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1. Introduction and preliminaries. There are several ways to
define small scale structures on a set. In 1937, Weil [10] defined the
concept of uniformity. A few years later, Tukey [9] used the notion
of uniform coverings to find another definition for uniform spaces. In
1950, Efremovich [4, 5] used proximity relations to define a small scale
He axiomatized the relation “A is near B” for
subsets A and B of a set. Let us recall the definition of a proximity
space.

structure on a set.

Definition 1.1. A relation ¢ on the family of all subsets of a nonempty
set X is called a proximity on X if, for all A, B,C' C X, it satisfies the
following properties (by AdB we mean that AJB does not hold.)
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(iv) AS(BJC) if and only if A6B or ASC.
(v) If A0B, then there is E C X such that AGF and (X \ E)éB.

The pair (X, §) is called a proximity space.

There are also some ways of defining large scale structures on a set.
In recent contexts, one can find notions of coarse structures [8], large
scale structures [3] and ball structures [7]. A coarse structure £ on a
set X is a family of subsets of X x X such that all subsets of a member
of £ are members of £ and, for all E,F € £, the sets E~!, Eo F and
EUF are in . The pair (X, &) is called a coarse space. Let us recall
that

EoF ={(z,y) | (z,2) € F,(2,y) € E for some z € X},

and
E~'={(z,y)| (y,z) € E}, forall E,F C X x X.

A member of £ is called an entourage. A coarse structure & is called
unitary if it contains the diagonal A = {(z,z) | + € X}. From now
on, by coarse structure we mean a unitary coarse structure. A coarse
structure is known as a large scale counterpart of a uniformity.

In Section 2, we introduce a large scale counterpart of proximity.
For this reason, the relation A and B are asymptotically alike for two
subsets A and B of a set X is axiomatized and the notion of asymptotic
resemblance is introduced. We call a set equipped with an asymptotic
resemblance relation, an asymptotic resemblance (an AS.R.) space. In
Section 2, we show how one can generalize basic concepts of coarse
geometry (coarse maps, coarse connectedness, coarse subspace, etc.) by
our definition. Also in this section, we show that every coarse structure
on a set X can induce an asymptotic resemblance relation on X.

In Section 3, we investigate the relation between coarse structures
and asymptotic resemblance relations. We give an example of two
different coarse structures on a set X such that they induce the same
asymptotic resemblance relation on X. We show how asymptotic
resemblance relations on a set X can admit an equivalence relation
on the family of all coarse structures on X.

A coarse structure £ on a topological space X is said to be compatible
with the topology of X if each entourage is contained in an open
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entourage. A compatible coarse structure on a topological space is
called proper if each bounded subset has compact closure. One can
easily check that a unitary coarse structure is compatible with the
topology of a space if and only if it contains an open entourage
containing the diagonal [12]. Let £ be a proper coarse structure on
a topological space (X, 7). A continuous and bounded map f: X — C
is called a Higson function if for each F € & and € > 0 there
exists a compact subset K of X such that |f(z) — f(y)| < e for all
(z,y) € E\ (K x K). The family of all Higson functions is denoted
by Cp(X). The Gelfand-Naimark theorem on C*-algebras shows that
there is a compactification hX of X, such that C(hX) (the family
of all continuous functions on hX) and Cp(X) are isomorphic [8,
subsection 2.3]. The compactification hX of X is called the Higson
compactification of X. The compact set vX = hX \ X is called the
Higson corona of X.

In Section 4, we use our notion of asymptotic resemblance to make
a compactification of a space (the asymptotic compactification) that in
some cases agrees with the Higson compactification of coarse spaces.
We are going to use the Wallman compactification of a topological
space to generate our desired compactification. Let us briefly recall the
Wallman compactification of a topological space ([11]).

Let (X, T) be a Hausdorff topological space, and let 7X be the family
of all closed ultrafilters on X. For each open subset U of X, the set
U ={Fe~X |U ¢ F}. It is straightforward to show that F € U*
if and only if F contains a subset of U. The family B = {U* | U is
open in X} is a basis for a topology on vX and vX is compact by this
topology. Let o, denote the unique closed ultrafilter that converges to
2 € X. The map o : X — X, defined by o(x) = 0., is a topological
embedding and vX is called the Wallman compactification of X.

A cluster C in a proximity space (X,0) is a family of subsets of X
such that, for all A, B € C, we have AdB, if A,BC X and AUB €C,
then A € C or B € C; and, if AdB for all B € C, then A € C. A
proximity space (X, ) is said to be separated if xdy implies x = y, for
all z,y € X. A proximity ¢ on a topological space (X,7T) is said to
be compatible with T if a € A and adA are equivalent. Let ¥ denote
the family of all clusters in a separated proximity space (X,d). For
M, N C X define Mo*NN if A C X absorbs M and B C X absorbs N,
then AdB. A set D absorbs 9 C X means that A € C for all C € M.
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The relation 6* is a proximity on X. The pair (X,40*) is a compact
proximity space, and it is called the Smirnov compactification of (X, )
[6, Section 7].

In Section 5, we introduce a proximity on an AS.R.space such that
its Smirnov compactification agrees with the asymptotic compactifica-
tion.

There are several equivalent definitions for asymptotic dimension of
a metric space ([1]). In this paper, by asymptotic dimension of a metric
space (X, d) we mean the following definition.

Definition 1.2. Let X be a metric space. The inequality asdim X <n
means that for each uniformly bounded cover U of X, there exists a
uniformly bounded cover V of X such that U refines V and p(V) < n+1.
For a family M of subsets of a set X, u(M) denotes the multiplicity
of M, i.e., the greatest number of elements of M that meets a point of
X. By asdim X = n, we mean that asdim X < n and asdim X <n —1
do not hold. For a metric space X, asdim X is called the asymptotic
dimension of X.

In Section 6, we show how one can generalize the notion of asymp-
totic dimension to AS.R. spaces.

In this paper, we denote the Hausdorff distance between subsets A
and B of a metric space (X,d) by du(A, B). Let us recall one more
thing here. A proper map f : X — Y between metric spaces (X, d)
and (Y, d’) is said to be a coarse map if, for each r > 0, there exists an
s > 0 such that d(z,z") < r implies d'(f(x), f(z')) < s.

2. Asymptotic resemblance.

Definition 2.1. Let X be a metric space. We say that two subsets
A and B of X are asymptotically alike and we denote it by AAB, if
du (A, B) < co. We assume that dg(0,0) = 0 and dg (0, A) = oo for
all#£ ACX.

Let us denote the open ball of radius » > 0 around x € X by

B(z,r), and let B(A,r) = [J,c4 B(w,r) for each subset A of X. The
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above definition states that AAB if and only if there is an r > 0 such
that A C B(B,r) and B C B(A4,r).

Let (zn)nen and (Yn)nen be two sequences in a metric space (X, d).
If there exists a k > 0 such that d(x,,y,) < k for all n € N, then we
have {x; | i € I} {y; | i € I} for each I C N. The converse is also true.

Lemma 2.2. Let (X,d) be a metric space. Suppose that ()nen and
(Yn)nen are two sequences in X such that, for each subset I of N, we
have {x; | i € It My, | ¢ € I}. Then, there exists a k > 0 such that
d(pn,yn) < k, for alln € N.

Proof. Suppose, contrary to our claim, that, for each n € N, there
is some i,, € N such that d(z;, ,v;,) > n. Without loss of generality,
we can assume that we have i,, = n for each n € N. We derive a
contradiction by two steps.

Step 1. We claim that, for each € X and s > 0, the index set
I ={i e N|uz € B(z,s)} is finite. Let C = {a; | i € I} and
D = {y; | i € I}. Then since CAD, let dg(C,D) =r. If j € I, we
have:
i <d(xs,ys) < d(xs, z5) +d(zj,y:) <25+

This implies that I is finite. Similarly, we can prove that, for each
bounded subset D of X, the index set J = {j € N | y; € D} is finite.

Step 2. Set By, = {xn | n >k} U{yn | n > k} for k € N. By Step 1,
for each bounded set D, there is a k € N such that Fy (D = 0. Let
k1 = 1. For each ¢ € N, choose k;;1 € N such that

Epo [\ Bk yr, ) ki) = 0.

Let A = {xg, | ¢ € N} and B = {yi, | ¢ € N}. We have A\B
so there exists s > 0 such that A C B(B,s) and B C B(4,s).
Now, choose k; > s. For j,l > i, let @ = min{j,l}. We have
d(yr,;» Tk;) > ko > ki > s. Therefore, for each j > i, we have
yr, € B(ay,,s), for some r =1,...,7 — 1, which means the set

i—1

{j eNly; e L_J B(xkr,s)}

is infinite, and it contradicts Step 1 of the proof. |
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It is well known that a map f : X — Y between metric spaces X
and Y is uniformly continuous if and only if for two subsets A and B
of X, AdB implies f(A)df(B) [6, subsection 4.8], where ¢ denotes the
metric proximity, i.e., AdB if and only if d(A, B) = 0. The following
theorem is the large-scale counterpart of this fact.

Theorem 2.3. Let X and Y be two metric spaces. A proper map
f: X =Y is coarse if and only if, for each asymptotically alike subset
A and B of X, f(A) and f(B) are asymptotically alike too.

Proof. Suppose that f : X — Y is a coarse map. Let A and B
be two subsets of X such that A C B(B,r) and B C B(A,r) for some
r > 0. By hypothesis, there exists an s > 0 such that d(z, ') < r yields
d(f(z), f(a)) < s, 50 f(A) S B(f(B),s) and f(B) € B(f(A),s).

To prove the converse, assume that f is not a coarse map. So there
are r > 0 and sequences z,, and ¥, in X such that d(x,,y,) < r and

d(f(xn), f(yn)) > n. But the sequences (f(zn))nen and (f(yn))nen
satisfy the hypothesis of Lemma 2.2, a contradiction. |

Proposition 2.4. Let X be a metric space. The relation A defined in
Definition 2.1 is an equivalence relation on the family of all subsets of
X, and it has following properties:

(1) A1>\Bl and Ag)\BQ Zmply (Al UAQ))\(Bl UBQ)

(ii) (B1UB2)AA and By,By # 0 imply that there are nonempty
subsets A1 and Az of A such that A = Ay |J A2, and we have
B;AA; forie {1,2}.

Proof. 1t is straightforward to show that A is an equivalence relation
on the family of all subsets of X, and it satisfies property (i). For
property (ii), assume that By |JBs € B(A,r) and A C B(B; |J B, 1)
for some r > 0 and By, B2 # (). For i € {1,2}, let A; = B(B;,r)() A.
We have

A=A Ay and A\B; fori e {1,2}. 0

Definition 2.5. Let X be a set. We call a binary relation A on
the power set of X an asymptotic resemblance (an AS.R.) if it is an
equivalence relation on the family of all subsets of X and satisfies
Proposition 2.4 (i) and (ii). For subsets A and B of X, we say that A
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and B are asymptotically alike if ANB. By AXB, we mean that A and
B are not asymptotically alike. We call the pair (X, A) an AS.R. space.

In a metric space (X, d), we call the relation defined in Definition 2.1
the AS.R. associated to the metric d on X.

Proposition 2.6. Let (X, \) be an AS.R. space. If AAB and () # A; C
A, then there is ) # By C B such that Aj\Bj.

Proof. It is an immediate consequence of Proposition 2.4 (ii). O

Proposition 2.7. Let A be an AS.R.on a set X. Suppose that
A, B,CC X and AC BCC. If ANC, then ANB.

Proof. Proposition 2.4 (i) leads to ((B\A) |J A)A((B\A4) JC). Thus,
BMC and, since A is an equivalence relation, AAB. O

Let us recall that, on a coarse space (X, &),
E(A)={ye X | (z,y) € E for some = € A},
forall E € & and all A C X.

Example 2.8. Suppose that £ is a coarse structure on a set X. For any
two subsets A and B of X, define A\¢B if A C E(B) and B C E(A)
for some E € £. The relation A\¢ is an asymptotic resemblance on X.
We call A\¢ the AS.R. associated to the coarse structure £ on X.

In the next section, we will investigate the relation between coarse
structures and asymptotic resemblance relations in more details.

Example 2.9. Let X be a set. For any two subsets A and B of X,
define AAB if AAB = (A\ B)J(B\ A) is finite. The relation \ is
an AS.R.on X that we call the discrete asymptotic resemblance on a
set X.

Definition 2.10. Let A be an AS.R.on a set X. We say a subset A of
X is bounded if Alx, for some x € X. We assume that the empty set
is bounded.
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Let A be the AS.R. associated to a coarse structure £ on a set X. It
is easy to verify that D C X is bounded if and only if it is bounded
with respect to £.

Proposition 2.11. Let A be an AS.R.on a set X, and let A C X. If
AXx for some x € X and ) # B C A, then BAx. Thus, all subsets of
a bounded set are bounded.

Proof. Tt is an immediate consequence of Proposition 2.6. (Il

Example 2.12. Suppose that G is a group. For two subsets A and
B of G, define A\ B if there exists a finite subset K of G such that
A C BK and B C AK. We call \; the left AS.R.on G. Similarly,
one can define the right AS.R.on G. In both cases, a subset D of G
is bounded if and only if it is finite. If G is an Abelian group, then A,
and \; obviously coincide. However, they are different in the general
case [3].

Example 2.13. Suppose that A and B are two subsets of the real line
R. Define AAB if there exists r > 0 such that

AC U (b—r,+00)
beB

and
BC U(a—r,+oo).
acA

It is straightforward to show that A is an equivalence relation on the
family of all subsets of R, and it satisfies Proposition 2.4 (i). Now
suppose that AX(B;|J Bz2) and By, Bs # 0. So there is an r > 0 such
that we have

AC U (b —r,+00)
beB; U B2

and

BlUBQ C U(a—r,+oo).

a€A
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Let

Al = ( U (br,+oo))ﬂA.

be B,
If By C UaeA,1 (a — r,00), then A]AB, and we can let A; = Aj.

Now assume that there is a by € B such that by < a — r for all
a € A}. Since AX(By | Bz), there is an a; € A such that a1 —r < by.

Let
Ay = AL J{ar}

and
r1 = max{| by —ay | +1,7}.

Since a; ¢ A}, a1 <b—r <bforallbe By. Thus, By C (ay —r1,+00),
which leads to A;AB;. Similarly, one can find Ay C A such that AsABs
and A = A; |JAs. Let Ay denote the AS.R. associated to the standard
metric on R. It is easy to show that A\;B yields AAB, for all A, B C R.
A set D C R is bounded with respect to A if and only if D C (a, +00)
for some a € R. There is no metric on R such that we have A\B if and
only if di (A, B) < oo for all subsets A and B of R.

Suppose the contrary. For each n € N, the interval (—oco, —n) is un-
bounded. We choose b, < —n such that d(—n,b,) > n. Therefore, the
sequences (—n)pen and (b, )nen satisfy the hypothesis of Lemma 2.2,
a contradiction.

Definition 2.14. Let (X, A1) and (Y, A2) be two AS.R. spaces. We call
amap f: X — Y an AS.R. mapping if:

(i) (Properness.) f~!(B) is bounded in X for each bounded subset
BofY.
(ii) AXi B implies f(A)A2f(B), for all subsets A and B of X.

In fact, Theorem 2.3 states that, for metric spaces X and Y, a map
f: X =Y is a coarse map if and only if it is an AS.R. mapping for the
AS.R.’s associated to their metrics.

Definition 2.15. Let (Y, )\) be an AS.R.space, and let X be a set.
We say that two maps f: X — Y and g : X — Y are close if we have
f(A)Ag(A) for each subset A of X.



1240 SH. KALANTARI AND B. HONARI

Proposition 2.16. Let (Y,d) be a metric space, and let X\ be the
AS.R. associated to d. Two maps f : X = Y andg: X — Y are
close if and only if there is some k > 0 such that d(f(x),g(x)) < k for
allz e X.

Proof. The proof of the only if part is straightforward.

Now suppose that f and g are close maps. Assume that, on
the contrary, for all n € N, there exists an z, € X such that

d(f(l’n),g(ﬂfn)) > n. Then the sequences (f(xn))nGN and (9($n))neN
satisfy the hypothesis of Lemma 2.2, a contradiction. O

Definition 2.17. Let (X, A1) and (Y, A2) be two AS.R. spaces. We call
an AS.R.mapping f : X — Y an asymptotic equivalence if there exists
an AS.R.mapping ¢g : Y — X such that go f and f o g are close to
the identity maps ix : X — X and iy : Y — Y, respectively. We say
AS.R.spaces (X, A1) and (Y, A2) are asymptotically equivalent if there
exists an asymptotic equivalence f: X — Y.

Proposition 2.18. Let (X, A1) and (Y, A2) be two AS.R. spaces. Sup-
pose that f : X — Y and g : X — Y are two close maps. If f is
an AS.R. mapping, then so is g, and if f is an asymptotic equivalence,
then so is g.

Proof. We will prove that, if f is a proper map, then so is g. Other
parts of Proposition 2.18 are straightforward results of the property
that A\; and Ay are equivalence relations on the family of all subsets of
X and Y.

Let D C Y be a bounded set. We have f(g71(D))\2g(g~ (D))
so f(g~1(D)) is bounded. Thus, f~!(f(¢~!(D))) is bounded, and
Proposition 2.11 leads to g~ (D) being bounded. ]

Definition 2.19. Let (X,\) be an AS.R.space, and let Y be a
nonempty subset of X. For the two subsets A and B of Y, define
AMy B if AXAB. The pair (Y, \y) is an AS.R.space, and we call Ay the
subspace AS.R.induced by A on Y.
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Lemma 2.20. Let (X,)\) and (Y,\') be two AS.R. spaces. Suppose
that f : X — Y is an asymptotic equivalence and ) # C C X. Then
flet (€ Ac) = (F(C), Ny oy) is also an asymptotic equivalence.

Proof. Let g : Y — X be an AS.R.mapping such that g o f and
f o g are close maps to identity maps ix : X — X and iy : Y — Y,
respectively. Let ¢ : f(C) — C be a map such that fog(a) = a for each
a € f(C). Suppose that D C C' is bounded. Since go f(D)AD, go f(D)
is a bounded subset of X. We have ¢~1(D) C f(D) C g~ (g0 f(D)).
Proposition 2.11 shows that ¢~*(D) is bounded. Assume that A, B C
f(C) and AN} oy B. We have go f(q(A))Aq(A) and, since f(q(A)) = 4,
q(A)Ag(A). Similarly, ¢(B)A\g(B) leads to ¢(A)Acq(B). Therefore, ¢ is
an AS.R.mapping. Now, let A C C. We have f(qo f(A)) = f(A) so
9(f(qo f(A))) = go f(A)AA. Also, we have go f(go f(A))Ago f(A) and
it leads to g o f(A)AcA. Therefore, f |c: C — f(C) is an asymptotic
equivalence. O

Definition 2.21. We call an AS.R.space (X, \) asymptotically con-
nected if we have x\y for all z,y € X.

It is immediate that the AS.R.associated to a connected coarse
structure is asymptotically connected.

Proposition 2.22. An AS.R. space (X, ) is asymptotically connected
if and only if, for each nonempty subset A and B of X, AAB is finite,
which yields ANB.

Proof. The if part is trivial.

Assume that A\ B = {z1,...,z,} and B\ A = {y1,...,ym}- By
using Proposition 2.4 (i) and asymptotic connectedness of A, we can
conclude (A \ B)A(B\ A). By Proposition 2.4 (i), we have

((A\B)U <AﬂB)>/\((B\A)U (AﬂB)).
Thus, A\B. O

3. Coarse structures and asymptotic resemblance relations.
In Example 2.8, we stated that every coarse structure £ on a set X
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induces an AS.R.on X. We denoted this AS.R.by Ag. The following
example shows that two different coarse structures may induce a same
AS.R.relation.

Example 3.1. Let X = N. Assume that & and & denote two families
of subsets of X x X such that:

(i) E € & if and only if E(A) and E~1(A) are finite for all finite
ACN.

(ii) E € & if and only if there exists ng € N such that E(z) and
E~!(z) have at most nx members, for all z € X.

Both &; and &; families are coarse structures on X ([8, Examples
2.8 and 2.44]). It is immediate that & is a proper subset of &;.

For two subsets A, B of X, we claim that A\g, B if and only if A and
B are both finite or A and B are both infinite. It is straightforward to
show that, if A\g, B and A is finite, then so is B, and if A and B are
both finite, then A\g, B.

Suppose that A and B are both infinite. Let
A={a,|neN} and B={b,|neN}

and assume that a,, < a,+1 and b, < b, for all n € N. Let

E = {(an,bs) | n € N} J{(bn,an) | n € N}.

Clearly, E € & and ng = 2. We have A C E(B) and B C E(A), so
Adg,B. Since & C &, one can easily show that A\g, B if and only if
A and B are both finite or A and B are both infinite. Thus, Ag, = Ag,.

Let A be an AS.R.on a set X. We denote the family of all coarse
structures that induce A by £(A). Let us recall that, for two coarse
structures £ and & on a set X, & is said to be coarser than & if
&1 C & ([8, subsection 2.1]).

Proposition 3.2. Let A\ be an AS.R.on a set X. If E(\) # 0, then
there is a coarse structure Ex € E(X) such that €y is coarser than each
member of E(X).



ASYMPTOTIC RESEMBLANCE 1243

Proof. Let &y be the family of all E C X x X such that m (F)Am2(F)
for all FF C E, where m; and 7y denote projection maps onto first and
second factors, respectively. Since A is an equivalence relation, A € &£
and E~1 € &, for all E € £,. By Proposition 2.4 (i), one easily sees
that E\JF € &y for all E,F € &,.

Let E,F € &), and suppose that H C F o F. Set

O1={(z,y) e XxX|zem(H),y€ F(z ﬂm
and

Oy ={(z,y) e X x X | x € m2(01),y € E(x)}.

We have O; C F and Oy C E, so 71 (H) = mo, Am2(01) and m3(0;) =
m1(O02)Am2(02) = mo(H). Tt follows that 71 (H)Amo(H), which leads to
Eo F € &,. Therefore, £, is a coarse structure on X.

Suppose that & € £(N\). Tt is straightforward by the definition to
show that, if E € £ and F C E, then 71 (F)Ame(F). It follows that
E C &,. Thus, &) is coarser than each member of £(A).

It remains to show &, € &(A). Suppose that A,B C X and
A C E(B) and B C E(A), for some E € Ey. Let

Fy={(a,b) e Elac Abe B}
and
Fy,={(b,a) e E|ac Abec B}.
Then, A = 7 (F))Am2(F1) and B = 7 (Fy)Am2(Fy). We obtain

A= <7r2(F2) e 7r2(F2))>>\(BUA \ @(FQ)).

Since A and mo(Fy) C B are asymptotically alike, there is a subset
L of B such that (A \ m2(F»))AL, by Proposition 2.6. Therefore,
AXNBJL) = B. Since £(X) # 0, and &) is greater than each member
of £(N), it is straightforward to show that AAB implies that there is
an E € &, such that A C E(B) and BC E(A), forall ABCX. O

In fact, asymptotic resemblance relations on a set X define an equiv-
alence relation on the family of all coarse structures on X. Two coarse
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structures on X are equivalent if they induce the same asymptotic
resemblance relation. Proposition 3.2 shows that these equivalence
classes have a biggest member. One can compare this with similar
arguments about the relation between uniform structures and proxim-
ity in [6, Section 12].

4. Asymptotic compactification.

Definition 4.1. Let (X,7) be a topological space, and let A\ be an
AS.R.on X. We say that an open subset U of X is an asymptotic
neighborhood of A C X if A C U and ANU. We call A a compatible
AS.R. with T if

(i) Each subset of X has an asymptotic neighborhood.
(i) AXA for all A C X.

Proposition 4.2. Let (X,T) be a topological space, and let € be a
coarse structure compatible with T . Then the AS.R. associated to & is
compatible with T also.

Proof. Assume that E is a symmetric open entourage containing the
diagonal. For A C X, E(A) is an asymptotic neighborhood of A. Let
a € A. E(a) is an open neighborhood of a, so E(a) (A # 0. Let
a' € E(a)A. Since (a,a’) € E7' = E, a € E(d’) C E(A). Thus,
A C E(A), and this leads to AMA. O

Definition 4.3. We call two subsets A; and A, of an AS.R.space
(X, \) asymptotically disjoint if, for all unbounded subsets Ly C A;
and Ly C Ay, we have Li\L,. We say that an AS.R.space (X)) is
asymptotically normal if, for asymptotically disjoint subsets A; and A,
of X, there exist X; C X and X5 C X such that X = X;J X, and
A; and X; are asymptotically disjoint for ¢ € {1,2}.

Let B a bounded subset of an AS.R.space (X,A). Then B is
asymptotically disjoint from all A C X. In [2], two subsets A and
B of a metric space (X,d) are called asymptotically disjoint if, for
some xg € X, lim, o0 d(A \ B(zg,7), B\ B(zo,7)) = 0.
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The next proposition shows that this definition is equivalent to our
definition of asymptotical disjointness on metric spaces.

Proposition 4.4. Let (X,d) be a metric space, and let A be the
associated AS.R.to d. Two unbounded subsets A and B of X are
asymptotically disjoint if and only if, for some xo in X, lim, o d(A\
B(xo,7), B\ B(xo,1)) = 0.

Proof. Let xg € X be a fixed point. Suppose that A and B are two
asymptotically disjoint subsets of X. Assume that, on the contrary,

711}120 d(A\ B(zg,r), B\ B(xo,r)) # 0.

Thus, there exists N € N such that, for each m € N, we have
d(A\ B(zg,mm), B\ B(xg,7)) < N for some r,, > m. We choose
Tm € A\ B(zo, ) and y., € B\ B(xg, ) such that d(zm,, ym) < N.
Let

= {.’,Em | m € N}
and

Ly = {ym | m € N}.

Thus, L1 € A and L, C B are two unbounded subsets and LiALo, a
contradiction.

To prove the converse, let A, B C X, and suppose that lim,_, ., d(A\
B(zo,7), B\ B(zg,r)) = oco. Assume that, on the contrary, there are
unbounded subsets Ly C A and Ly C B such that dy (L1, L) < N,
for some N € N. Since L; is unbounded for each n € N, there exists
xn € L1\ B(zo,n) such that d(x,,b) > N for all b € B(xo,n)() L.
Thus, there is a y, € L2 \ B(zg,n) such that d(z,,y,) < N. Then
xn € A\ B(zg,n) and y,, € B\ B(zg,n) for all n € N. Thus,

lim d(A\ B(zg,r), B\ B(xg,r)) # o0,

T—00

a contradiction. O

Proposition 4.5. Let (X,d) be a metric space and let A be the AS.R.
associated to d. Then (X, ) is an asymptotically normal AS.R. space.
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Proof. Assume that A and B are asymptotically disjoint subsets of
X. For i € NJ{0}, let

A = {x|d(m,A) §i+1}ﬂ{x|d(x,B) 2@'}

and

By ={w|d@ B) <i+1}({z|d 4) > i}.

Suppose that

X1:UB1 and XQZUA’L
i=0 i=0
For x € X, assume that i < d(z,A4) <i+1and j < d(z,B) <j+ 1.
Ifi=jtheno € A4y = B;. If i < jtheni+ 1 < jsox € A
Thus X = X;JX2. We claim that A and X; are asymptotically
disjoint. Suppose that, contrary to our claim, there are unbounded
subsets L1 C A and Ly C X such that LiALs, i.e., L1 C B(Ls,n) and
Ly € B(Ly,n) for some n € N. Thus, Ly C B(A,n), and this leads to

n—1
Ly C U B;.
i=0
Therefore, Lo C B(B,n). Let

B(Ly,n)[ ) B.

We obtain L3zALs, which leads to L3AL1, a contradiction. Therefore,
A and X, are asymptotically disjoint. Similarly, one can show that B
and X, are asymptotically disjoint. O

Let X be a Hausdorff and locally compact topological space, and let
aX be a compactification of X. Let us recall that the topological coarse
structure on X associated to aX is the family of all £ C X x X such
that the closure of E meets (X x aX)\ (X x X) only in the diagonal
[8, Definition 2.28]. It is known that topological coarse structures
associated to a second countable compactifications are not metrizable
[8, Example 2.53].

The next proposition shows that the class of all asymptotic normal
AS.R. spaces is much bigger than the family of all metric spaces.
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Proposition 4.6. Let X be a Hausdorff and locally compact metric
space, and let aX be a first countable compactification of X. Let £
be the topological coarse structure associated to aX, and let A be the
AS.R. associated to £. Then X is asymptotically normal.

Proof. First we prove that A and B are asymptotically disjoint
subsets of X if and only if

ANB((aX \ X) =9.
Let
we A(\B((@X \X) for A, BCX.

There are sequences (z,)nen and (Yn)neny in A and B, respectively,
such that they converge to w. Let E = {(xn,y,) | » € N}. Tt is
straightforward to show that each sequence in E can be assumed to be
a subsequence of ((n,, Yn))nen, and this shows that

E((aX x aX)\ (X x X)) = {(w,w)}.

So Eeé.
Let

le{xn\nEN}gA
and

We obtain L;ALs which shows that A and B are not asymptotically
disjoint.

Now assume that A and B are two subsets of X such that they
are not asymptotically disjoint. Let L; and Lo be two unbounded

and asymptotically alike subsets of A and B, respectively. There is an
E € & such that Ly C E(Ly) and Ly C E(Ly).

Let w € Ly N(aX\X) and (,,)nen be a sequence in Ly and x,, — w.
For each n € N, choose y,, € Ly such that (z,,y,) € E. Since E € &,
Yn — w. This shows that

we L[| L2 )(aX \ X).
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Thus,
AB[\(@X \ X) #0.

Now we give the proof of Proposition 4.6. Let A and B be two
asymptotically disjoint subsets of X. Then

A B[ (eX\ X) =0.

Since aX is a normal topological space, there is a map f : aX — [0,1]
such that

f(Zﬂ(aX\X)) —0

and

f(Eﬂ(aX\X)) -1
Let

Xy =f([1/2,1) )X
and

Xy = ([0, 1/2) () X.

By what we first proved, here it is straightforward to show that A and
B are asymptotically disjoint from X; and X5, respectively. (|

Definition 4.7. Let (X, 7T) be a topological space and A be an AS.R.
compatible with 7. We say that A is proper if each bounded subset of
X has a compact closure.

It is straightforward to show that a proper coarse structure admits
a proper AS.R. It is an immediate result of the definition that, if there
exists a proper AS.R.on a topological space X, then X is a locally
compact topological space.

Proposition 4.8. Suppose that A is a proper and asymptotically con-
nected AS.R. on a topological space X . Then a subset A of X is bounded
if and only if A is compact.
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Proof. The only if part is a part of the definition. Suppose that
A is a subset of X with compact closure. We cover A with the U,
i € {1,...,n}, such that each U; is an asymptotic neighborhood of
some a; € A. We have

<QUi))‘{a1,...,an}

by Proposition 2.4 (i). Also, we have {a1,...,a,} a1 by asymptotic
connectedness of X\, so Proposition 2.11 leads to AXa;. O

From now on, we will assume that all AS.R.spaces are asymptoti-
cally connected.

Definition 4.9. Let (X, T) be a topological space and A an AS.R. com-
patible with 7. For two nonempty subsets A and B of X, define A ~ B
if A= B or A and B unbounded asymptotically alike subsets of X.
The relation ~ is an equivalence relation on the family of all nonempty
subsets of X. Let vX denote the family of all closed ultrafilters on X
and Fp, Fo € vX. Define F; =~ F» if, for any A € F; and B € F, there
are L1 € A and Ly C B such that L1 ~ Ly. We denote the equivalence
class of F € vX by [F].

Lemma 4.10. Let (X,)\) be an AS.R. space. If A and B are asymp-
totically disjoint subsets of X and ANC and BAD for some C,D C X,
then C' and D are asymptotically disjoint too.

Proof. Tt is an immediate consequence of Proposition 2.6. |

Proposition 4.11. Let (X,T) be a topological space, and let )\ be
an AS.R. compatible with T. If (X,\) is an asymptotically normal
AS.R. space, then the relation = defined in Definition 4.9 is an equiva-
lence relation.

Proof. The relation = is obviously symmetric and reflexive. We
suppose that F; ~ F» and Fo ~ F3 and claim that F; ~ F3. Suppose
that, contrary to our claim, there are disjoint sets A € F; and C' € F3
such that they are asymptotically disjoint. So A,C ¢ F5. Choose
B € F5 such that B(AJC) = 0. Since (X, \) is asymptotically
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normal, there are X; C X and X5 C X such that X; |J X2 = X, and
they are asymptotically disjoint from A and C', respectively. Let

B, =B(\X)
and
BQ:BﬂXQ.

By compatibility and Lemma 4.10, B; and B, are asymptotically
disjoint from A and C respectively. Since F» is a closed ultrafilter
and B = EUE then By € F, or By € F, which contradicts F; ~ F»
or Fa & F3, respectively. O

Let us recall that, for an open subset U of a topological space X, U*
is the family of all closed ultrafilters on X such that U contains some
elements of them.

Proposition 4.12. Let X be a normal topological space, and let \ be
a compatible and asymptotically normal AS.R. on X. Then the set

R = {(]‘—1,.7:2) evX x~vX | Fi= .7‘-2}
is closed in vX x vX.

Proof. Suppose that (F;,F2) ¢ R. Then there are disjoint sets
A € F; and B € F; such that they are also asymptotically disjoint.
We choose asymptotic neighborhoods A C U and B C V such that
UV = 0. Therefore, F; € U* and Fp € V*.

Now assume that Hi € U* and Hy € V*. Thus, there are Dy € H;
and Dy € Ho such that Dy C U and Dy C V. Then

Di|JAeH) and Dy| JB e H,.
Also, by Proposition 2.7, we have
(D1 U A) A and (D2 U B) AB.

By Lemma 4.10, D;JA and Dy|JB are asymptotically disjoint.
Therefore, the open neighborhood U* x V* of (Fy,Fs) is disjoint
from R. ]
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Let A be a compatible AS.R.on a Hausdorff topological space X.
We recall that, for a point x € X, o, denotes the family of all closed
subsets of X that contains x, and the map o : X — vX defined by
o(x) = o, is a topological embedding. For two points z,y € X, it is
straightforward to show that o, ~ oy if and only if # = y. Thus, the
map

X
$: X - 1=
defined by ¢(x) = [0,] is one-to-one.

Corollary 4.13. Let X be a normal topological space, and let A be
a proper and asymptotically normal AS.R.on X. Then vX/~ is a
Hausdorff compactification of X.

Proof. Since vX is compact, its quotient yX/~ is compact too.
By Proposition 4.12, vX/~ is Hausdorff. It suffices to show that
¢ : X = vX /= is a topological embedding. Let m : vX — ~X /=~
be the quotient map. Since ¢ = mo o, ¢ is a continuous map. Suppose
that U C X is an open set and [0,] € ¢(U). By Proposition 2.7, we
can choose an asymptotic neighborhood W of z such that W C U.
It is easy to verify that 7= 1(¢(W)) = W*. Thus, ¢(W) is open in
~vX /==, and we have [0,] € p(W) C ¢(U). Therefore, ¢ is a topological
embedding and ¢(X) is open in vX /~. O

Proposition 4.14. Let (X,T) be a topological space, and let A be an
AS.R. compatible with T. Suppose that (x4)acr and (Ya)acr are two
nets in X. Let

Ts={za |a>p} and Sg={ya|a>p}.

If TgASg for all B € I, 04, — F1 and oy, — Fo for some Fi,Fy €
X \ 0(X), then F1 = Fa.

Proof. Suppose that A € F; and B € F;. We choose asymptotic
neighborhoods U and V of A and B, respectively. Then F; € U* and
Fy € V*. Since o,, — F1 and oy, — Fa, there are a, € I such
that T, CU and Sg C V. Let a,8 <y sothat T, CU and S, C V.
This leads to TyAL; and S ALy for some L; C A and Ly C B by
Proposition 2.6. |
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A compactification X of a proper coarse space (X, €) is said to be a
coarse compactification of X, ifE € & and (Zq, Yo )acr 1S a convergent
net in E, then z, — w for w € X \ X yields y, — w [8].

Corollary 4.15. Let X be a normal topological space, and let A be an
AS.R. associated to a proper coarse structure £ on X. Suppose that A
is asymptotically normal. Then vX // is a coarse compactification.

Proof. Let (o, Ya)acs be a convergent net in F € £. Assume that
[02,] = [F1] and [oy,] = [F2] for [F1], [F] € 7X/~\ ¢(X). Suppose
that o, is a convergent subnet of o, and Tyas, is a convergent subnet
of gy, . If

O —)Hl and Oy, —>H2,
ik

gy

we have Hi = F; and Hs =~ Fo. Thus, by Proposition 4.14, we have
H, ~ Hs, and therefore, F; =~ F>. O

Corollary 4.16. Let X be a normal topological space, and let € be a
proper coarse structure on X. Assume that the AS.R. associated to £
is asymptotically normal. Then the identity map ¢ : X — X extends
uniquely to a continuous map of hX into vX /~.

Proof. Tt is an immediate consequence of Corollary 4.16 and [8,
2.39]. 0

Proposition 4.17. Assume the hypotheses of Corollary 4.16 hold.
Each Higson function f : X — C has a unique extension f : vX /=
— C.

Proof. Let f : X — R be a Higson function and f: vX — C its
extension to vX. Suppose that

Fi,Fo €4X\X and F =~ F.

-~ ~

Let f(F1) = x1 and f(F2) = 2. Assume that 3 # z3. Let
§ = |&1 — a2|/4. Then f~1(B(z1,6)) and f~1(B(zs,8)) are open sets
containing F; and Fj, respectively, so there are open sets U C X
and V C X such that 7y € U* C f~Y(B(x1,6)) and Fp € V* C
f_l(B(mg,(S). Thus, there are A € F; and B € F such that A C U
and B C V. Since F; =~ F3, there are unbounded and asymptotically
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alike subsets L1 C A and Ly C B. Therefore, there is as E € £ such
that Ly C E(Ls) and Ly C E(Lq). Since f is a Higson function, there is
a compact K C X such that |f(x)— f(y)| < 0 for all (z,y) € E\K x K.

Let z € Ly \ K and y € Ly \ K s0 0, € U* and oy € V*. This leads

-~ ~

to f(oz) = f(x) € B(z1,6) and f(oy) = f(y) € B(w2,0) so
|22 — 21| <[z = f(y)| + |f(2) = f(W)] + |21 — f(2)| < 3d.

Thus, |22 — 1] < 3|x1 — x2|/4, a contradiction. Therefore, x1 = x5.
Define f : vX/~ — C by f([F]) = f(F). The map f is well defined
and, since f o = f, it is continuous. ]

Corollary 4.18. Assume that the hypotheses of Corollary 4.16 hold.
Then hX and vX /= are homeomorphic.

Proof. Proposition 4.17 shows that the identity map i : X — X
extends uniquely to a map from vX /~ to hX. Thus, Corollary 4.16
shows that hX and vX /~ are homeomorphic. O

Suppose that (X,7) is a topological space and A is a proper and
asymptotically normal AS.R.on it. We call vX/~ the asymptotic
compactification of X. We also call vX = vX /= \ ¢(X) the asymptotic
corona of X. For an AS.R.associated to a proper coarse structure £
on X, Corollary 4.18 shows that ¥ X is homeomorphic with the Higson
corona.

Example 4.19. Let (X, d) be a metric space. For two subsets A and B
of X, define AAB if A and B are both unbounded or A and B are both
bounded. The relation A is a proper AS.R.on (X,d). Two subsets A
and B of X are asymptotically disjoint if and only if A is bounded or B
is bounded. For a bounded subset A C X, let X; = X\ A and X, = A.
Then X, is asymptotically disjoint from A and X5 is asymptotically
disjoint from B, for all B C X. Thus, (X, ) is an asymptotically
normal AS.R.space. It is straightforward to show that F; ~ F3, for all
Fi1,Fa2 € X \ 0(X). Therefore, the asymptotic compactification of X
is the one point compactification of (X, d).

Example 4.20. Suppose that A is the AS.R.introduced in Exam-
ple 2.13 on R. Since the two unbounded subsets of R, with respect
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to A, are asymptotically alike, the subsets A and B of R are asymptot-
ically disjoint if and only if A is bounded or B is bounded with respect
to A.

Let A be a bounded subset of R with respect to A. Then A C (r, +00)
for some r € R.

Let X1 = (—oo,7) and Xy = (r,4+00). The sets X; and A are
asymptotically disjoint and Xy is asymptotically disjoint from B, for
all B C X. Thus, (X, ) is an asymptotically normal AS.R. space.

At each point z € R, other than the origin, assume the usual
neighborhood basis at x. At the origin, let B = {(—e¢, +¢€) J(n, +00) |
n € N,e > 0} be the neighbourhood basis. Let T be the corresponding
topology on R. It is easy to show that A is a proper AS.R.space on
(R,7) and (R, 7T) is a normal topological space. For all Fi, Fa € 7X \
o(X), we have F; &~ Fo. Therefore, the asymptotic compactification
of (R, \) is the one point compactification of (R, 7).

Proposition 4.21. Let X and Y be two topological spaces equipped
with two proper and asymptotically normal AS.R.’s. For every con-
tinuous AS~.R. mapping f : X — Y, there exists a unique continuous
extension [ : yX /~ — ~Y [~ which sends vX to vY.

Proof. For F € vX, define
f«(F)={ACY | Aisclosed and f~'(A) € F}.

Let f(F) be a unique closed ultrafilter that contains f, (F) ([11, 16K]).
The map f : vX — ~Y is a continuous extension of f ([11, 19K]).
Assume that F € yX \o(X) and f(F) = oy for some y € Y. Therefore,
for all A € f.(F), we have y € A.

Let U C Y be an asymptotic neighborhood of y. We have

— A\ nJaNw.

Since y ¢ A\U and f.(F) is a prime closed filter, then AU € f.(F).
Since f is an AS.R.mapping thus f~'(ANU) is bounded and it
contradicts F € vX \ 0(X). Thus, f sends vX \ 0(X) to 7Y \ o(Y).
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Suppose that F; =~ F,. Let C € ]?(]:1) and A € f.(F1). Assume
that U is an asymptotic neighborhood of C. Since

AﬂU U@y and A\U)(U =0,

ANU € f.(F1). Similarly, one can show that, for D € ]?(.7-'2) and B €
f«(F2), we have B(\V € f.(F2) for some asymptotic neighborhood
V of D. Then f~Y(ANU) € F, and f~(BV) € F. Thus, there
are unbounded and asymptotically alike subsets L1 C f~1(ANU) and
Ly C f~%(BNV). Since f is an AS.R.mapping, f(Li) and f(Ls)
are unbounded and asymptotically alike subsets of A(\U and BV,
respectively. Since A is compatible with the topology, Proposition 2.6

shows that C' and D are not asymptotically disjoint. Thus, f (]:1) ~
f(]-"g) Therefore, f : fyX/N — 'yY/N defined by f([F]) = [f(]-')] is
well defined. We have f omr =7o f, where 7 : X — X/~ and

: 7Y — ~Y /~ are quotient maps. So f is continuous and, since f
sends ¥X \o(X) toyY \ o(Y), it sends vX to vY. O

In the following propositions, A denotes the closure of A C X in
v X/~

Proposition 4.22. Let X be a normal topological space, and let £ be
a proper coarse structure on X. Assume that the AS.R. associated to
& is asymptotically normal. If A and B are two asymptotically alike
subsets of X then AN\vX = BMNvX.

Proof. Let [F] € A(\vX. Let us denote by D’ the closure of D C X
in vX. Since m : ¥X — X/~ is a closed map so (ANvX) C
w(A")(vX. Thus, there is an ultrafilter G € A" such that F ~ G.

There is a net (z4)aer in A such that o,, — G. Since A and B
are asymptotically alike, A C F(B) and B C E(A) for some E € £.
For each « € I, we choose y, € B such that (z,,y,) € E. The net
(0y.)aer has a convergent subnet (o, )ies. Then oy, — H for some
H € B’. Two nets (O'yai)iej and (O'g;ai)iej satisfy the assumptions of
Proposition 4.14. Thus, G ~ H, and this leads to [F] € BMvX. O
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Corollary 4.23. Assume the hypotheses of Proposition 4.22 hold. Two
subsets A and B of X are asymptotically disjoint if and only if

(Zﬂl/X) ﬂ (FmVX> = 0.
Proof. Suppose that A, B C X and

(ZmI/X) ﬂ (Eﬂl/X) = 0.
Assume that, on the contrary, there are unbounded and asymptotically
alike subsets Ly C A and Lo, C B. By Proposition 4.22,

(EﬂllX) = (fgﬂl/X) # 0.

Since L; C A and L, C B since

@ENx) N (BNwx) £0,

a contradiction.

To prove the converse, assume that A and B are asymptotically
disjoint. Let [F] € A(vX. As in the previous proposition, let us
denote by D’ the closure of D C X in vX. So there is G € A’ such
that G = F. Let H € B’. The closures of A and B in topological space
X are in G and H, respectively. Since A is an AS.R.compatible with
the topology, G and H contain asymptotically disjoint sets. Therefore,
[Fl ¢ BNvX. O

Now we will prove the converse of Proposition 4.22 for metric spaces.

Corollary 4.24. Assume thalL(X, d) is a_proper metric space. For
two subsets A and B of X, if A(\vX = B(vX, then A and B are
asymptotically alike.

Proof. Suppose that A and B are not asymptotically alike. We can
assume that, without loss of generality, for each n € N, A is not a subset
of B(B,n). For each n € N, choose a,, € A such that d(a,,B) > n. Let
L ={a, | n € N}. Clearly, L and B are asymptotically disjoint. Thus,
by Corollary 4.23, (L vX) (B vX) = 0. This is a contradiction,
since LNvX C ANvX. O
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5. Asymptotic compactification and proximity. Let (X,7T) be
a topological space, and let A be an AS.R. compatible with 7. Suppose
that the relation ~ is as in Definition 4.9. For two subsets A and B of
X, define A6, B if there are L1 C A and Ly C B such that L ~ Lo.

Proposition 5.1. Let (X,T) be a normal topological space, and let
A be a proper and asymptotically normal AS.R.on X. Then dy is a
separated proximity on X, and it is compatible with T .

Proof. The relation Jy clearly satisfies Definition 1.1 (i), (ii) and (iii).

Assume that A8\(B|JC). Then there are L1 C A and Ly C B{JC
such that L ~ Lo. If L1 = Lo, then

an(sUce) #o,

Ad B or Ad\C,

and this leads to

clearly. If Ly and Ly are two unbounded asymptotically alike subsets of
X, then Ly () B or Ly () C should be unbounded. Assume that Ly (| B
is unbounded. Then there is an unbounded subset Lz C Lq such that
(L2 B)AL3 by Proposition 2.6. Thus, AdyB.

If Ad)B, it is straightforward to show that Ady\(B|JC) for all
C C X. Now assume that A,B C X and A5 B. Then A and
B are two disjoint and asymptotically disjoint subsets of X. We
choose X; C Xand X3 C X such that X = X;(JXs, and they are
asymptotically disjoint from A and B, respectively.

Since (X, T) is a normal topological space and \ is compatible with
T, we can find asymptotic neighborhoods

YIQZQ U and Eﬂ?gv

such that
UNB=0 and V()A=0.

Let E = (X; \U)JV. Since X; and A are asymptotically disjoint,
X1 A is bounded, and this shows that U is bounded. Similarly V'
is bounded. Thus, A and E are disjoint, and they are asymptotically
disjoint as well since V is bounded. Therefore, A6y E.



1258 SH. KALANTARI AND B. HONARI

Similarly, one can show that
B and X\EC(Xx\V)JU

are disjoint and asymptotically disjoint. This leads to (X \ E)J\B.
Since A is proper, one can easily verify that J) is compatible with the
topology. a

Let us recall that, on a separated proximity space (X,d), X denotes
the family of all clusters in X. For two subsets 9t and 9 of X, 96*N
means that, if A C X absorbs 9t and B C X absorbs 91, then A0B. A
subset A of X absorbs 9t C X means that A € C for all C € 9. The
proximity space (X, d*) is called the Smirnov compactification of X.

Proposition 5.2. Let (X,T) be a normal topological space, and let \
be a proper and asymptotically normal ASR.on X. Then vX /~ and
the Smirnov compactification (X,0%) are homeomorphic.

Proof. Let F € vX, and let
F={ACX|AbB forall Be F}.

The family F is a cluster in X [6, Theorem 5.8]. Define ¢ : vX /~ — X
by ¢([F]) = F for all F € vX. For F,G € X, if 7~ G, then A6\B
for all A € F and all B € G. Therefore, F=G. Thus, the map v is
well defined.

It is straightforward to show that ¢ is one-to-one and, by using
[6, 5.8], one can easily show that it is also surjective. Suppose that
M C vX and F € M. Let A be a subset of X such that A € 1(G) for
all G € M. We claim that A € ¢(F).

Suppose that, contrary to our claim, A ¢ ¢(F). So there exists a
B € F such that A and B are disjoint and asymptotically disjoint. We
choose an asymptotic neighborhood B C U such that A(\U = (). The
set U* is an open subset of vX containing F. Thus, there are G € M
and C € G such that C C U. This shows that C' and A are disjoint and
asymptotically disjoint. Therefore, Ad,C, which contradicts A € ¥(G).
Thus, ¥(F) € ¥(9). This shows that ¥ o 7 is continuous, where
m:vX — vX /=~ is the quotient map. So % is continuous and, since
~vX /~ is compact and Hausdorff, it is a homeomorphism too. O
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6. Asymptotic dimension. Let i/ be a family of subsets of a set
X, and let

Suz UUXU.
Uveld

For two subsets A and B of X, define A ~,; B if A C Sy(B) and
B C Sy (A).

Definition 6.1. We call a family U of subsets of an AS.R. space (X, \)
uniformly bounded, if

(i) each U € U is bounded.
(ii) A ~y B implies AAB, for all A, B C X.

The next proposition shows that, if A is the AS.R. associated to a
metric d on a set X, then the above definition coincides with uniformly
boundedness with respect to d.

Proposition 6.2. Let (X,d) be a metric space, and let A\ be the
AS.R. associated to d. A family U of subsets of X is uniformly bounded
if and only if there is k > 0 such that diam(U) < k for ollU € U.

Proof. The if part is easy to verify.

To prove the converse, assume that, on the contrary, for each n € N,
there are U,, € U and x,,y, € U, such that d(z,,y,) > n. For each
subset I C N, we have

A[Z{xi|Z.€I}NMBI={yZ‘|Z'€I},

so A;ABj. Thus, the sequences (,)nen and (yn)nen satisfy the
hypotheses of Lemma 2.2, a contradiction. (|

Let us recall that, for a family M of subsets of a set X, u(M)
denotes the multiplicity of M, i.e., the greatest number of elements of
M that meets a point of X.

Definition 6.3. Let (X, \) be an AS.R. space. We say that asdimy X <
n if, for all uniformly bounded covers U of X, there is a uniformly
bounded cover V for X such that U/ refines V and p(V) < n+1. We say
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that asdimy X = n if asdimy X < n and asdim, X < n — 1 is not true.
We call asdimy X the asymptotic dimension of an AS.R.space (X, \).

Proposition 6.2 shows that, on a metric space (X,d), we have
asdim X = asdim) X, where X is the AS.R. associated to d.

Proposition 6.4. Let (X, \) be an AS.R. space, and let Y C X. Then
asdimy, Y < asdimy X.

Proof. Suppose that asdimy X = n. Let V be a uniformly bounded
cover of V. Assume that U = V,cx\y{{z}}. If A, B € X and
A ~y B, then

(A N Y)) - (B N Y))

and

(Aﬂy) ~p (Bﬂy).
So (ANY)A(BNY) and Proposition 2.4 (i) show that AAB. Thus, U
is a uniformly bounded cover of X.

Let W be a uniformly bounded cover of X such that U/ refines it and
u(W) <n+1. The family

wy ={w |y |wew}

is a uniformly bounded cover of Y and V refines it. Clearly, u(Wy ) <
n + 1 so asdimy, <n. O

Proposition 6.5. Asymptotic equivalent AS.R. spaces have the same
asymptotic dimension.

Proof. Let f : X - Y and g : Y — X be two AS.R.mappings
between the AS.R.spaces (X, ) and (Y, ), such that

go f(A)MA and fog(B)NB

for all subsets A C X and B CY. Suppose that asdimy X = n.
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Let U be a uniformly bounded cover of Y, and let
9" U) ={9(U) | U eU}.
For all U € U, we have fog(U)AU, so g(U) C f~1(fog(U)) is bounded.

Assume that
A,BCg(Y) and A~y B.
Let
C=g " (A)\Sulg'(B) and D =g " (B){)Sulg™"(4)).

Since A ~g«@) B, it is straightforward to show that g(C) = A and
g(D) = B.

We have C' ~y D so CND since g is an AS.R.mapping AAB.
Thus, g*(U) is a uniformly bounded cover of g(Y'). By Proposition 6.4,
asdimy, ., g(Y) < n. Thus, there is a uniformly bounded cover V of
g(Y) such that g*(U) refines it and p(V) <n + 1.

Let
9:V)={g (V) |V eV}

Since g is an AS.R.mapping, all members of g¢.(V) are bounded.
Suppose that M, N C Y and M ~y ) N. It is easy to verify that
g(M) ~y g(N) so g(M)Ag(N). Since fog(M)NM and fog(N)NN
so MA'N. Thus, g.(V) is a uniformly bounded cover of Y.

It is straightforward to show that U refines g.(V) and p(g.(V)) <
n + 1. Therefore, asdimy, Y < asdimy X. Similarly, one can show that
asdimy X < asdimy/ Y. O
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