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K-THEORY AND HOMOTOPIES OF 2-COCYCLES
ON GROUP BUNDLES

ELIZABETH GILLASPY

ABSTRACT. This paper continues the author’s program
of investigating the question of when a homotopy of 2-
cocycles Ω = {ωt}t∈[0,1] on a locally compact Hausdorff
groupoid G induces an isomorphism of the K-theory groups
of the twisted groupoid C∗-algebras:

K∗(C
∗(G, ω0)) ∼= K∗(C

∗(G, ω1)).

Building on our earlier work in [4, 5], we show that, if
π : G → M is a locally trivial bundle of amenable groups
over a locally compact Hausdorff space M , a homotopy Ω =
{ωt}t∈[0,1] of 2-cocycles on G gives rise to an isomorphism:

K∗(C
∗(G, ω0)) ∼= K∗(C

∗(G, ω1)).

1. Introduction. Let π : V → M be a real or complex vector
bundle over a manifold M . A bilinear 2-form σ : V (2) → R induces a
homotopy of 2-cocycles {ωt}t∈[0,1] on V . If π(v) = π(w), define

ωt(v, w) := e2πitσ(v,w).

Plymen [11, Theorem 1] proved that, when V is an even-dimensional
real vector bundle and σ is a symplectic 2-form on V , the twisted
C∗-algebra of the vector bundle C∗(V, ω1) is a continuous-trace C∗-
algebra overM , with trivial Dixmier-Douady class, and hence is Morita
equivalent to C0(M).

Furthermore, applying a fiberwise Fourier transform to V , one sees
immediately that

C∗(V, ω0) = C∗(V ) ∼= C0(V
∗),
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where V ∗ is the dual bundle to V . Since V is even-dimensional, the
Thom isomorphism in K-theory tells us that

K∗(C0(V
∗)) ∼= K∗(C0(M));

consequently, Plymen’s result implies that the homotopy of 2-cocycles
{ωt}t∈[0,1] associated to a symplectic form σ induces an isomorphism

K∗(C
∗(V, ω0)) ∼= K∗(C

∗(V, ω1)).

In this article, we present a substantial generalization of this result:

Corollary 3.4. Let {ωt}t∈[0,1] be a homotopy of 2-cocycles on a
second countable, locally trivial, locally compact Hausdorff group bundle
π : G → M , such that the fiber group G = π−1(m) is amenable. Then
the homotopy induces an isomorphism

K∗(C
∗(G, ω0)) ∼= K∗(C

∗(G, ω1))

of the K-theory groups of the twisted C∗-algebras.

While the motivation (and main applications) of this result arise
from considering vector bundles over manifolds, the proofs are no
simpler in this special case. Consequently, we present the results here
in their full generality.

Group bundles are examples of groupoids; the results of this article
thus continue the author’s research program, begun in [4, 5], to
investigate the question of when a homotopy {ωt}t∈[0,1] of 2-cocycles
on a groupoid G induces an isomorphism

(1.1) K∗(C
∗(G, ω0)) ∼= K∗(C

∗(G, ω1))

of the K-theory groups of the twisted groupoid C∗-algebras. This
question was inspired by the realization that Bott periodicity and the
noncommutative tori can both be viewed as examples of a K-theoretic
isomorphism arising from a homotopy of 2-cocycles. We hope that
our investigation of the question of when a homotopy {ωt}t∈[0,1] of 2-
cocycles on a groupoid G induces theK-theoretic isomorphism (1.1) will
increase our understanding of the structure of (twisted) groupoid C∗-
algebras, as well as shed light on questions in C∗-algebraic classification
and string theory.
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The study of full and reduced C∗-algebras C∗(G), C∗
r (G) associated

to a locally compact groupoid G was initiated by Renault [13] and has
since been actively pursued by many researchers. Although Renault
also defined the twisted groupoid C∗-algebras C∗(G, ω), C∗

r (G, ω) for
a 2-cocycle ω ∈ Z2(G,T) [13], these objects have received relatively
little attention until recently. However, it has now become clear that
twisted groupoid C∗-algebras can help answer many questions about
the structure of untwisted groupoid C∗-algebras (cf. [2, 3, 7, 9, 10]), as
well as classifying those C∗-algebras which admit diagonal subalgebras
(also known as Cartan subalgebras), cf., [8]. In another direction, [15]
shows how the K-theory of twisted groupoid C∗-algebras classifies D-
brane charges in many flavors of string theory.

1.1. Outline. In addition to its philosophical links with [4, 5], an
attentive reader will notice similarities between the proofs presented in
this article and several main results from [4, 5]. To be precise, we begin
this article by following the outline of the proof [4, Theorem 3.3] to
calculate the C0(M)-algebra structure associated to a locally trivial
bundle of groups π : G → M . Then we use the results of this
calculation, together with [5, Theorem 5.1] and a Mayer-Vietoris
argument, to establish our main result in Theorem 3.3; Corollary 3.4
follows immediately.

2. C0(M)-algebra structure. In this section, we describe the natu-
ral C0(M)-algebra structure on C∗(G, ω), where π : G →M is a locally
trivial bundle of groups over a locally compact Hausdorff spaceM , and
ω is a 2-cocycle on G. In order to state our results more precisely, we
begin with some definitions.

We note that the following definition is non-standard in its require-
ment of local triviality; however, this hypothesis is necessary for the
proofs of our later results and is satisfied by our motivating example of
a vector bundle.

Definition 2.1. An (amenable) group bundle is a locally compact
Hausdorff space G together with a continuous, open surjection π : G →
M onto a locally compact Hausdorff space M such that Gm := π−1(m)
is isomorphic to a fixed (amenable) group G for everym ∈M , and such
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that G is locally trivial: for every point m ∈ M , there exists an open
neighborhood U of m such that π−1(U) is homeomorphic to U ×G.

Given a group bundle π : G →M , write

G(2) = {(x, y) ∈ G × G : π(x) = π(y)}.

Note that G(2) ⊆ G × G is a closed subspace; we equip it with the
subspace topology.

Due to the isomorphism ϕm : Gm → G, if (x, y) ∈ G(2), then there
is a unique element z in Gm such that ϕm(z) = ϕm(x)ϕm(y). We will
usually write xy for this element. Similarly, for each x ∈ Gm, there is a
unique element x−1 ∈ Gm such that xx−1 = x−1x = ϕ−1

m (e). Moreover,
the local triviality of G implies, in particular, that ϕm : Gm → G is a
homeomorphism for allm ∈M . As a consequence, the map (x, y) 7→ xy
is continuous as a map G(2) → G, and x 7→ x−1 is a continuous map
from G to itself.

Let Cc(G) denote the collection of those continuous complex-valued
functions f on the total space G of the group bundle such that supp f is
compact, and let λ be a fixed Haar measure on the fiber group G ∼= Gm

of the group bundle. The local triviality of G then implies the following
proposition.

Proposition 2.2. Let f ∈ Cc(G). Then the function

m 7−→
∫
Gm

f(x) dλ(x)

lies in C0(M).

Proof. We begin by observing that, since the Haar measure is, in
particular, a Radon measure, and supp f is compact, we know that
Lm := λ(Gm ∩ supp f) is finite for each m ∈M .

Fix m ∈ M , and let U be a neighborhood of m such that G|U ∼=
U × G. Due to this isomorphism, we will write f(n, g) rather than
f(x) for x ∈ G|U . Since supp f is compact, π2(supp f ∩ (U ×G)) ⊆ G
is also compact; consequently, for any ϵ > 0, we can find a smaller
neighborhood Uϵ ⊆ U of m such that, if n ∈ Uϵ,

|f(n, g)− f(m, g)| < ϵ/Lm for all g ∈ G.
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It follows that, if n ∈ Uϵ,∣∣∣∣ ∫
Gn

f(n, g)dλ(g)−
∫
Gm

f(m, g) dλ(g)

∣∣∣∣
≤

∫
G

|f(n, g)− f(m, g)| dλ(g) < ϵ.

In other words,

m 7−→
∫
Gm

f(x) dλ(x) ∈ C0(M),

as claimed. �

Definition 2.3. A 2-cocycle on G is a continuous circle-valued function
ω : G(2) → T such that, whenever (x, y), (y, z) ∈ G(2), the cocycle
condition holds:

(2.1) ω(xy, z)ω(x, y) = ω(x, yz)ω(y, z).

Example 2.4.

(i) For any group bundle G, the function ω : G(2) → T given by
ω(x, y) = 1 for all (x, y) ∈ G(2) is a 2-cocycle on G, called the
trivial 2-cocycle.

(ii) As discussed in the introduction, if π : V →M is a vector bundle
and σ : V (2) → R is a 2-form on V , then ω(v, w) := e2πiσ(v,w)

defines a 2-cocycle on V .

A 2-cocycle on G allows us to define a twisted convolution multipli-
cation on G, which in turn will allow us to build the associated twisted
C∗-algebra C∗(G, ω). This is a particular case of the construction of a
twisted groupoid C∗-algebra, as described in [13, Chapter II].

Given a 2-cocycle ω on G and f, g ∈ Cc(G), we define the twisted
convolution product of f and g by

f ∗ g(x) :=
∫
Gπ(x)

f(xy)g(y−1)ω(xy, y−1) dλ(y).

We also define an involution on Cc(G) that incorporates the 2-cocycle:

f∗(x) := f(x−1)ω(x, x−1).
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Renault proved [13, Proposition II.1.1] that the multiplication is well
defined (that is, that f ∗ g ∈ Cc(G) as claimed) and associative, and
that (f∗)∗ = f so that the involution is involutive. (The proof of
associativity relies on the cocycle condition (2.1).)

Thus, we have a ∗-algebra structure on Cc(G). To indicate the
importance of the 2-cocycle in this structure, we will often write
Cc(G, ω) for this ∗-algebra. To avoid confusion between the use of
∗ to indicate multiplication and the involution, we will usually denote
the multiplication in Cc(G, ω) by juxtaposition: fg := f ∗ g.

The twisted C∗-algebra C∗(G, ω) is the completion of Cc(G, ω) with
respect to the full or universal C∗-norm (2.2). In order to give the
precise definition of the universal norm, we require some preliminary
definitions.

Definition 2.5. Let H be a Hilbert space. We say that a ∗-
homomorphism π : Cc(G, ω) → B(H) is a representation of Cc(G, ω) if
it is nondegenerate in the sense that

span{π(f)ξ : f ∈ Cc(G, ω), ξ ∈ H} = H.

Definition 2.6. The I-norm on Cc(G) is given by

∥f∥I = max

{
sup
m∈M

∫
Gm

|f(x)| dλ(x), sup
m∈M

∫
Gm

|f(x−1)| dλ(x)
}
.

We say that a representation ϕ of Cc(G) is I-norm-bounded if ∥ϕ(f)∥ ≤
∥f∥I for any f ∈ Cc(G).

Then, [13, Proposition II.1.11] combines with the comments follow-
ing [13, Definition II.1.5] to tell us that

(2.2) ∥f∥ := sup{∥ϕ(f)∥ : ϕ is an I-norm-bounded

representation of Cc(G, ω)}

is a C∗-norm.

Definition 2.7 (cf., [13, Definition II.1.12]). The (universal) twisted
C∗-algebra of G, denoted C∗(G, ω), is the completion of Cc(G, ω) with
respect to the norm (2.2).
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The goal of this section is Proposition 2.9, in which we prove that,
despite this intricate definition of the norm on C∗(G, ω), this C∗-algebra
admits a C0(M)-algebra structure which makes it much more tractable.

Definition 2.8. Let A be a C∗-algebra and M a locally compact
Hausdorff space. We say that A is a C0(M)-algebra if there exists
a ∗-homomorphism

Φ : C0(M) → ZM(A).

Given f ∈ C0(M), a ∈ A, we will usually write f · a for Φ(f)a.

A C0(M)-algebra fibers over M in a natural way. If m ∈M , let

Im := C0(M \ {m}) ·A;

then Im is an ideal, and the quotient Am := A/Im gives the fiber of
A at m. Indeed, [17, Theorem C.26] tells us that there is a unique
topology on the bundle A :=

⨿
m∈M Am such that A = Γ0(A) are the

continuous sections of A that vanish at infinity.

In an analogous manner to the construction of Am, for any C0(M)-
algebra A and any closed subset F ⊆M , we have a quotient AF of A:

AF := A/IF where IF := C0(M \ F ) ·A.

Proposition 2.9 describes the C0(M)-algebra structure carried by the
twisted C∗-algebra of a group bundle π : G → M . A similar result
is obtained by Goehle for crossed products by a group bundle in [6,
Proposition 1.2 and Lemma 1.4], and the proof of Proposition 2.9 below
proceeds along similar lines to Goehle’s proof, as well as to the proof
of [4, Theorem 3.5].

Proposition 2.9. Let π : G → M be a group bundle, and let ω be a
2-cocycle on G. Then C∗(G, ω) is a C0(M)-algebra, with C∗(G, ω)F ∼=
C∗(G|F , ω) for any closed F ⊆M .

Proof. The action of C0(M) on C∗(G, ω) is defined as one might
expect: for ϕ ∈ C0(M), f ∈ Cc(G, ω), define ϕ · f ∈ Cc(G, ω) by

(2.3) ϕ · f(x) = ϕ(π(x))f(x).
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It is immediate that the action is linear and multiplicative; because
π(x) = π(y) whenever x and y are in the same fiber of the group
bundle, and in particular, we have π(x) = π(x−1), we also have

f ∗ (ϕ · g) = (ϕ · f) ∗ g = ϕ · (f ∗ g)

for any f, g ∈ Cc(G, ω) and any ϕ ∈ C0(M). In other words, C0(M)
acts centrally on Cc(G, ω). Moreover, a straightforward check shows
that (ϕ · f)∗ = ϕ∗ · f∗, so the centrality of the action implies that it is
also ∗-preserving.

Thus, to see that this action gives rise to a ∗-homomorphism Φ :
C0(M) → ZM(C∗(G, ω)), we merely need to check that the action
is bounded, that is, we will show that ∥ϕ · f∥ ≤ ∥ϕ∥∞∥f∥ for any
f ∈ Cc(G, ω) and any ϕ ∈ C0(M).

Fix ϕ ∈ C0(M), f ∈ Cc(G, ω). Letting Kf = supp f , choose
ϕf ∈ C0(M) to be 1 on π(Kf ). Then the function,

ξ(m) := (∥ϕ∥2∞ − |ϕ(m)|2)|ϕf (m)|2,

is in C0(M). Moreover, ξ is positive and hence has a positive square
root, k. The positivity of k, combined with our earlier observations
that the action is multiplicative, ∗-preserving, and central, means that

(ξ · f)∗f = k2 · (f∗f) = (k · f)∗(k · f).

Therefore, (ξ · f)∗f ≥ 0 in C∗(G, ω). Since ξ∗ = ξ, this inequality tells
us that

0 ≤ (ξ · f)∗f = ξ · (f∗f) = (∥ϕ∥2∞|ϕf |2)
· (f∗f)− (|ϕ · ϕf |2) · (f∗f).

Since positivity preserves norms, it follows that

(2.4) ∥(|ϕ · ϕf |2) · (f∗f)∥ ≤ ∥(∥ϕ∥2∞|ϕf |2) · (f∗f)∥.

Observe that, since ϕf = 1 on supp f , the function ∥ϕ∥2∞|ϕf |2 acts
on f as multiplication by the constant ∥ϕ∥2∞. Moreover,

(|ϕ · ϕf |2) · f∗f = ((ϕ · ϕf ) · f)∗ ((ϕ · ϕf ) · f) = (ϕ · f)∗(ϕ · f),

because the action is multiplicative, central and ∗-preserving. Thus,
equation (2.4) becomes

∥(ϕ · f)∗(ϕ · f)∥ ≤ ∥ϕ∥2∞∥f∗f∥,
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so by the C∗-identity, we have

∥ϕ · f∥ ≤ ∥ϕ∥∞∥f∥,

as claimed.

We have thus shown that the action is bounded, so it extends to
a ∗-homomorphism Φ : C0(M) → M(C∗(G, ω)). In fact, ImΦ ⊆
ZM(C∗(G, ω)) because ImΦ acts centrally on the dense ∗-subalgebra
Cc(G, ω). Moreover, Φ(ϕf )f = f for any f ∈ Cc(G, ω), so Φ(C0(M)) ·
C∗(G, ω) contains the dense subalgebra Cc(G, ω). Consequently,

Φ(C0(M)) · C∗(G, ω) = C∗(G, ω).

In other words, Φ makes C∗(G, ω) into a C0(M)-algebra as claimed.
We will use this action of C0(M) on C∗(G, ω) throughout the rest of
this proof, usually denoting it by ϕ · f as above rather than by Φ.

Checking that
C∗(G, ω)F ∼= C∗(G|F , ω)

for any closed subset F ⊆M as claimed will require rather more work.

Recall that C∗(G, ω)F is given by the quotient C∗(G, ω)/IF , where

IF := span {ϕ · f : ϕ ∈ C0(M \ F ), f ∈ C∗(G, ω)}.

Thus, in order to prove Proposition 2.9, we must show that

C∗(G|F , ω) ∼= C∗(G, ω)/IF .

We will begin by showing that we can indeed exhibit C∗(G|F , ω) as a
quotient of C∗(G, ω) whenever F ⊆M is closed.

Fix a closed subset F ⊆ M , and let qF : Cc(G, ω) → Cc(G|F , ω) be
the restriction map. By the definition of the I-norm given in Defini-
tion 2.6, qF is I-norm-bounded; since the operations in the ∗-algebra
Cc(G, ω) respect the way G fibers overM , qF is also a ∗-homomorphism.
Consequently, for any I-norm-bounded representation ψ of Cc(G|F , ω),
the composition ψ◦qF is an I-norm-bounded representation of Cc(G, ω).
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Thus, for any f ∈ Cc(G, ω),

∥qF (f)∥ = sup{∥ψ ◦ qF (f)∥ :

ψ an I-norm-bounded representation of Cc(GF , ω)}
≤ sup{∥Ψ(f)∥ : Ψ an I-norm-bounded representation of

Cc(G, ω)}
= ∥f∥.

Hence, qF extends to a ∗-homomorphism, also denoted qF , from
C∗(G, ω) to C∗(G|F , ω).

Note that any function f ∈ Cc(G|F ) can be extended to f ∈ Cc(G)
by the Tietze extension theorem, so that qF (f) = f . Since Cc(G|F ) ⊆
C∗(G|F , ω) is dense, this implies that qF : C∗(G, ω) → C∗(G|F , ω) is
surjective. In other words,

C∗(G|F , ω) ∼= C∗(G, ω)/ ker qF .

Thus, to see that C∗(G|F , ω) = C∗(G, ω)F , it suffices to show that
ker qF = IF . A standard approximation argument will show that
ker qF ⊇ IF ; the tricky part is showing that ker qF ⊆ IF .

To show that ker qF ⊆ IF , we will show that any representation
L of Cc(G, ω) such that L(IF ) = 0 must factor through qF , so that
we can write L = L′ ◦ qF for some I-norm-bounded representation
L′ of CC(G|F , ω). This will imply that ker qF ⊆ kerL for all such
representations L, and consequently that ker qF ⊆ IF as desired.

Given an I-norm-bounded representation L : Cc(G, ω) → B(H) such
that L(IF ) = 0, define L′ : Cc(G|F , ω) → B(H) by

L′(qF (f)) := L(f).

We would like to show that L′ is a representation of Cc(G|F , ω). Note
that L′ preserves the ∗-algebra structure on Cc(G|F , ω) because L
and qF do so, since they are ∗-homomorphisms. Moreover, L′ is
nondegenerate because L is and because qF : Cc(G, ω) → Cc(G|F , ω)
is surjective. Thus, we only need to check that L′ is well defined and
bounded.

To see that L′ is well defined, we need to show that L(f) = L(g)
whenever qF (f) = qF (g).
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Lemma 2.10. If f, g ∈ Cc(G, ω) satisfy qF (f) = qF (g), then the
function,

h = f − g ∈ Cc(G, ω),

lies in IF . Consequently, L(f) = L(g), and L′ is well defined on
Cc(G|F , ω).

Proof. Let {fK,U}K,U be an approximate unit for C0(M\F ), indexed
by pairs (K,U) where K ⊆M is compact and U ⊇ F is open, such that
U∪K =M ; fK,U is 1 on K\U and 0 on F ; and 0 ≤ fK,U (m) ≤ 1 for all
m ∈ M . (We can always construct such functions by using Urysohn’s
lemma.)

We will show that the I-norm,

∥h− fK,U · h∥I −→ 0,

takes the limit over increasing K and decreasing U . Since the norm in
C∗(G, ω) is dominated by the I-norm, it will follow that

h = lim
K,U

fK,U · h

in C∗(G, ω), and consequently, h ∈ IF .

We first observe that the function,

m 7−→ λ(Gm ∩ supph),

is bounded, where λ denotes our chosen Haar measure on the fiber
group Gm

∼= G (recall that Gm
∼= Gn

∼= G for all m,n ∈ M). To
see that this function is bounded, let W be an open neighborhood of
supph, and use Urysohn’s lemma to construct kW ∈ Cc(G) such that
kW |supph = 1 and supp kW ⊆W . Then, for any m ∈M ,∫

Gm

kW (x) dλ(x) ≥ λ(Gm ∩ supph).

Moreover, we know from Proposition 2.2 that

m 7−→
∫
Gm

kW (x) dλ(x) ∈ C0(M),

because kW ∈ Cc(G). Since this function is an upper bound for the
function m 7→ λ(Gm ∩ supph), it follows that

m 7−→ λ(Gm ∩ supph)
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is bounded on M , as claimed. Let ℓ be the maximum value of the
function m 7→ λ(Gm ∩ supph).

Let ϵ > 0 be given, and let U = π(h−1(Bϵ/2ℓ(0))). Then U ⊆ M is
open and contains F . Let

K = π(supph) ⊆M ;

we will show that, for any (K ′, U ′) ≥ (K,U), we have

∥h− fK′,U ′ · h∥I < ϵ.

Recall that

∥h− fK′,U ′ · h∥I = max

{
sup
m∈M

∫
Gm

|h(x)− fK′,U ′(m)h(x)| dλ(x),

sup
m∈M

∫
Gm

|h(x−1)− fK′,U ′(m)h(x−1)| dλ(x)
}
.

If m ∈ K ′ \U ′, then fK′,U ′(m) = 1 and the above integrals are zero. If
m ∈ U ′, then since (K ′, U ′) ≥ (K,U), we also have m ∈ U , so

|h(x)| < ϵ/2ℓ for all x ∈ Gm.

Moreover, the fact that 0 ≤ fK′,U ′(m) ≤ 1 for all m ∈M implies that,
for any x ∈ G,

|h(x)− fK′,U ′(π(x))h(x)| ≤ 2|h(x)|.

It follows that

∥h− fK′,U ′ · h∥I ≤ max

{
sup
m∈U ′

∫
Gm

|h(x)−fK′,U ′(m)h(x)| dλ(x),

sup
m∈U ′

∫
Gm

|h(x−1)−fK′,U ′(m)h(x−1)| dλ(x)
}

≤ max

{
sup
m∈U ′

∫
Gm

2|h(x)| dλ(x),

sup
m∈U ′

∫
Gm

2|h(x−1)| dλ(x)
}

≤ 2 sup
m∈U ′

sup
x∈Gm

|h(x)|λ(Gm ∩ supph)

< ϵ.
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Consequently,
lim
K,U

∥h− fK,U · h∥I = 0.

It follows that h ∈ IF , as claimed, and so L(h) = 0. This proves that
L′ is well defined. �

Since L′ is well defined, we proceed to show that ∥L′(f)∥ ≤ ∥f∥I for
any f ∈ Cc(G|F , ω).

First, we note that Proposition 2.2 and the definition of the I-
norm imply that the function m 7→ ∥q{m}(f)∥I is continuous for each
f ∈ Cc(G). Consequently, if we fix f ∈ Cc(G, ω), ϵ > 0, the set

Wϵ = {m ∈M : ∥q{m}(f)∥I < ∥qF (f)∥I + ϵ}

is open; note that F ⊆ Wϵ. Thus, we can choose ψf,ϵ ∈ C0(M) such
that 0 ≤ ψf,ϵ(m) ≤ 1 for all m ∈ M ; ψf,ϵ = 1 on F ; ψf,ϵ = 0 off Wϵ.
Since ψf,ϵ = 1 on F , we have

L(f) = L′(qF (f)) = L′(qF (ψf,ϵ · f)) = L(ψf,ϵ · f).

Consequently,

∥L′(qF (f))∥ = ∥L(ψf,ϵ · f)∥ ≤ ∥ψf,ϵ · f∥I

= max

{
sup
m∈M

∫
Gm

|ψf,ϵ(m)f(x)| dλ(x),

sup
m∈M

∫
Gm

|ψf,ϵ(m)f(x−1)| dλ(x)
}

≤ max

{
sup

m∈Wϵ

∫
Gm

|f(x)| dλ(x),

sup
m∈Wϵ

∫
Gm

|f(x−1)| dλ(x)
}

= sup
m∈Wϵ

∥q{m}(f)∥I

< ∥qF (f)∥I + ϵ.

Since we can choose such a ψf,ϵ for any ϵ > 0, it follows that

∥L′(qF (f))∥ ≤ ∥qF (f)∥I .

The fact that qF : Cc(G, ω) → Cc(G|F , ω) is onto now implies that L′

is an I-norm-bounded representation of Cc(G|F , ω).
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In other words, every representation of Cc(G, ω) which kills IF also
factors through qF , so ker qF = IF as claimed, that is,

C∗(G|F , ω) ∼= C∗(G, ω)F ,

for any F ⊆M closed. This finishes the proof of Proposition 2.9. �

Knowing that C∗(G, ω)F = C∗(G|F , ω) will be crucial for the argu-
ments in the next section. However, we will also need a result (Propo-
sition 2.12) about the way ideals in C0(M)-algebras relate. Although
this result is undoubtedly well known to experts, we include a proof for
completeness.

We begin with an observation about approximate units in C0(M).
Since M is locally compact Hausdorff, for any closed set F ⊆ M , we
can writeM \F as an increasing unionM \F = ∪i∈IKi of compact sets,
and then Urysohn’s lemma tells us that we can find an approximate
unit {ϕFi }i∈I for C0(M \F ) such that ϕFi is 1 on Ki. It follows that, for
any m ∈M \F , there exists J ∈ I such that i ≥ J implies ϕFi (m) = 1.

Lemma 2.11. Let A be a C0(M)-algebra for a second countable locally
compact Hausdorff space M , and let F1, F2 ⊆ M be closed. For any
a ∈ IF1∩F2 , we can find g ∈ IF1 and h ∈ IF2 such that a−g−h ∈ IF1∪F2 .

Proof. Let {ϕ12i }i∈I denote the approximate unit for

C0(M \ (F1 ∩ F2))

described above. Then, given ϵ > 0 and a ∈ IF1∩F2 , there exists J such
that ∥a − ϕ12J · a∥ < ϵ. Let {ϕ1λ}λ∈Λ and {ϕ2µ}µ∈S be the analogous
approximate units for C0(M \ F1) and C0(M \ F2), respectively. Then

gϵ := (lim
λ
ϕ1λϕ

12
J ) · a ∈ IF1 ,

hϵ := (lim
µ
ϕ2µϕJ) · a ∈ IF2 .

Moreover, ϕ12J · a − gϵ − hϵ ∈ IF1∪F2 . To see this, set m ∈ F1 ∪ F2.
If m ∈ F1 \ F2, we can choose L large enough that µ ≥ L implies
ϕ2µ(m) = 1; consequently,

(2.5) ϕ12J (m)− ϕ1λ(m)ϕ12J (m)− ϕ2µ(m)ϕ12J (m) = 0,
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since ϕ1λ(m) = 0 for any λ when m ∈ F1. Similarly, if m ∈ F2 \ F1, we
can chooseK such that λ ≥ K implies ϕ1λ(m) = 1, and so equation (2.5)
also holds; and if m ∈ F1∩F2, then ϕ

12
J (m) = 0 and equation (2.5) still

holds. Thus, if λ, µ are large enough, then equation (2.5) holds for all
m ∈ F1 ∪ F2, and taking the limit over λ, µ reveals that

ϕ12J · a− gϵ − hϵ =
(
ϕ12J − lim

λ
ϕ1λϕ

12
J − lim

µ
ϕ2µϕ

12
J

)
· a ∈ IF1∪F2 ,

as claimed.

Therefore, denoting the norm in the quotient AF by ∥ · ∥F , we see
that

∥a− gϵ − hϵ∥F1∪F2 ≤ ∥a− ϕ12J · a∥F1∪F2 + ∥ϕ12J · a− gϵ − hϵ∥F1∪F2

= ∥a− ϕ12J · a∥F1∪F2

≤ ∥a− ϕ12J · a∥
< ϵ.

Furthermore, since 0 ≤ ϕ1λ(m) ≤ 1 for all m ∈M ,

∥gϵ − gϵ′∥ = ∥ lim
λ
ϕ1λ(ϕ

12
J − ϕ12J ′ ) · a∥ ≤ ∥(ϕ12J − ϕ12J ′ ) · a∥ < ϵ+ ϵ′,

so the net {gϵ}ϵ>0 converges in A. The same argument will show that
{hϵ}ϵ>0 also converges. Setting g := limϵ gϵ and h := limϵ hϵ, we have
g ∈ IF1 since gϵ ∈ IF1 for all ϵ; similarly, h ∈ IF2 . We claim that
a− g − h ∈ IF1∪F2 .

To see this, let δ > 0 be given, and suppose that ϵ is small enough
such that ∥g − gϵ∥, ∥h − hϵ∥ < δ. Without loss of generality, suppose
ϵ < δ. Then,

∥a−g−h∥F1∪F2 ≤ ∥a−gϵ−hϵ∥F1∪F2+∥gϵ−g∥F1∪F2+∥hϵ−h∥F1∪F2

< ϵ+ 2δ < 3δ.

It follows that a− g − h ∈ IF1∪F2 , as claimed. �

Proposition 2.12. Let A be a C0(X)-algebra for a locally compact
Hausdorff space X, and let F1, F2 ⊆ M be closed. Then we have a
short exact sequence of C∗-algebras

(2.6) 0 −→ AF1∪F2 −→ AF1 ⊕AF2 −→ AF1∩F2 −→ 0.
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Proof. We begin by showing that

IF1∪F2 := C0(M \ (F1 ∪ F2)) ·A = IF1 ∩ IF2

is contained in both IF1 and IF2 . The containment IF1∪F2 ⊆ IF1 ∩ IF2

follows immediately from the definitions; we will prove the other
containment. To that end, suppose a ∈ IF1 ∩IF2 . Let {ϕ1λ}λ and {ϕ2µ}µ
be the approximate units for C0(M \F1) and C0(M \F2), respectively,
that were used in Lemma 2.11, and fix ϵ > 0. Then, there exist λ
and µ such that ∥a − ϕ1λ · a∥ < ϵ and ∥a − ϕ2µ · a∥ < ϵ; consequently,

∥ϕ1λ · a− ϕ2µ · a∥ < 2ϵ.

Let δ = ϵ/∥a∥. We will now construct ϕϵ ∈ C0(M \ (F1 ∪ F2)) such
that ∥a− ϕϵ · a∥ < 4ϵ, thus showing that a ∈ IF1∪F2 as claimed.

The open set U = {m ∈ M : |ϕ2µ(m)| < δ} contains F2; let
χ ∈ C0(M) be a bump function that is 1 on F2 and 0 off U . Then
ϕϵ := ϕ1λ − χϕ1λ ∈ C0(M \ (F1 ∪ F2)). Moreover,

∥a− (ϕ1λ − χϕ1λ) · a∥ ≤ ∥a− (ϕ1λ − χϕ1λ) · a− (χϕ2µ) · a∥+ ∥(χϕ2µ) · a∥
≤ ∥a−ϕ1λ · a∥+∥χ·(ϕ1λ · a−ϕ2µ · a)∥+∥(χϕ2µ)·a∥
< ϵ+ 2ϵ+ δ∥a∥
= 4ϵ,

since χϕ2µ is only nonzero on U \F2, where its maximum modulus is at
most δ = ϵ/∥a∥. Since ϵ > 0 is arbitrary, IF1 ∩IF2 = IF1∪F2 as claimed.

Thus, the map ϕ : AF1∪F2 → AF1 ⊕AF2 , given by

ϕ([a]F1∪F2) = [a]F1 ⊕ [a]F2 ,

is a well-defined, injective ∗-homomorphism. Similarly, the map ψ :
AF1 ⊕AF2 → AF1∩F2 , given by

ψ([a]F1 ⊕ [b]F2) = [a− b]F1∩F2 ,

is well-defined and onto, since IFi ⊆ IF1∩F2 for i = 1, 2. Since
Imϕ ⊆ kerψ, by definition, in order to see that the sequence (2.6)
is exact, we merely need to check that Imϕ ⊇ kerψ. The proof of this
inclusion relies on Lemma 2.11.

Suppose [c]F1⊕[d]F2 ∈ kerψ. Then c−d ∈ IF1∩F2 , so by Lemma 2.11,
there exist g ∈ IF1 , h ∈ IF2 such that (c− d)− g−h ∈ IF1∪F2 . In other
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words,
[c− g]F1∪F2

= [h+ d]F1∪F2
=: [b]F1∪F2

.

Since g ∈ IF1 , h ∈ IF2 , we know [c− g]F1 = [c]F1 and [h+ d]F2 = [d]F2 .
To sum up, if ψ([c]F1 ⊕ [d]F2) = 0, then

[c]F1
⊕ [d]F2

= [c− g]F1
⊕ [d+ h]F2

= [b]F1
⊕ [b]F2

= ϕ([b]F1∪F2
),

and
kerψ ⊆ Imϕ,

as claimed. In other words, sequence (2.6) is exact. �

3. Mayer-Vietoris. In this section, we will translate the results
about C0(M)-algebras obtained in the previous section into statements
about the K-theory groups K∗(C

∗(G, ω)) of the C∗-algebras of twisted
group bundles.

K-theory (cf., [1, 12, 16]) is a covariant, Z2-graded homotopy-
invariant functor from the category of C∗-algebras to the category of
abelian groups. In plain language, this means that K-theory associates
to each C∗-algebra A a pair of abelian groups, K0(A) and K1(A). The
K-theory groups are constructed from equivalence classes of projections
in certain C∗-algebras associated to A, and ∗-homomorphisms A→ B
of C∗-algebras induce homomorphisms K∗(A) → K∗(B) in such a way
that homotopic ∗-homomorphisms induce the same map on K-theory.

Among the many useful properties of K-theory is the so-called
continuity of K-theory (cf., [16, Proposition 6.2.9]), which implies that

(3.1) K∗(⊕n∈NAn) = ⊕n∈NK∗(An).

Also relevant to our discussion in this article is the six-term exact
sequence in K-theory (cf., [1, Theorem 9.3.1], [12, Theorem 12.1.2]):
any short exact sequence of C∗-algebras

0 −→ J −→ A −→ B −→ 0
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induces a six-term exact sequence of the K-groups

..

K0(J)

.

K0(A)

.

K0(B)

. K1(J).K1(A).K1(B)

Thus, the short exact sequence (2.6) gives rise to the following six-term
exact sequence in K-theory:
(3.2)

..

K0(AF1∪F2)

.

K0(AF1)⊕K0(AF2)

.

K0(AF1∩F2)

. K1(AF1∪F2).K1(AF1)⊕K1(AF2).K1(AF1∩F2)

Since C∗(G, ω) is a C0(M)-algebra whenever π : G → M is a group
bundle, we propose to use this diagram to study the K-theory groups
associated to a homotopy of 2-cocycles on G. The following definition
is a special case of [5, Definition 2.11].

Given a group bundle π : G → M , we can construct the associated
group bundle π̃ : G× [0, 1] →M× [0, 1], which has total space G× [0, 1],
and fiber π−1(m) over (m, t) ∈M × [0, 1] for any t ∈ [0, 1].

Definition 3.1. A homotopy of 2-cocycles on a group bundle π : G →
M is a 2-cocycle Ω on the group bundle π̃ : G × [0, 1] →M × [0, 1].

Observe that a homotopy Ω of 2-cocycles gives rise to a family
{ωt}t∈[0,1] of 2-cocycles on the original group bundle G → M , which
varies continuously in t due to the continuity of Ω.

Example 3.2. Suppose that π : V → M is a vector bundle and that
σ : V (2) → R is a 2-form on V . The function Ω : V (2) × [0, 1] → T,
given by

Ω((v, w, t)) = exp2πitσ(v,w),
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is a homotopy of 2-cocycles on V , with

ω0(v, w) = 1; ω1(v, w) = exp2πiσ(v,w) .

If Ω = {ωt}t∈[0,1] is a homotopy of 2-cocycles on G, we have a natural
∗-homomorphism

Qt : C
∗(G × [0, 1],Ω) −→ C∗(G, ωt),

for any t ∈ [0, 1], which is given on the dense subalgebra Cc(G × [0, 1])
by evaluation at t. Observe that, if F ⊆M is closed, then

Qt ◦ qF×[0,1] = qF ◦Qt,

since this equality evidently holds on the dense subalgebra Cc(G×[0, 1]),
and hence holds in general. Consequently, the diagrams (3.2) for the
algebras

A = C∗(G × [0, 1],Ω), At = C∗(G, ωt)

can be connected into a larger commutative diagram:
(3.3)

..

K0(AF1∪F2
)

.

K0(AF1
)⊕K0(AF2

)

.

K0(AF1∩F2
)

. K1(AF1∪F2
).K1(AF1

)⊕K1(AF2
).K1(AF1∩F2

) .

K0(At
F1∪F2

)

.

K0(At
F1

)⊕K0(At
F2

)

.

K0(At
F1∩F2

)

.

K1(At
F1∪F2

)

.

K1(At
F1

)⊕K1(At
F2

)

.

K1(At
F1∩F2

)

where all of the arrows connecting the inner and outer diagrams arise
from the map Qt.

Theorem 3.3. Let G → M be a second countable, locally trivial,
amenable group bundle, with Ω = {ωt}t∈[0,1] a homotopy of 2-cocycles
on G. Then

K∗(C
∗(G, ωt)) ∼= K∗(C

∗(G × [0, 1],Ω))

for any t ∈ [0, 1].
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Proof. We begin by considering the case when M is compact. For
each m ∈ M , let Vm be a compact neighborhood of m such that G
trivializes over Vm. Then G also trivializes over Vm ∩ Vn. In other
words, G|Vm

and G|Vm∩Vn
are transformation groups over compact

spaces (with the trivial action of the group Gm
∼= G on the spaces

Vm, Vn, Vm ∩ Vn ⊆ M). By hypothesis, G|Vm is a bundle of amenable
groups, and so [14, Theorem 3.3] tells us that G|Vm is an amenable
groupoid; in other words,

AVm = C∗(G|Vm × [0, 1],Ω) ∼= C∗
r (G|Vm × [0, 1],Ω).

According to [5, Theorem 5.1], a homotopy Ω = {ωt}t∈[0,1] of 2-
cocycles on a second countable locally compact transformation group
GnX induces an isomorphism

(Qt)∗ : K∗(C
∗
r (GnX × [0, 1],Ω)) → K∗(C

∗
r (GnX,ωt)),

for any t ∈ [0, 1], as long as G satisfies the Baum-Connes conjecture
with coefficients. Applying this result to the cases G = Gm and
X = Vm, since amenable groups satisfy the Baum-Connes conjecture
with coefficients, we see that Qt : AVm → At

Vm
induces an isomorphism

on K-theory, and that the same is true for Qt : AVn → At
Vn

and

Qt : AVm∩Vn → At
Vm∩Vn

. The Five lemma now implies that Qt :

AVm∪Vn → At
Vm∪Vn

induces a K-theoretic equivalence.

Iterating this procedure, since the compactness of M implies the
existence of a finite cover of M consisting of the sets Vm, we see that
Qt induces an isomorphism

(Qt)∗ : K∗(C
∗(G × [0, 1],Ω)) −→ K∗(C

∗(G, ωt)),

as claimed.

For the general case, when M is not compact, write

M =
∞∪
i=1

Ui,
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where Ui ⊆ Ui+1 and Ui is compact for all i. ThenM = F1∪F2, where

F1 =
∞∪
i=0

U2i+1 \ U2i;

F2 =
∞∪
i=1

U2i \ U2i−1.

Without loss of generality, we may assume that ∂Ui∩∂Ui+1 = ∅ for all
i; then, F1, F2 and

F1

∩
F2 =

∞∪
i=1

∂Ui

are each closed sets, consisting of countably many disjoint compact
sets.

Consequently, for F = F1, F2, F1∩F2, we see that C
∗(G|F ×[0, 1],Ω)

and C∗(G|F , ωt) both break up as a countable direct sum

C∗(G|F × [0, 1],Ω) ∼=
∞⊕

n=0

C∗(G|Fn × [0, 1],Ω);

C∗(G|F , ωt) ∼=
∞⊕

n=0

C∗(G|Fn , ωt)

where Fn is compact for all n. Since we established above that, for a
compact set Fn,

(Qt)∗ : K∗(C
∗(G|Fn × [0, 1],Ω)) −→ K∗(C

∗(G|Fn , ωt))

is an isomorphism for all t ∈ [0, 1], it follows from equation (3.1) that

(Qt)∗ : K∗(C
∗(G|F × [0, 1],Ω)) −→ K∗(C

∗(G|F , ωt))

is also an isomorphism for F = F1, F2, F1∩F2. SinceM = F1∪F2, the
short exact sequence of equation (2.6) combines with the Five lemma
(following the same argument given above in the case M is compact)
to tell us that

(Qt)∗ : K∗(C
∗(G × [0, 1],Ω)) → K∗(C

∗(G, ωt))

is also an isomorphism. This finishes the proof of Theorem 3.3. �

Our main result now follows immediately.
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Corollary 3.4. Any homotopy Ω = {ωt}t∈[0,1] of 2-cocycles on a
second countable, locally trivial amenable group bundle G →M induces
an isomorphism

K∗(C
∗(G, ω0)) ∼= K∗(C

∗(G, ω1)).

When we consider the particular case when V → M is a vector
bundle, we obtain the following generalization of [11, Theorem 1].

Corollary 3.5. Let V → M be a vector bundle, and let σ : V (2) → R
be a bilinear 2-form on V . Setting ω(v, w) = e2πiσ(v,w), we have

K∗(C
∗(V, ω)) ∼= K∗(C

∗(V )) = K∗(C0(V
∗)).

In particular, if V is even-dimensional, then

K∗(C
∗(V, ω)) ∼= K∗(C0(M)).
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