆ X and A ⊆ B ⊆ C. If AλC, then AλB.

Proof. Proposition 2.4 (i) leads to ((B\A)
∪
A)λ((B\A)

∪
C). Thus,

BλC and, since λ is an equivalence relation, AλB. �

Let us recall that, on a coarse space (X, E),

E(A) = {y ∈ X | (x, y) ∈ E for some x ∈ A},

for all E ∈ E and all A ⊆ X.

Example 2.8. Suppose that E is a coarse structure on a setX. For any
two subsets A and B of X, define AλEB if A ⊆ E(B) and B ⊆ E(A)
for some E ∈ E . The relation λE is an asymptotic resemblance on X.
We call λE the AS.R. associated to the coarse structure E on X.

In the next section, we will investigate the relation between coarse
structures and asymptotic resemblance relations in more details.

Example 2.9. Let X be a set. For any two subsets A and B of X,
define AλB if A∆B = (A \ B)

∪
(B \ A) is finite. The relation λ is

an AS.R. on X that we call the discrete asymptotic resemblance on a
set X.

Definition 2.10. Let λ be an AS.R. on a set X. We say a subset A of
X is bounded if Aλx, for some x ∈ X. We assume that the empty set
is bounded.
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Let λ be the AS.R. associated to a coarse structure E on a set X. It
is easy to verify that D ⊆ X is bounded if and only if it is bounded
with respect to E .

Proposition 2.11. Let λ be an AS.R. on a set X, and let A ⊆ X. If
Aλx for some x ∈ X and ∅ ̸= B ⊆ A, then Bλx. Thus, all subsets of
a bounded set are bounded.

Proof. It is an immediate consequence of Proposition 2.6. �

Example 2.12. Suppose that G is a group. For two subsets A and
B of G, define AλlB if there exists a finite subset K of G such that
A ⊂ BK and B ⊆ AK. We call λl the left AS.R. on G. Similarly,
one can define the right AS.R. on G. In both cases, a subset D of G
is bounded if and only if it is finite. If G is an Abelian group, then λr
and λl obviously coincide. However, they are different in the general
case [3].

Example 2.13. Suppose that A and B are two subsets of the real line
R. Define AλB if there exists r > 0 such that

A ⊆
∪
b∈B

(b− r,+∞)

and

B ⊆
∪
a∈A

(a− r,+∞).

It is straightforward to show that λ is an equivalence relation on the
family of all subsets of R, and it satisfies Proposition 2.4 (i). Now
suppose that Aλ(B1

∪
B2) and B1, B2 ̸= ∅. So there is an r > 0 such

that we have

A ⊆
∪

b∈B1

∪
B2

(b− r,+∞)

and

B1

∪
B2 ⊆

∪
a∈A

(a− r,+∞).
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Let

A′
1 =

( ∪
b∈B1

(b− r,+∞)

)∩
A.

If B1 ⊆
∪

a∈A′
1
(a− r,∞), then A′

1λB1, and we can let A1 = A′
1.

Now assume that there is a b1 ∈ B1 such that b1 ≤ a − r for all
a ∈ A′

1. Since Aλ(B1

∪
B2), there is an a1 ∈ A such that a1 − r < b1.

Let
A1 = A′

1

∪
{a1}

and
r1 = max{| b1 − a1 | +1, r}.

Since a1 /∈ A′
1, a1 ≤ b−r < b for all b ∈ B1. Thus, B1 ⊆ (a1−r1,+∞),

which leads to A1λB1. Similarly, one can find A2 ⊆ A such that A2λB2

and A = A1

∪
A2. Let λd denote the AS.R. associated to the standard

metric on R. It is easy to show that AλdB yields AλB, for all A,B ⊆ R.
A set D ⊆ R is bounded with respect to λ if and only if D ⊆ (a,+∞)
for some a ∈ R. There is no metric on R such that we have AλB if and
only if dH(A,B) <∞ for all subsets A and B of R.

Suppose the contrary. For each n ∈ N, the interval (−∞,−n) is un-
bounded. We choose bn < −n such that d(−n, bn) > n. Therefore, the
sequences (−n)n∈N and (bn)n∈N satisfy the hypothesis of Lemma 2.2,
a contradiction.

Definition 2.14. Let (X,λ1) and (Y, λ2) be two AS.R. spaces. We call
a map f : X → Y an AS.R.mapping if:

(i) (Properness.) f−1(B) is bounded in X for each bounded subset
B of Y .

(ii) Aλ1B implies f(A)λ2f(B), for all subsets A and B of X.

In fact, Theorem 2.3 states that, for metric spaces X and Y , a map
f : X → Y is a coarse map if and only if it is an AS.R.mapping for the
AS.R.’s associated to their metrics.

Definition 2.15. Let (Y, λ) be an AS.R. space, and let X be a set.
We say that two maps f : X → Y and g : X → Y are close if we have
f(A)λg(A) for each subset A of X.
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Proposition 2.16. Let (Y, d) be a metric space, and let λ be the
AS.R. associated to d. Two maps f : X → Y and g : X → Y are
close if and only if there is some k > 0 such that d(f(x), g(x)) < k for
all x ∈ X.

Proof. The proof of the only if part is straightforward.

Now suppose that f and g are close maps. Assume that, on
the contrary, for all n ∈ N, there exists an xn ∈ X such that
d(f(xn), g(xn)) > n. Then the sequences (f(xn))n∈N and (g(xn))n∈N
satisfy the hypothesis of Lemma 2.2, a contradiction. �

Definition 2.17. Let (X,λ1) and (Y, λ2) be two AS.R. spaces. We call
an AS.R.mapping f : X → Y an asymptotic equivalence if there exists
an AS.R.mapping g : Y → X such that g ◦ f and f ◦ g are close to
the identity maps iX : X → X and iY : Y → Y , respectively. We say
AS.R. spaces (X,λ1) and (Y, λ2) are asymptotically equivalent if there
exists an asymptotic equivalence f : X → Y .

Proposition 2.18. Let (X,λ1) and (Y, λ2) be two AS.R. spaces. Sup-
pose that f : X → Y and g : X → Y are two close maps. If f is
an AS.R.mapping, then so is g, and if f is an asymptotic equivalence,
then so is g.

Proof. We will prove that, if f is a proper map, then so is g. Other
parts of Proposition 2.18 are straightforward results of the property
that λ1 and λ2 are equivalence relations on the family of all subsets of
X and Y .

Let D ⊆ Y be a bounded set. We have f(g−1(D))λ2g(g
−1(D))

so f(g−1(D)) is bounded. Thus, f−1(f(g−1(D))) is bounded, and
Proposition 2.11 leads to g−1(D) being bounded. �

Definition 2.19. Let (X,λ) be an AS.R. space, and let Y be a
nonempty subset of X. For the two subsets A and B of Y , define
AλYB if AλB. The pair (Y, λY ) is an AS.R. space, and we call λY the
subspace AS.R. induced by λ on Y .
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Lemma 2.20. Let (X,λ) and (Y, λ′) be two AS.R. spaces. Suppose
that f : X → Y is an asymptotic equivalence and ∅ ̸= C ⊆ X. Then
f |C : (C, λC) → (f(C), λ′f(C)) is also an asymptotic equivalence.

Proof. Let g : Y → X be an AS.R.mapping such that g ◦ f and
f ◦ g are close maps to identity maps iX : X → X and iY : Y → Y ,
respectively. Let q : f(C) → C be a map such that f ◦q(a) = a for each
a ∈ f(C). Suppose that D ⊆ C is bounded. Since g◦f(D)λD, g◦f(D)
is a bounded subset of X. We have q−1(D) ⊆ f(D) ⊆ g−1(g ◦ f(D)).
Proposition 2.11 shows that q−1(D) is bounded. Assume that A,B ⊆
f(C) and Aλ′f(C)B. We have g ◦f(q(A))λq(A) and, since f(q(A)) = A,

q(A)λg(A). Similarly, q(B)λg(B) leads to q(A)λCq(B). Therefore, q is
an AS.R.mapping. Now, let A ⊆ C. We have f(q ◦ f(A)) = f(A) so
g(f(q ◦f(A))) = g ◦f(A)λA. Also, we have g ◦f(q ◦f(A))λq ◦f(A) and
it leads to q ◦ f(A)λCA. Therefore, f |C : C → f(C) is an asymptotic
equivalence. �

Definition 2.21. We call an AS.R. space (X,λ) asymptotically con-
nected if we have xλy for all x, y ∈ X.

It is immediate that the AS.R. associated to a connected coarse
structure is asymptotically connected.

Proposition 2.22. An AS.R. space (X,λ) is asymptotically connected
if and only if, for each nonempty subset A and B of X, A∆B is finite,
which yields AλB.

Proof. The if part is trivial.

Assume that A \ B = {x1, . . . , xn} and B \ A = {y1, . . . , ym}. By
using Proposition 2.4 (i) and asymptotic connectedness of λ, we can
conclude (A \B)λ(B \A). By Proposition 2.4 (i), we have(

(A \B)
∪(

A
∩
B

))
λ

(
(B \A)

∪(
A
∩
B

))
.

Thus, AλB. �

3. Coarse structures and asymptotic resemblance relations.
In Example 2.8, we stated that every coarse structure E on a set X
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induces an AS.R. on X. We denoted this AS.R. by λE . The following
example shows that two different coarse structures may induce a same
AS.R. relation.

Example 3.1. Let X = N. Assume that E1 and E2 denote two families
of subsets of X ×X such that:

(i) E ∈ E1 if and only if E(A) and E−1(A) are finite for all finite
A ⊆ N.

(ii) E ∈ E2 if and only if there exists nE ∈ N such that E(x) and
E−1(x) have at most nE members, for all x ∈ X.

Both E1 and E2 families are coarse structures on X ([8, Examples
2.8 and 2.44]). It is immediate that E2 is a proper subset of E1.

For two subsets A,B of X, we claim that AλE2B if and only if A and
B are both finite or A and B are both infinite. It is straightforward to
show that, if AλE2B and A is finite, then so is B, and if A and B are
both finite, then AλE2

B.

Suppose that A and B are both infinite. Let

A = {an | n ∈ N} and B = {bn | n ∈ N},

and assume that an < an+1 and bn < bn+1 for all n ∈ N. Let

E = {(an, bn) | n ∈ N}
∪

{(bn, an) | n ∈ N}.

Clearly, E ∈ E2 and nE = 2. We have A ⊆ E(B) and B ⊆ E(A), so
AλE2B. Since E2 ⊆ E1, one can easily show that AλE1B if and only if
A and B are both finite or A and B are both infinite. Thus, λE1 = λE2 .

Let λ be an AS.R. on a set X. We denote the family of all coarse
structures that induce λ by E(λ). Let us recall that, for two coarse
structures E1 and E2 on a set X, E2 is said to be coarser than E1 if
E1 ⊆ E2 ([8, subsection 2.1]).

Proposition 3.2. Let λ be an AS.R. on a set X. If E(λ) ̸= ∅, then
there is a coarse structure Eλ ∈ E(λ) such that Eλ is coarser than each
member of E(λ).
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Proof. Let Eλ be the family of all E ⊆ X×X such that π1(F )λπ2(F )
for all F ⊆ E, where π1 and π2 denote projection maps onto first and
second factors, respectively. Since λ is an equivalence relation, ∆ ∈ Eλ
and E−1 ∈ Eλ for all E ∈ Eλ. By Proposition 2.4 (i), one easily sees
that E

∪
F ∈ Eλ for all E,F ∈ Eλ.

Let E,F ∈ Eλ, and suppose that H ⊆ E ◦ F . Set

O1 = {(x, y) ∈ X ×X | x ∈ π1(H), y ∈ F (x)
∩
π1(E)}

and

O2 = {(x, y) ∈ X ×X | x ∈ π2(O1), y ∈ E(x)}.

We have O1 ⊆ F and O2 ⊆ E, so π1(H) = πO1λπ2(O1) and π2(O1) =
π1(O2)λπ2(O2) = π2(H). It follows that π1(H)λπ2(H), which leads to
E ◦ F ∈ Eλ. Therefore, Eλ is a coarse structure on X.

Suppose that E ∈ E(λ). It is straightforward by the definition to
show that, if E ∈ E and F ⊆ E, then π1(F )λπ2(F ). It follows that
E ⊆ Eλ. Thus, Eλ is coarser than each member of E(λ).

It remains to show Eλ ∈ E(λ). Suppose that A,B ⊆ X and
A ⊆ E(B) and B ⊆ E(A), for some E ∈ Eλ. Let

F1 = {(a, b) ∈ E | a ∈ A, b ∈ B}

and

F2 = {(b, a) ∈ E | a ∈ A, b ∈ B}.

Then, A = π1(F1)λπ2(F1) and B = π1(F2)λπ2(F2). We obtain

A =

(
π2(F2)

∪
(A \ π2(F2))

)
λ

(
B
∪
A \ π2(F2)

)
.

Since A and π2(F1) ⊆ B are asymptotically alike, there is a subset
L of B such that (A \ π2(F2))λL, by Proposition 2.6. Therefore,
Aλ(B

∪
L) = B. Since E(λ) ̸= ∅, and Eλ is greater than each member

of E(λ), it is straightforward to show that AλB implies that there is
an E ∈ Eλ such that A ⊆ E(B) and B ⊆ E(A), for all A,B ⊆ X. �

In fact, asymptotic resemblance relations on a set X define an equiv-
alence relation on the family of all coarse structures on X. Two coarse
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structures on X are equivalent if they induce the same asymptotic
resemblance relation. Proposition 3.2 shows that these equivalence
classes have a biggest member. One can compare this with similar
arguments about the relation between uniform structures and proxim-
ity in [6, Section 12].

4. Asymptotic compactification.

Definition 4.1. Let (X, T ) be a topological space, and let λ be an
AS.R. on X. We say that an open subset U of X is an asymptotic
neighborhood of A ⊆ X if A ⊆ U and AλU . We call λ a compatible
AS.R.with T if

(i) Each subset of X has an asymptotic neighborhood.
(ii) AλA for all A ⊆ X.

Proposition 4.2. Let (X, T ) be a topological space, and let E be a
coarse structure compatible with T . Then the AS.R. associated to E is
compatible with T also.

Proof. Assume that E is a symmetric open entourage containing the
diagonal. For A ⊆ X, E(A) is an asymptotic neighborhood of A. Let
a ∈ A. E(a) is an open neighborhood of a, so E(a)

∩
A ̸= ∅. Let

a′ ∈ E(a)
∩
A. Since (a, a′) ∈ E−1 = E, a ∈ E(a′) ⊆ E(A). Thus,

A ⊆ E(A), and this leads to AλA. �

Definition 4.3. We call two subsets A1 and A2 of an AS.R. space
(X,λ) asymptotically disjoint if, for all unbounded subsets L1 ⊆ A1

and L2 ⊆ A2, we have L1λL2. We say that an AS.R. space (X,λ) is
asymptotically normal if, for asymptotically disjoint subsets A1 and A2

of X, there exist X1 ⊆ X and X2 ⊆ X such that X = X1

∪
X2, and

Ai and Xi are asymptotically disjoint for i ∈ {1, 2}.

Let B a bounded subset of an AS.R. space (X,λ). Then B is
asymptotically disjoint from all A ⊆ X. In [2], two subsets A and
B of a metric space (X, d) are called asymptotically disjoint if, for
some x0 ∈ X, limr→∞ d(A \B(x0, r), B \B(x0, r)) = ∞.
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The next proposition shows that this definition is equivalent to our
definition of asymptotical disjointness on metric spaces.

Proposition 4.4. Let (X, d) be a metric space, and let λ be the
associated AS.R. to d. Two unbounded subsets A and B of X are
asymptotically disjoint if and only if, for some x0 in X, limr→∞ d(A \
B(x0, r), B \B(x0, r)) = ∞.

Proof. Let x0 ∈ X be a fixed point. Suppose that A and B are two
asymptotically disjoint subsets of X. Assume that, on the contrary,

lim
r→∞

d(A \B(x0, r), B \B(x0, r)) ̸= ∞.

Thus, there exists N ∈ N such that, for each m ∈ N, we have
d(A \ B(x0, rm), B \ B(x0, rm)) < N for some rm ≥ m. We choose
xm ∈ A \B(x0, rm) and ym ∈ B \B(x0, rm) such that d(xm, ym) < N .
Let

L1 = {xm | m ∈ N}

and

L2 = {ym | m ∈ N}.

Thus, L1 ⊆ A and L2 ⊆ B are two unbounded subsets and L1λL2, a
contradiction.

To prove the converse, let A,B ⊆ X, and suppose that limr→∞ d(A\
B(x0, r), B \ B(x0, r)) = ∞. Assume that, on the contrary, there are
unbounded subsets L1 ⊆ A and L2 ⊆ B such that dH(L1, L2) < N ,
for some N ∈ N. Since L1 is unbounded for each n ∈ N, there exists
xn ∈ L1 \ B(x0, n) such that d(xn, b) > N for all b ∈ B(x0, n)

∩
L2.

Thus, there is a yn ∈ L2 \ B(x0, n) such that d(xn, yn) < N . Then
xn ∈ A \B(x0, n) and yn ∈ B \B(x0, n) for all n ∈ N. Thus,

lim
r→∞

d(A \B(x0, r), B \B(x0, r)) ̸= ∞,

a contradiction. �

Proposition 4.5. Let (X, d) be a metric space and let λ be the AS.R.
associated to d. Then (X,λ) is an asymptotically normal AS.R. space.
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Proof. Assume that A and B are asymptotically disjoint subsets of
X. For i ∈ N

∪
{0}, let

Ai =
{
x | d(x,A) ≤ i+ 1

}∩{
x | d(x,B) ≥ i

}
and

Bi =
{
x | d(x,B) ≤ i+ 1

}∩{
x | d(x,A) ≥ i

}
.

Suppose that

X1 =
∞∪
i=0

Bi and X2 =
∞∪
i=0

Ai.

For x ∈ X, assume that i ≤ d(x,A) ≤ i + 1 and j ≤ d(x,B) ≤ j + 1.
If i = j then x ∈ Ai = Bj . If i < j then i + 1 ≤ j so x ∈ Ai.
Thus X = X1

∪
X2. We claim that A and X1 are asymptotically

disjoint. Suppose that, contrary to our claim, there are unbounded
subsets L1 ⊆ A and L2 ⊆ X1 such that L1λL2, i.e., L1 ⊆ B(L2, n) and
L2 ⊆ B(L1, n) for some n ∈ N. Thus, L2 ⊆ B(A,n), and this leads to

L2 ⊆
n−1∪
i=0

Bi.

Therefore, L2 ⊆ B(B,n). Let

L3 = B(L2, n)
∩
B.

We obtain L3λL2, which leads to L3λL1, a contradiction. Therefore,
A and X1 are asymptotically disjoint. Similarly, one can show that B
and X2 are asymptotically disjoint. �

Let X be a Hausdorff and locally compact topological space, and let
αX be a compactification ofX. Let us recall that the topological coarse
structure on X associated to αX is the family of all E ⊆ X ×X such
that the closure of E meets (αX ×αX) \ (X ×X) only in the diagonal
[8, Definition 2.28]. It is known that topological coarse structures
associated to a second countable compactifications are not metrizable
[8, Example 2.53].

The next proposition shows that the class of all asymptotic normal
AS.R. spaces is much bigger than the family of all metric spaces.
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Proposition 4.6. Let X be a Hausdorff and locally compact metric
space, and let αX be a first countable compactification of X. Let E
be the topological coarse structure associated to αX, and let λ be the
AS.R. associated to E. Then λ is asymptotically normal.

Proof. First we prove that A and B are asymptotically disjoint
subsets of X if and only if

A
∩
B
∩

(αX \X) = ∅.

Let
ω ∈ A

∩
B
∩

(αX \X) for A,B ⊆ X.

There are sequences (xn)n∈N and (yn)n∈N in A and B, respectively,
such that they converge to ω. Let E = {(xn, yn) | n ∈ N}. It is
straightforward to show that each sequence in E can be assumed to be
a subsequence of ((xn, yn))n∈N, and this shows that

E
∩

((αX × αX) \ (X ×X)) = {(ω, ω)}.

So E ∈ E .
Let

L1 = {xn | n ∈ N} ⊆ A

and

L2 = {yn | n ∈ N} ⊆ B.

We obtain L1λL2 which shows that A and B are not asymptotically
disjoint.

Now assume that A and B are two subsets of X such that they
are not asymptotically disjoint. Let L1 and L2 be two unbounded
and asymptotically alike subsets of A and B, respectively. There is an
E ∈ E such that L1 ⊆ E(L2) and L2 ⊆ E(L1).

Let ω ∈ L1

∩
(αX\X) and (xn)n∈N be a sequence in L1 and xn → ω.

For each n ∈ N, choose yn ∈ L2 such that (xn, yn) ∈ E. Since E ∈ E ,
yn → ω. This shows that

ω ∈ L1

∩
L2

∩
(αX \X).
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Thus,

A
∩
B
∩

(αX \X) ̸= ∅.

Now we give the proof of Proposition 4.6. Let A and B be two
asymptotically disjoint subsets of X. Then

A
∩
B
∩

(αX \X) = ∅.

Since αX is a normal topological space, there is a map f : αX → [0, 1]
such that

f
(
A
∩

(αX \X)
)
= 0

and

f
(
B
∩

(αX \X)
)
= 1.

Let

X1 = f−1([1/2, 1])
∩
X

and

X2 = f−1([0, 1/2])
∩
X.

By what we first proved, here it is straightforward to show that A and
B are asymptotically disjoint from X1 and X2, respectively. �

Definition 4.7. Let (X, T ) be a topological space and λ be an AS.R.
compatible with T . We say that λ is proper if each bounded subset of
X has a compact closure.

It is straightforward to show that a proper coarse structure admits
a proper AS.R. It is an immediate result of the definition that, if there
exists a proper AS.R. on a topological space X, then X is a locally
compact topological space.

Proposition 4.8. Suppose that λ is a proper and asymptotically con-
nected AS.R. on a topological space X. Then a subset A of X is bounded
if and only if A is compact.
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Proof. The only if part is a part of the definition. Suppose that
A is a subset of X with compact closure. We cover A with the Ui,
i ∈ {1, . . . , n}, such that each Ui is an asymptotic neighborhood of
some ai ∈ A. We have ( n∪

i=1

Ui

)
λ{a1, . . . , an}

by Proposition 2.4 (i). Also, we have {a1, . . . , an}λa1 by asymptotic
connectedness of λ, so Proposition 2.11 leads to Aλa1. �

From now on, we will assume that all AS.R. spaces are asymptoti-
cally connected.

Definition 4.9. Let (X, T ) be a topological space and λ an AS.R. com-
patible with T . For two nonempty subsets A and B of X, define A ∼ B
if A = B or A and B unbounded asymptotically alike subsets of X.
The relation ∼ is an equivalence relation on the family of all nonempty
subsets of X. Let γX denote the family of all closed ultrafilters on X
and F1,F2 ∈ γX. Define F1 ≈ F2 if, for any A ∈ F1 and B ∈ F2, there
are L1 ⊆ A and L2 ⊆ B such that L1 ∼ L2. We denote the equivalence
class of F ∈ γX by [F ].

Lemma 4.10. Let (X,λ) be an AS.R. space. If A and B are asymp-
totically disjoint subsets of X and AλC and BλD for some C,D ⊆ X,
then C and D are asymptotically disjoint too.

Proof. It is an immediate consequence of Proposition 2.6. �

Proposition 4.11. Let (X, T ) be a topological space, and let λ be
an AS.R. compatible with T . If (X,λ) is an asymptotically normal
AS.R. space, then the relation ≈ defined in Definition 4.9 is an equiva-
lence relation.

Proof. The relation ≈ is obviously symmetric and reflexive. We
suppose that F1 ≈ F2 and F2 ≈ F3 and claim that F1 ≈ F3. Suppose
that, contrary to our claim, there are disjoint sets A ∈ F1 and C ∈ F3

such that they are asymptotically disjoint. So A,C /∈ F2. Choose
B ∈ F2 such that B

∩
(A

∪
C) = ∅. Since (X,λ) is asymptotically
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normal, there are X1 ⊆ X and X2 ⊆ X such that X1

∪
X2 = X, and

they are asymptotically disjoint from A and C, respectively. Let

B1 = B
∩
X1

and

B2 = B
∩
X2.

By compatibility and Lemma 4.10, B1 and B2 are asymptotically
disjoint from A and C respectively. Since F2 is a closed ultrafilter
and B = B1

∪
B2 then B1 ∈ F2 or B2 ∈ F2 which contradicts F1 ≈ F2

or F2 ≈ F3, respectively. �

Let us recall that, for an open subset U of a topological space X, U∗

is the family of all closed ultrafilters on X such that U contains some
elements of them.

Proposition 4.12. Let X be a normal topological space, and let λ be
a compatible and asymptotically normal AS.R. on X. Then the set

R = {(F1,F2) ∈ γX × γX | F1 ≈ F2}

is closed in γX × γX.

Proof. Suppose that (F1,F2) /∈ R. Then there are disjoint sets
A ∈ F1 and B ∈ F2 such that they are also asymptotically disjoint.
We choose asymptotic neighborhoods A ⊆ U and B ⊆ V such that
U
∩
V = ∅. Therefore, F1 ∈ U∗ and F2 ∈ V ∗.

Now assume that H1 ∈ U∗ and H2 ∈ V ∗. Thus, there are D1 ∈ H1

and D2 ∈ H2 such that D1 ⊆ U and D2 ⊆ V . Then

D1

∪
A ∈ H1 and D2

∪
B ∈ H2.

Also, by Proposition 2.7, we have(
D1

∪
A
)
λA and

(
D2

∪
B
)
λB.

By Lemma 4.10, D1

∪
A and D2

∪
B are asymptotically disjoint.

Therefore, the open neighborhood U∗ × V ∗ of (F1,F2) is disjoint
from R. �
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Let λ be a compatible AS.R. on a Hausdorff topological space X.
We recall that, for a point x ∈ X, σx denotes the family of all closed
subsets of X that contains x, and the map σ : X → γX defined by
σ(x) = σx is a topological embedding. For two points x, y ∈ X, it is
straightforward to show that σx ≈ σy if and only if x = y. Thus, the
map

ϕ : X → γX

≈
defined by ϕ(x) = [σx] is one-to-one.

Corollary 4.13. Let X be a normal topological space, and let λ be
a proper and asymptotically normal AS.R. on X. Then γX/≈ is a
Hausdorff compactification of X.

Proof. Since γX is compact, its quotient γX/≈ is compact too.
By Proposition 4.12, γX/≈ is Hausdorff. It suffices to show that
ϕ : X → γX/≈ is a topological embedding. Let π : γX → γX/≈
be the quotient map. Since ϕ = π ◦ σ, ϕ is a continuous map. Suppose
that U ⊆ X is an open set and [σx] ∈ ϕ(U). By Proposition 2.7, we
can choose an asymptotic neighborhood W of x such that W ⊆ U .
It is easy to verify that π−1(ϕ(W )) = W ∗. Thus, ϕ(W ) is open in
γX/≈, and we have [σx] ∈ ϕ(W ) ⊆ ϕ(U). Therefore, ϕ is a topological
embedding and ϕ(X) is open in γX/≈. �

Proposition 4.14. Let (X, T ) be a topological space, and let λ be an
AS.R. compatible with T . Suppose that (xα)α∈I and (yα)α∈I are two
nets in X. Let

Tβ = {xα | α ≥ β} and Sβ = {yα | α ≥ β}.

If TβλSβ for all β ∈ I, σxα → F1 and σyα → F2 for some F1,F2 ∈
γX \ σ(X), then F1 ≈ F2.

Proof. Suppose that A ∈ F1 and B ∈ F2. We choose asymptotic
neighborhoods U and V of A and B, respectively. Then F1 ∈ U∗ and
F2 ∈ V ∗. Since σxα → F1 and σyα → F2, there are α, β ∈ I such
that Tα ⊆ U and Sβ ⊆ V . Let α, β ≤ γ so that Tγ ⊆ U and Sγ ⊆ V .
This leads to TγλL1 and SγλL2 for some L1 ⊆ A and L2 ⊆ B by
Proposition 2.6. �
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A compactification X of a proper coarse space (X, E) is said to be a
coarse compactification of X, if E ∈ E and (xα, yα)α∈I is a convergent
net in E, then xα → ω for ω ∈ X \X yields yα → ω [8].

Corollary 4.15. Let X be a normal topological space, and let λ be an
AS.R. associated to a proper coarse structure E on X. Suppose that λ
is asymptotically normal. Then γX/≈ is a coarse compactification.

Proof. Let (xα, yα)α∈I be a convergent net in E ∈ E . Assume that
[σxα ] → [F1] and [σyα ] → [F2] for [F1], [F2] ∈ γX/≈ \ ϕ(X). Suppose
that σxαi

is a convergent subnet of σxα and σyαik
is a convergent subnet

of σyαi
. If

σxαik
−→ H1 and σyαik

−→ H2,

we have H1 ≈ F1 and H2 ≈ F2. Thus, by Proposition 4.14, we have
H1 ≈ H2, and therefore, F1 ≈ F2. �

Corollary 4.16. Let X be a normal topological space, and let E be a
proper coarse structure on X. Assume that the AS.R. associated to E
is asymptotically normal. Then the identity map i : X → X extends
uniquely to a continuous map of hX into γX/≈.

Proof. It is an immediate consequence of Corollary 4.16 and [8,
2.39]. �

Proposition 4.17. Assume the hypotheses of Corollary 4.16 hold.
Each Higson function f : X → C has a unique extension f : γX/≈
→ C.

Proof. Let f : X → R be a Higson function and f̂ : γX → C its
extension to γX. Suppose that

F1,F2 ∈ γX \X and F1 ≈ F2.

Let f̂(F1) = x1 and f̂(F2) = x2. Assume that x1 ̸= x2. Let

δ = |x1 − x2|/4. Then f̂−1(B(x1, δ)) and f̂−1(B(x2, δ)) are open sets
containing F1 and F2, respectively, so there are open sets U ⊆ X

and V ⊆ X such that F1 ∈ U∗ ⊆ f̂−1(B(x1, δ)) and F2 ∈ V ∗ ⊆
f̂−1(B(x2, δ). Thus, there are A ∈ F1 and B ∈ F2 such that A ⊆ U
and B ⊆ V . Since F1 ≈ F2, there are unbounded and asymptotically
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alike subsets L1 ⊆ A and L2 ⊆ B. Therefore, there is as E ∈ E such
that L1 ⊂ E(L2) and L2 ⊆ E(L1). Since f is a Higson function, there is
a compact K ⊆ X such that |f(x)−f(y)| < δ for all (x, y) ∈ E\K×K.

Let x ∈ L1 \K and y ∈ L2 \K so σx ∈ U∗ and σy ∈ V ∗. This leads

to f̂(σx) = f(x) ∈ B(x1, δ) and f̂(σy) = f(y) ∈ B(x2, δ) so

|x2 − x1| ≤ |x2 − f(y)|+ |f(x)− f(y)|+ |x1 − f(x)| < 3δ.

Thus, |x2 − x1| < 3|x1 − x2|/4, a contradiction. Therefore, x1 = x2.

Define f : γX/≈ → C by f([F ]) = f̂(F). The map f is well defined

and, since f ◦ π = f̂ , it is continuous. �

Corollary 4.18. Assume that the hypotheses of Corollary 4.16 hold.
Then hX and γX/≈ are homeomorphic.

Proof. Proposition 4.17 shows that the identity map i : X → X
extends uniquely to a map from γX/≈ to hX. Thus, Corollary 4.16
shows that hX and γX/≈ are homeomorphic. �

Suppose that (X, T ) is a topological space and λ is a proper and
asymptotically normal AS.R. on it. We call γX/≈ the asymptotic
compactification of X. We also call νX = γX/≈\ϕ(X) the asymptotic
corona of X. For an AS.R. associated to a proper coarse structure E
on X, Corollary 4.18 shows that νX is homeomorphic with the Higson
corona.

Example 4.19. Let (X, d) be a metric space. For two subsets A and B
of X, define AλB if A and B are both unbounded or A and B are both
bounded. The relation λ is a proper AS.R. on (X, d). Two subsets A
and B of X are asymptotically disjoint if and only if A is bounded or B
is bounded. For a bounded subset A ⊆ X, let X1 = X \A and X2 = A.
Then X1 is asymptotically disjoint from A and X2 is asymptotically
disjoint from B, for all B ⊆ X. Thus, (X,λ) is an asymptotically
normal AS.R. space. It is straightforward to show that F1 ≈ F2, for all
F1,F2 ∈ γX \ σ(X). Therefore, the asymptotic compactification of X
is the one point compactification of (X, d).

Example 4.20. Suppose that λ is the AS.R. introduced in Exam-
ple 2.13 on R. Since the two unbounded subsets of R, with respect
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to λ, are asymptotically alike, the subsets A and B of R are asymptot-
ically disjoint if and only if A is bounded or B is bounded with respect
to λ.

Let A be a bounded subset of R with respect to λ. Then A ⊆ (r,+∞)
for some r ∈ R.

Let X1 = (−∞, r) and X2 = (r,+∞). The sets X1 and A are
asymptotically disjoint and X2 is asymptotically disjoint from B, for
all B ⊆ X. Thus, (X,λ) is an asymptotically normal AS.R. space.

At each point x ∈ R, other than the origin, assume the usual
neighborhood basis at x. At the origin, let B = {(−ϵ,+ϵ)

∪
(n,+∞) |

n ∈ N, ϵ > 0} be the neighbourhood basis. Let T be the corresponding
topology on R. It is easy to show that λ is a proper AS.R. space on
(R, T ) and (R, T ) is a normal topological space. For all F1,F2 ∈ γX \
σ(X), we have F1 ≈ F2. Therefore, the asymptotic compactification
of (R, λ) is the one point compactification of (R, T ).

Proposition 4.21. Let X and Y be two topological spaces equipped
with two proper and asymptotically normal AS.R.’s. For every con-
tinuous AS.R.mapping f : X → Y , there exists a unique continuous

extension f̃ : γX/≈ → γY /≈ which sends νX to νY .

Proof. For F ∈ γX, define

f∗(F) = {A ⊆ Y | A is closed and f−1(A) ∈ F}.

Let f̂(F) be a unique closed ultrafilter that contains f∗(F) ([11, 16K]).

The map f̂ : γX → γY is a continuous extension of f ([11, 19K]).

Assume that F ∈ γX\σ(X) and f̂(F) = σy for some y ∈ Y . Therefore,
for all A ∈ f∗(F), we have y ∈ A.

Let U ⊆ Y be an asymptotic neighborhood of y. We have

A = (A \ U)
∪

(A
∩
U).

Since y /∈ A\U and f∗(F) is a prime closed filter, then A
∩
U ∈ f∗(F).

Since f is an AS.R.mapping thus f−1(A
∩
U) is bounded and it

contradicts F ∈ γX \ σ(X). Thus, f̂ sends γX \ σ(X) to γY \ σ(Y ).
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Suppose that F1 ≈ F2. Let C ∈ f̂(F1) and A ∈ f∗(F1). Assume
that U is an asymptotic neighborhood of C. Since

A = (A
∩
U)

∪
(A \ U) and (A \ U)

∩
U = ∅,

A
∩
U ∈ f∗(F1). Similarly, one can show that, for D ∈ f̂(F2) and B ∈

f∗(F2), we have B
∩
V ∈ f∗(F2) for some asymptotic neighborhood

V of D. Then f−1(A
∩
U) ∈ F1 and f−1(B

∩
V ) ∈ F2. Thus, there

are unbounded and asymptotically alike subsets L1 ⊆ f−1(A
∩
U) and

L2 ⊆ f−1(B
∩
V ). Since f is an AS.R.mapping, f(L1) and f(L2)

are unbounded and asymptotically alike subsets of A
∩
U and B

∩
V ,

respectively. Since λ is compatible with the topology, Proposition 2.6

shows that C and D are not asymptotically disjoint. Thus, f̂(F1) ≈
f̂(F2). Therefore, f̃ : γX/≈ → γY /≈ defined by f̃([F ]) = [f̂(F)] is

well defined. We have f̃ ◦ π = π′ ◦ f̂ , where π : γX → γX/≈ and

π′ : γY → γY /≈ are quotient maps. So f̃ is continuous and, since f̂
sends γX \ σ(X) to γY \ σ(Y ), it sends νX to νY . �

In the following propositions, A denotes the closure of A ⊆ X in
γX/≈.

Proposition 4.22. Let X be a normal topological space, and let E be
a proper coarse structure on X. Assume that the AS.R. associated to
E is asymptotically normal. If A and B are two asymptotically alike
subsets of X then A

∩
νX = B

∩
νX.

Proof. Let [F ] ∈ A
∩
νX. Let us denote by D′ the closure of D ⊆ X

in γX. Since π : γX → γX/≈ is a closed map so (A
∩
νX) ⊆

π(A′)
∩
νX. Thus, there is an ultrafilter G ∈ A′ such that F ≈ G.

There is a net (xα)α∈I in A such that σxα → G. Since A and B
are asymptotically alike, A ⊆ E(B) and B ⊆ E(A) for some E ∈ E .
For each α ∈ I, we choose yα ∈ B such that (xα, yα) ∈ E. The net
(σyα)α∈I has a convergent subnet (σyαi

)i∈J . Then σyαi
→ H for some

H ∈ B′. Two nets (σyαi
)i∈J and (σxαi

)i∈J satisfy the assumptions of

Proposition 4.14. Thus, G ≈ H, and this leads to [F ] ∈ B
∩
νX. �
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Corollary 4.23. Assume the hypotheses of Proposition 4.22 hold. Two
subsets A and B of X are asymptotically disjoint if and only if(

A
∩
νX

)∩(
B
∩
νX

)
= ∅.

Proof. Suppose that A,B ⊆ X and(
A
∩
νX

)∩(
B
∩
νX

)
= ∅.

Assume that, on the contrary, there are unbounded and asymptotically
alike subsets L1 ⊆ A and L2 ⊆ B. By Proposition 4.22,(

L1

∩
νX

)
=

(
L2

∩
νX

)
̸= ∅.

Since L1 ⊆ A and L2 ⊆ B since(
A
∩
νX

)∩(
B
∩
νX

)
̸= ∅,

a contradiction.

To prove the converse, assume that A and B are asymptotically
disjoint. Let [F ] ∈ A

∩
νX. As in the previous proposition, let us

denote by D′ the closure of D ⊆ X in γX. So there is G ∈ A′ such
that G ≈ F . Let H ∈ B′. The closures of A and B in topological space
X are in G and H, respectively. Since λ is an AS.R. compatible with
the topology, G and H contain asymptotically disjoint sets. Therefore,
[F ] /∈ B

∩
νX. �

Now we will prove the converse of Proposition 4.22 for metric spaces.

Corollary 4.24. Assume that (X, d) is a proper metric space. For
two subsets A and B of X, if A

∩
νX = B

∩
νX, then A and B are

asymptotically alike.

Proof. Suppose that A and B are not asymptotically alike. We can
assume that, without loss of generality, for each n ∈ N, A is not a subset
of B(B,n). For each n ∈ N, choose an ∈ A such that d(an, B) ≥ n. Let
L = {an | n ∈ N}. Clearly, L and B are asymptotically disjoint. Thus,
by Corollary 4.23, (L

∩
νX)

∩
(B

∩
νX) = ∅. This is a contradiction,

since L
∩
νX ⊆ A

∩
νX. �
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5. Asymptotic compactification and proximity. Let (X, T ) be
a topological space, and let λ be an AS.R. compatible with T . Suppose
that the relation ∼ is as in Definition 4.9. For two subsets A and B of
X, define AδλB if there are L1 ⊆ A and L2 ⊆ B such that L1 ∼ L2.

Proposition 5.1. Let (X, T ) be a normal topological space, and let
λ be a proper and asymptotically normal AS.R. on X. Then δλ is a
separated proximity on X, and it is compatible with T .

Proof. The relation δλ clearly satisfies Definition 1.1 (i), (ii) and (iii).

Assume that Aδλ(B
∪
C). Then there are L1 ⊆ A and L2 ⊆ B

∪
C

such that L1 ∼ L2. If L1 = L2, then

A
∩(

B
∪
C
)
̸= ∅,

and this leads to
AδλB or AδλC,

clearly. If L1 and L2 are two unbounded asymptotically alike subsets of
X, then L2

∩
B or L2

∩
C should be unbounded. Assume that L2

∩
B

is unbounded. Then there is an unbounded subset L3 ⊆ L1 such that
(L2

∩
B)λL3 by Proposition 2.6. Thus, AδλB.

If AδλB, it is straightforward to show that Aδλ(B
∪
C) for all

C ⊆ X. Now assume that A,B ⊆ X and AδλB. Then A and
B are two disjoint and asymptotically disjoint subsets of X. We
choose X1 ⊆ Xand X2 ⊆ X such that X = X1

∪
X2, and they are

asymptotically disjoint from A and B, respectively.

Since (X, T ) is a normal topological space and λ is compatible with
T , we can find asymptotic neighborhoods

X1

∩
A ⊆ U and X2

∩
B ⊆ V

such that
U
∩
B = ∅ and V

∩
A = ∅.

Let E = (X1 \ U)
∪
V . Since X1 and A are asymptotically disjoint,

X1

∩
A is bounded, and this shows that U is bounded. Similarly V

is bounded. Thus, A and E are disjoint, and they are asymptotically
disjoint as well since V is bounded. Therefore, AδλE.
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Similarly, one can show that

B and X \ E ⊆ (X2 \ V )
∪
U

are disjoint and asymptotically disjoint. This leads to (X \ E)δλB.
Since λ is proper, one can easily verify that δλ is compatible with the
topology. �

Let us recall that, on a separated proximity space (X, δ), X denotes
the family of all clusters in X. For two subsets M and N of X, Mδ∗N
means that, if A ⊆ X absorbs M and B ⊆ X absorbs N, then AδB. A
subset A of X absorbs M ⊆ X means that A ∈ C for all C ∈ M. The
proximity space (X, δ∗) is called the Smirnov compactification of X.

Proposition 5.2. Let (X, T ) be a normal topological space, and let λ
be a proper and asymptotically normal AS.R. on X. Then γX/≈ and
the Smirnov compactification (X, δ∗λ) are homeomorphic.

Proof. Let F ∈ γX, and let

F̃ = {A ⊆ X | AδλB for all B ∈ F}.

The family F̃ is a cluster in X [6, Theorem 5.8]. Define ψ : γX/≈ → X

by ψ([F ]) = F̃ for all F ∈ γX. For F ,G ∈ γX, if F ≈ G, then AδλB
for all A ∈ F and all B ∈ G. Therefore, F̃ = G̃. Thus, the map ψ is
well defined.

It is straightforward to show that ψ is one-to-one and, by using
[6, 5.8], one can easily show that it is also surjective. Suppose that
M ⊆ γX and F ∈ M. Let A be a subset of X such that A ∈ ψ(G) for
all G ∈ M. We claim that A ∈ ψ(F).

Suppose that, contrary to our claim, A /∈ ψ(F). So there exists a
B ∈ F such that A and B are disjoint and asymptotically disjoint. We
choose an asymptotic neighborhood B ⊆ U such that A

∩
U = ∅. The

set U∗ is an open subset of γX containing F . Thus, there are G ∈ M
and C ∈ G such that C ⊆ U . This shows that C and A are disjoint and
asymptotically disjoint. Therefore, AδλC, which contradicts A ∈ ψ(G).
Thus, ψ(F) ∈ ψ(M). This shows that ψ ◦ π is continuous, where
π : γX → γX/≈ is the quotient map. So ψ is continuous and, since
γX/≈ is compact and Hausdorff, it is a homeomorphism too. �
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6. Asymptotic dimension. Let U be a family of subsets of a set
X, and let

SU =
∪
U∈U

U × U.

For two subsets A and B of X, define A ∼U B if A ⊆ SU (B) and
B ⊆ SU (A).

Definition 6.1. We call a family U of subsets of an AS.R. space (X,λ)
uniformly bounded, if

(i) each U ∈ U is bounded.
(ii) A ∼U B implies AλB, for all A,B ⊆ X.

The next proposition shows that, if λ is the AS.R. associated to a
metric d on a set X, then the above definition coincides with uniformly
boundedness with respect to d.

Proposition 6.2. Let (X, d) be a metric space, and let λ be the
AS.R. associated to d. A family U of subsets of X is uniformly bounded
if and only if there is k > 0 such that diam(U) < k for all U ∈ U .

Proof. The if part is easy to verify.

To prove the converse, assume that, on the contrary, for each n ∈ N,
there are Un ∈ U and xn, yn ∈ Un such that d(xn, yn) > n. For each
subset I ⊆ N, we have

AI = {xi | i ∈ I} ∼U BI = {yi | i ∈ I},

so AIλBI . Thus, the sequences (xn)n∈N and (yn)n∈N satisfy the
hypotheses of Lemma 2.2, a contradiction. �

Let us recall that, for a family M of subsets of a set X, µ(M)
denotes the multiplicity of M, i.e., the greatest number of elements of
M that meets a point of X.

Definition 6.3. Let (X,λ) be an AS.R. space. We say that asdimλX ≤
n if, for all uniformly bounded covers U of X, there is a uniformly
bounded cover V for X such that U refines V and µ(V) ≤ n+1. We say
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that asdimλX = n if asdimλX ≤ n and asdimλX ≤ n− 1 is not true.
We call asdimλX the asymptotic dimension of an AS.R. space (X,λ).

Proposition 6.2 shows that, on a metric space (X, d), we have
asdimX = asdimλX, where λ is the AS.R. associated to d.

Proposition 6.4. Let (X,λ) be an AS.R. space, and let Y ⊆ X. Then
asdimλY

Y ≤ asdimλX.

Proof. Suppose that asdimλX = n. Let V be a uniformly bounded
cover of Y . Assume that U = V

∪
x∈X\Y {{x}}. If A,B ⊆ X and

A ∼U B, then (
A
∩

(X \ Y )
)
=

(
B
∩

(X \ Y )
)

and (
A
∩
Y
)
∼V

(
B
∩
Y
)
.

So (A
∩
Y )λ(B

∩
Y ) and Proposition 2.4 (i) show that AλB. Thus, U

is a uniformly bounded cover of X.

Let W be a uniformly bounded cover of X such that U refines it and
µ(W) ≤ n+ 1. The family

WY =
{
W

∩
Y |W ∈ W

}
is a uniformly bounded cover of Y and V refines it. Clearly, µ(WY ) ≤
n+ 1 so asdimλY

≤ n. �

Proposition 6.5. Asymptotic equivalent AS.R. spaces have the same
asymptotic dimension.

Proof. Let f : X → Y and g : Y → X be two AS.R.mappings
between the AS.R. spaces (X,λ) and (Y, λ′), such that

g ◦ f(A)λA and f ◦ g(B)λ′B

for all subsets A ⊆ X and B ⊆ Y . Suppose that asdimλX = n.
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Let U be a uniformly bounded cover of Y , and let

g∗(U) = {g(U) | U ∈ U}.

For all U ∈ U , we have f ◦g(U)λU , so g(U) ⊆ f−1(f ◦g(U)) is bounded.

Assume that

A,B ⊆ g(Y ) and A ∼g∗(U) B.

Let

C = g−1(A)
∩
SU (g

−1(B)) and D = g−1(B)
∩
SU (g

−1(A)).

Since A ∼g∗(U) B, it is straightforward to show that g(C) = A and
g(D) = B.

We have C ∼U D so Cλ′D since g is an AS.R.mapping AλB.
Thus, g∗(U) is a uniformly bounded cover of g(Y ). By Proposition 6.4,
asdimλg(Y )

g(Y ) ≤ n. Thus, there is a uniformly bounded cover V of

g(Y ) such that g∗(U) refines it and µ(V) ≤ n+ 1.

Let
g∗(V) = {g−1(V ) | V ∈ V}.

Since g is an AS.R.mapping, all members of g∗(V) are bounded.
Suppose that M,N ⊆ Y and M ∼g∗(V) N . It is easy to verify that
g(M) ∼V g(N) so g(M)λg(N). Since f ◦ g(M)λ′M and f ◦ g(N)λ′N
so Mλ′N . Thus, g∗(V) is a uniformly bounded cover of Y .

It is straightforward to show that U refines g∗(V) and µ(g∗(V)) ≤
n+ 1. Therefore, asdimλ′ Y ≤ asdimλX. Similarly, one can show that
asdimλX ≤ asdimλ′ Y . �
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