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ESTIMATES FOR A CLASS OF SLOWLY
NON-DISSIPATIVE REACTION-DIFFUSION

EQUATIONS

EDGARD A. PIMENTEL AND JULIANA F.S. PIMENTEL

ABSTRACT. In this paper, we consider slowly non-
dissipative reaction-diffusion equations and establish several
estimates. In particular, we manage to control Lp norms of
the solution in terms of W 1,2 norms of the initial conditions,
for every p > 2. This is done by carefully combining
preliminary estimates with Gronwall’s inequality and the
Gagliardo-Nirenberg interpolation theorem. By considering
only positive solutions, we obtain upper bounds for the Lp

norms, for every p > 1, in terms of the initial data. In
addition, explicit estimates concerning perturbations of the
initial conditions are established. The stationary problem
is also investigated. We prove that L2 regularity implies
Lp regularity in this setting, while further hypotheses yield
additional estimates for the bounded equilibria. We close
the paper with a discussion of the connection between our
results and some related problems in the theory of slowly
non-dissipative equations and attracting inertial manifolds.

1. Introduction. The study of reaction-diffusion equations has
been mainly motivated by their large range of applications, appear-
ing in interaction models in a variety of contexts. Examples are to
be found, for instance, in population dynamics, chemical reactions,
as well as in the realm of biology or physics. Dissipative reaction-
diffusion equations have been investigated by numerous authors and
various problems have already been worked out in detail. For general
dissipative settings, see [3, 14, 16, 17]. For scalar reaction-diffusion
equations, see [8, 9, 11, 20]. Likewise, fast non-dissipative equations,
i.e., those exhibiting blow-up in finite time, have also been extensively
studied in the literature.
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Despite the scientific developments regarding dissipative, as well
as fast non-dissipative equations, the class of scalar reaction-diffusion
equations with global existence and a set of solutions blowing-up in
infinite time has not been approached until recently. These were
introduced in [6]. This class of dynamical systems is referred to as
slowly non-dissipative systems (SND). In other words, the dynamical
system generated by a scalar reaction-diffusion equation is said to be
slowly non-dissipative if global well-posedness is ensured but at least
one solution grows up to infinity with time. Such an unbounded
solution is referred to as a grow-up solution.

In recent years, a qualitative theory of the asymptotic behavior
of these systems has been established [4, 5, 6, 18, 19]. However,
to the best of our knowledge, there is no information regarding the
quantitative behavior of slowly non-dissipative dynamical systems.

In this paper, we consider the following model SND equation:

(1.1)

{
ut − uxx = bu+ g(x, u, ux) in [0, π]× (0,+∞)

u(x, 0) = u0(x) on [0, π]× {t = 0} ,

where b > 0 is a scalar, u0 : [0, π] → R is a function in the appropriate
state space and g satisfies certain conditions, to be specified later.
We equip (1.1) with the so-called homogeneous Neumann boundary
conditions, i.e.,

(1.2) ux(0, t) = ux(π, t) = 0,

for all t > 0.

In the present paper, estimates for the solutions of (1.1)–(1.2) are
obtained under fairly natural assumptions on b and g, see Section 2. At
first, we control norms of u in Lp spaces in terms of W 1,2 norms of the
initial condition, for every p > 2. This is done by carefully combining
Gronwall’s inequality and ideas inspired by the adjoint method, see
[10], with the Gagliardo-Nirenberg interpolation theorem. Our result
yields an explicit estimate for the norms of the solutions in Lp spaces,
in terms of the nonlinearity and the initial data. This provides an
exponential growth rate for the solutions, as t → ∞. In particular, this
upper bound improves and extends previous results obtained in [21].
By considering only positive solutions, we also obtain an estimate for
the Lp-norms of u, for p > 1.
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As an auxiliary result, we establish L2 estimates for solutions of
(1.1)–(1.2) in terms of L2-norms of the initial data. This class of
estimates is relevant for it provides a better estimate than that obtained
in [18] for u(·, t), for each time t > 0, in fractional power spaces strictly
contained in L2. See Remark 5.4.

Moreover, we study the dependence of the solutions with respect
to perturbations of the initial conditions. Our findings show that, for
every arbitrarily fixed t > 0, solutions starting ε-close to each other
remain eCtε-close, where C > 0, depending on b and g, is explicitly
determined. This result improves the estimate for the norms of the
solutions both in Lp, for p ≥ 2, and in W 1,2.

Lastly, we investigate the associated stationary system. In this
setting, we show that regularity in L2 implies regularity in Lp, for
2 < p ≤ ∞. This result follows from the Gagliardo-Nirenberg theorem,
combined with a series of estimates and Gronwall’s inequality. By
imposing further conditions on the parameter b we also manage to
obtain a uniform estimate for the bounded equilibria, depending solely
on b and g.

Although the relevance of this class of results is justified on its
own mathematical merit, the motivation for the study of quantitative
properties of solutions to (1.1) is twofold.

On one hand, it is essential to understand how the different norms
of the grow-up solutions depend on known quantities of the problem,
e.g., the nonlinearity g as well as the term b and the initial data. For
instance, it is reasonable to expect that a grow-up solution of (1.1)–(1.2)
satisfies an exponential growth condition depending on b, see [5, 18].
Our results provide a rigorous proof of this fact, accounting also for the
dependence on the nonlinearity g.

Furthermore, the findings in this paper enable us to recover cer-
tain qualitative properties of the associated dynamical system, since
our estimates reflect results previously obtained in the literature. For
example, because some upper bounds in Section 6 depend explicitly
on b, limits can be computed by simply letting b → 0 or b → 1. In
this concrete case, our results are consistent with the qualitative the-
ory for (1.1)–(1.2). See [5, 15]. In addition, our estimates regarding
the dependence on the initial data yield an upper bound for the grow-
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up solutions, which compare with results on the theory of inertial
manifolds, see [13].

Despite the fact that the results in this paper regard the scalar
case, the techniques presented do not further rely on the dimension.
It indicates that our findings can add to the quantitative theory of
reaction-diffusion equations in higher dimensions as well. Moreover,
the technical arguments used in this paper, and the delicate ways in
which they can be combined, may yield various estimates for (coupled)
non-linear partial differential equations. See, for example, the recent
results obtained in [12].

The remainder of this paper is organized as follows. Section 2
presents the main assumptions used throughout the paper. For the
sake of completeness, we provide a brief discussion on slowly non-
dissipative systems in Section 3. In Section 4, we establish Lp regularity
for the solutions of (1.1)–(1.2). An explicit estimate for the dependence
of solutions with respect to perturbations of the initial conditions is
provided in Section 5. Also, improvements of Lp estimates are provided.
The stationary problem is dealt with in Section 6. In this section, we
show that L2 regularity implies Lp regularity. By imposing a further
constraint on b, we also establish a uniform bound for the L2 norms
of the solution in terms of a constant depending only on b and g.
This builds upon the previous result to ensure uniform bounds for
the equilibria of the system in Lp. A concluding section summarizes
our findings and highlights their relevance in the context of reaction-
diffusion equations.

2. Main assumptions. In what follows, we state the main assump-
tions under which we work throughout the paper.

Assumption A1. We assume that u0 ∈ Xα ⊂ C1([0, π]).

In Assumption A1, Xα is a fractional power space to be defined
later, see Section 3. The next group of assumptions regards the
nonlinearity, g.

Assumption A2. We assume g ∈ C2([0, π] × R2), and there exists
Cg > 0 such that

|g(x, u, p)| ≤ Cg,
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and
|g(x, u, p)− g(x, v, q)| ≤ Cg (|u− v|+ |p− q|) ,

for all (x, u, p), (x, v, q) ∈ [0, π]× R2.

Assumption A2 is critical also for the global well-posedness of solu-
tions to (1.1)–(1.2), see [16].

Assumption A3. We assume g = g(u). Furthermore, g ∈ C2(R), and
there exists Cg > 0 such that

|g(u)| , |g′(u)| ≤ Cg,

for all u ∈ R.

The next assumption regards the linear coefficient b.

Assumption A4. We assume that 0 < b < 1.

The next section presents a brief discussion on slowly non-dissipative
dynamical systems.

3. Slowly non-dissipative equations. It is known that the dy-
namical system induced by equation (1.1) is slowly non-dissipative.
That is to say, global existence and uniqueness are guaranteed for all
initial conditions u0 in the state space, but a subset of solutions exhibits
blow-up in infinite time. These will be verified within this section.

In the case of equation (1.1), the L2([0, π]) space as the underlying
space would not provide enough regularity. Then, to overcome this fact,
we consider fractional power spaces of X = L2([0, π]). We consider
the operator A = −∂xx − bI. A is a sectorial operator in X and
A1 = A+(b+1)I is a positive operator. These imply that the fractional
power spaces

(3.1) Xα .
= D(Aα

1 ), α ≥ 0,

are well defined with the graph norm ∥x∥α = ∥Aα
1x∥, where ∥·∥ denotes

the usual norm in L2([0, π]). We take Xα with α > 3/4 to be the
underlying space, since we have from embedding theory that in this
case Xα is contained in C1([0, π]); see, for example, [16].
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From the conditions we have imposed on the nonlinearity g and from
the standard semigroup theory [2, 14, 16] we can ensure local existence
and uniqueness for any solution u(·, t) of (1.1)–(1.2). Therefore, the
associated semigroup St is defined in Xα, for t ≥ 0,

St : X
α −→ Xα,

u0 7−→ u(·, t;u0),

where u(·, t;u0) denotes the solution of (1.1)–(1.2). Moreover, we know
from [16] that either the maximal time of existence tu0 of the solution
u(·, t;u0) is equal to infinity or

lim
t→tu0

∥St(u0)∥α = ∞.

If we set G(u)(x)
.
= g(x, u, ux), then g being bounded implies that

∥G(u)∥ ≤ M for some positive constant M ∈ R. We thus have the
following, for any solution u(·, t) of (1.1)–(1.2) and 3/4 < α < 1,

∥u(·, t)∥α = ∥St(u0)∥α

=

∥∥∥∥e−Atu0 +

∫ t

0

e−A(t−s)G(u) ds

∥∥∥∥
α

≤ Cebt∥u0∥α +M

∫ t

0

(t− s)−αeb(t−s)ds,

which is bounded for each 0 < t < ∞, see [18]. This implies global
existence for all the initial conditions u0 ∈ Xα.

To conclude that the induced dynamical system St is slowly non-
dissipative it remains to obtain the existence of a subset of unbounded
solutions. For that, we refer the reader to [6], where the author obtains
the existence of a solution blowing-up in infinite time just by assuming
that b > 0.

The existence of a non-compact global attractor associated with the
dynamical system St is obtained in [6, 18, 19]. This object is defined
to be the non-empty minimal set in Xα attracting all bounded subsets
of Xα. The existence of unbounded trajectories, i.e., grow-up solutions,
requires the introduction of some objects at infinity that are interpreted
as equilibria at infinity. It is obtained in [6, 18, 19] that the non-
compact global attractor is entirely composed by bounded equilibrium
points, equilibria at infinity and heteroclinic orbits connecting them.
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In the next section, we obtain Lp estimates for a solution of (1.1)–
(1.2) in terms of norms of the initial condition in Sobolev spaces.

4. Estimates in Lp spaces. We start by investigating L2 estimates
for u.

Proposition 4.1 (L2-regularity). Let u be a solution to (1.1)–(1.2),
and assume that Assumptions A1 and A2 hold. Then:

∥u(·, t)∥2L2([0,π]) ≤ e2(b+ε)t
(
Ct,g,ε + ∥u0∥2L2([0,π])

)
,

where the constant Ct,g,ε is given by

Ct,g,ε ≡
tπ

2ε
(Cg)

2
,

with ε > 0.

Proof. Multiply (1.1) by u and integrate by parts to obtain

(4.1)
1

2

d

dt

∫ π

0

u2(x, t) dx ≤ b

∫ π

0

u2(x, t) dx+

∫ π

0

g(x, u, ux)u(x, t) dx.

By integrating (4.1) on (0, τ) with respect to the Lebesgue measure,
and noticing that

|g(x, u, ux)u(x, t)| ≤ εu2 +
g2(x, u, ux)

4ε
,

it follows that∫ π

0

u2(x, τ) dx ≤ 2(b+ ε)

∫ τ

0

∫ π

0

u2(x, t) dx dt

+
2

4ε

∫ τ

0

∫ π

0

g2(x, u, ux) dx dt+

∫ π

0

u2
0(x) dx

≤ 2(b+ ε)

∫ τ

0

∫ π

0

u2(x, t) dx dt

+
τπ

2ε
(Cg)

2
+

∫ π

0

u2
0(x) dx.
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Gronwall’s inequality then yields

∥u(·, t)∥2L2([0,π]) ≤ e2(b+ε)t

(
tπ

2ε
(Cg)

2
+ ∥u0∥2L2([0,π])

)
,

which concludes the proof. �

Next, we obtain bounds in L∞ for the solution u.

Proposition 4.2 (L∞-regularity). Let u be a solution to (1.1)–(1.2),
and assume that Assumptions A1–A2 hold. Then,

∥u(·, t)∥L∞([0,π]) ≤ ebt
(
tCg + ∥u0∥L∞([0,π])

)
,

for every t > 0.

Proof. Consider the backwards heat equation

(4.2)

{
ρt + ρxx = 0 in [0, π]× (0, τ)

ρ(x, τ) = δx0(x) on [0, π]× {t = τ} ,

where δx0 is the Dirac delta centered at x0 ∈ (0, π). We equip (4.2)
with homogeneous Neumann boundary conditions. It is clear that ρ is
the density of a probability measure for all times t ∈ [0, τ ].

Multiply (1.1) by ρ and (4.2) by u, sum and integrate by parts to
obtain:

|u(x0, τ)| ≤ b

∫ τ

0

∫ π

0

|u(x, t)| ρ(x, t) dx dt

+

∫ τ

0

∫ π

0

|g(x, u, ux)| ρ(x, t) dx dt

+

∫ π

0

|u0(x)| ρ(x, 0) dx.

Therefore,

sup
x

|u(x, τ)| ≤ b

∫ τ

0

sup
x

|u(x, t)| dt+ τCg + ∥u0∥L∞([0,π]) ,

since x0 is arbitrarily chosen. Gronwall’s inequality then yields the
result. �

In what follows, we obtain an estimate for the L2-norm of ux.
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Proposition 4.3 (Gradient L2-regularity). Let u be a solution to
(1.1)–(1.2), and assume that Assumptions A1 and A3 hold. Then,

∥ux(·, t)∥2L2([0,π]) ≤ e2(b+Cg)t ∥(u0)x∥2L2([0,π]) ,

for every t > 0.

Proof. Differentiate (1.1) with respect to x and multiply it by ux.
Integrate by parts to obtain

d

dt

∫ π

0

u2
x(x, t)

2
dx = −

∫ π

0

u2
xxdx+

∫ π

0

(b+ g′(u))u2
x(x, t) dx.

Hence,∫ π

0

u2
x(x, τ) dx ≤ 2 (b+ Cg)

∫ τ

0

∫ π

0

u2
x(x, t) dx+

∫ π

0

(u0)
2
x(x) dx.

A further application of Gronwall’s inequality yields the result. �

Corollary 4.4 (Sobolev regularity). Let u be a solution to (1.1)–(1.2),
and assume that Assumptions A1 and A3 hold. Then, for ε > 0,

∥u(·, t)∥2W 1,2([0,π]) ≤ Ct,g,εe
2(b+ε)t + e2(b+Cg)t ∥u0∥2W 1,2([0,π]) ,

for every t > 0, where Ct,g,ε depends only on t, g and ε.

Proof. By combining Propositions 4.1 and 4.3, we have

∥u(·, t)∥W 1,2([0,π])≤e2(b+ε)t
(
Ct,g,ε+∥u0∥2L2([0,π])

)
+e2(b+Cg)t∥(u0)x∥2L2([0,π]).

Because ε can be taken such that ε ≤ Cg, it follows that

∥u(·, t)∥W 1,2([0,π]) ≤ Ct,g,εe
2(b+ε)t + e2(b+Cg)t ∥u0∥2W 1,2([0,π]) .

Corollary 4.4 is then established. �

Proposition 4.5. Let u be a solution to (1.1)–(1.2), and assume that
Assumptions A1 and A3 hold. Then there exists a constant Ct,g > 0,
depending solely on t and g, such that

∥u(·, t)∥Lp([0,π]) ≤ Ct,ge
(b+Cg)t

(
1 + ∥u0∥W 1,2([0,π])

)
,

for every p > 2 and t > 0.
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Proof. The Gagliardo-Nirenberg inequality implies

(4.3) ∥u(·, t)∥Lp([0,π]) ≤ C ∥u(·, t)∥1−α
L2([0,π]) ∥u(·, t)∥

α
W 1,2([0,π]) ,

where

α =
p− 2

2p
.

See [7]. By referring to (4.3) and combining Proposition 4.1 and
Corollary 4.4, one has

∥u(·, t)∥Lp([0,π]) ≤ C
[
e(b+Cg)t

(
Ct,g + ∥u0∥L2([0,π])

)]1−α

×
[
e(b+Cg)t

(
Ct,g + ∥u0∥W 1,2([0,π])

)]α
,

provided we take ε ≡ Cg. Therefore,

∥u(·, t)∥Lp([0,π]) ≤ Ct,ge
(b+Cg)t

(
1 + ∥u0∥1−α

L2([0,π]) + ∥u0∥αW 1,2([0,π])

)
≤ Ct,ge

(b+Cg)t
(
1 + ∥u0∥W 1,2([0,π]) + ∥u0∥W 1,2([0,π])

)
,

where we have used elementary facts about norms in Sobolev spaces
combined with Young’s inequality. �

To close this section, we consider positive solutions of (1.1)–(1.2).
This is motivated by problems involving positive quantities, e.g., den-
sities.

Proposition 4.6. Let u be a positive solution to (1.1)–(1.2), and
assume that Assumptions A1–A2 hold. Then,

∥u(·, t)∥pLp([0,π]) ≤ e(bp
2+p−1/p)t

(
∥u0∥pLp([0,π]) + (Cg)

p
t
)
,

for every 1 < p < ∞.

Proof. Multiply (1.1) by pup−1 and integrate by parts to obtain

d

dt

∫ π

0

up(x, t) dx =

∫ π

0

bpup(x, t) dx

+ p

∫ π

0

g(x, u, ux)u
p−1(x, t)− 4(p− 1)

p

∫ π

0

|up/2
x (x, t)|2dx.
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Young’s inequality implies that

d

dt

∫ π

0

up(x, t) dx ≤
∫ π

0

bpup(x, t) dx

+

∫ π

0

gp(x, u, ux) dx+
p− 1

p

∫ π

0

up(x, t) dx.

Integrating with respect to the Lebesgue measure dt over (0, τ) and
applying Gronwall’s inequality, it follows that

∥u(·, τ)∥pLp([0,π]) ≤ e(bp
2+p−1/p)τ

(
∥u0∥pLp([0,π]) + (Cg)

p
τ
)
,

which establishes the result. �

5. Dependence on the initial data. In this section, we study
the dependence of the solutions with respect to initial conditions. In
particular, for every fixed t > 0 and given u0 and v0, we obtain a ball
whose radius depends explicitly on b and g containing the respective
solutions u and v. Furthermore, our estimate ensures that, given two
initial conditions u0 and v0, the corresponding solutions move away
from each other exponentially.

Proposition 5.1. Let u and v be solutions to (1.1) with initial condi-
tions u0 and v0, respectively. Also, assume that Assumptions A1 and
A3 hold. Then:

∥u(·, t)− v(·, t)∥L2([0,π]) ≤ ∥u0 − v0∥L2([0,π]) e
(b+Cg)t,

for every t > 0.

Proof. Let
w

.
= u− v.

Notice that w solves the following linear equation:

(5.1)

{
wt − wxx = (b + g′(z))w

w(x, 0) = w0(x),

for some z, where w0 = u0− v0. It is also easy to verify that w satisfies
homogeneous Neumann boundary conditions.
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Multiplying (5.1) by w and integrating by parts one obtains

d

dt

∫ π

0

w2(x, t) dx ≤ 2

∫ π

0

(b+ |g′(z)|)w2(x, t) dx,

which in turn yields∫ π

0

w2(x, τ) ≤ 2 (b+ Cg)

∫ τ

0

∫ π

0

w2(x, t) dx dt+

∫ π

0

w2
0(x) dx.

Gronwall’s inequality ensures that

∥w(·, τ)∥2L2([0,π]) ≤ ∥w0∥2L2([0,π]) e
2(b+Cg)t.

Because w = u− v, the result follows. �

Corollary 5.2. Let u be a solution of (1.1)–(1.2) with initial condition
u0, and assume that Assumptions A1 and A3 hold. Then

∥u(·, t)∥2L2([0,π]) ≤ e2(b+Cg)t ∥u0∥2L2([0,π]) .

Proof. It is obtained in [19] the existence of a stationary solution
for the equation (1.1). This implies that we can take v(·, t) in Proposi-
tion 5.1 to be the equilibrium v(·) ≡ 0. Then, we obtain

∥u(·, t)∥L2([0,π]) ≤ e(b+Cg)t ∥u0∥L2([0,π]) ,

which concludes the proof. �

Remark 5.3. Since we can assume that ϵ = Cg in Proposition 4.1, the
above corollary provides a better estimate for the growth of grow-up
solutions to equation (1.1).

Remark 5.4. Since Xα ⊂ L2, the estimate in Corollary 5.2 can be
compared to that in Section 3 for u(·, t) in Xα.

It is also worth noting that Corollary 5.2 improves the results
obtained in Corollary 4.4 and Proposition 4.5 as it yields estimates
on the following:
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Corollary 5.5. Let u be a solution of (1.1)–(1.2) with initial condition
u0, and assume that Assumptions A1 and A3 hold. Then:

∥u(·, t)∥W 1,2([0,π]) ≤ e(b+Cg)t ∥u0∥W 1,2 ,

and, for p > 2,

∥u(·, t)∥Lp([0,π]) ≤ Ce(b+Cg)t ∥u0∥W 1,2([0,π]) ,

for a constant C which does not depend either on t or g.

Remark 5.6. It is worth noting that the bounds obtained in Corol-
lary 5.2 are consistent with those obtained in [13] for the trajectories
on the attracting inertial manifold associated with (1.1), see Section 7.

6. Stationary problem. In this section, we study the stationary
equation related to equations (1.1)–(1.2). That is to say, we are
interested in the following:

(6.1)

{
uxx + bu+ g(x, u, ux) = 0 in [0, π]× (0,+∞)

ux(0) = ux(π) = 0.

Proposition 6.1. Let u be a solution of the stationary problem (6.1),
and assume that Assumptions A1–A2 hold. Then, for any p and α
satisfying

α =
p− 2

2p
,

we have

∥u∥Lp([0,π]) ≤ C(b+ 1)∥u∥L2([0,π]) + C̃g∥u∥1−α
L2([0,π]),

where C̃g is a constant depending on g and α.

Proof. Multiply equation (6.1) by u and integrate by parts to obtain

(6.2)

∫ π

0

u2
x(x) dx ≤ b

∫ π

0

u2(x) dx+

∫ π

0

g(x, u, ux)u(x) dx.

The Cauchy inequality with ϵ then yields

(6.3) ∥ux∥2L2([0,π]) ≤ (b+ ϵ)∥u∥2L2([0,π]) +
π

4ϵ
Cg.
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It then follows from the Gagliardo-Nirenberg inequality that

∥u∥2Lp([0,π]) ≤ C∥u∥1−α
L2([0,π])∥u∥

α
W 1,2([0,π])

≤ C∥u∥1−α
L2([0,π])(∥u∥

2
L2([0,π]) + (b+ ϵ)∥u∥2L2([0,π]) + Cg)

α/2,

where Cg = π/(4ϵ)Cg. By choosing an appropriate ϵ we obtain

∥u∥2Lp([0,π]) ≤ C∥u∥1−α
L2([0,π])((b+ 1)∥u∥2L2([0,π]) + C̃g)

α/2,

where C̃ is a constant depending on g and α. �

Next, we specialize the parameter b and obtain a uniform bound for
the L2 norm of the solutions to the stationary problem.

Lemma 6.2. Let u be a solution to (6.1), and assume that Assumptions
A1–A2 hold. Then

∥u∥L2([0,π]) ≤
Cg

b
+ ∥ux∥L2([0,π]) .

Proof. Integrate (6.1) to obtain∣∣∣∣ 1π
∫ π

0

u(x) dx

∣∣∣∣ ≤ Cg

b
.

The result then follows from the Poincaré inequality by noticing that
the optimal Poincaré constant in this case is equal to 1, see [1]. �

Lemma 6.3. Let u be a solution (6.1), and assume that Assumptions
A1–A2 hold. Then, for every ε > 0,

∥ux∥2L2([0,π]) ≤ (b+ ε) ∥u∥2L2([0,π]) + Cg,

where
Cg =

π

4ε
(Cg)

2
.

Proof. Multiply (6.1) by u and integrate by parts to obtain

(6.4)

∫ π

0

|ux(x)|2 dx = b

∫ π

0

u2(x) dx+

∫ π

0

g(x, u, ux)u(x) dx.
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Cauchy’s inequality with ε yields

(6.5)

∫ π

0

|g(x, u, ux)u(x)| dx ≤ ε

∫ π

0

u2(x) +
π

4ε
(Cg)

2
.

By combining (6.4) and (6.5), the proof is completed. �

Proposition 6.4. Let u be a solution (6.1), and assume that Assump-
tions A1–A2 and A4 hold. Then,

∥u∥L2([0,π]) ≤ Cg,b,

where Cg,b > 0 depends solely on b and g.

Proof. By combining Lemmas 6.2 and 6.3 it follows that

∥u∥L2([0,π]) ≤
Cg

b
+

√
πCg

2
√
ε

+
√
(b+ ε) ∥u∥L2([0,π]) .

Because 0 < b < 1, and ε > 0 is arbitrary, absorbing
√
(b+ ε)∥u∥L2([0,π])

on the left-hand side yields

∥u∥L2([0,π]) ≤
1

1−
√

(b+ ε)

(
Cg

b
+

√
πCg

2
√
ε

)
,

which concludes the proof. �

Remark 6.5. We notice that, in Proposition 6.4, it is assumed that
0 < b < 1. It is important to mention that 0 and 1 are critical values
of b, as they correspond to a degeneracy condition for equation (1.1);
see Section 7.

Corollary 6.6. Let u be a solution (6.1), and assume that Assumptions
A1–A2 and A4 hold. Then,

∥u∥Lp([0,π]) ≤ Cg,b,p,

where Cg,b,p > 0 depends solely on g, b and p.

Proof. Corollary 6.6 follows from Propositions 6.1 and 6.4. �
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7. Concluding remarks. It is well known that solutions of (1.1)–
(1.2) either converge to an equilibrium or grow-up to infinity with
time [5, 18]. Therefore, in order to achieve a better understanding
of the long time behavior of the solutions, it is important to obtain two
distinct classes of information, namely, estimates for the growth rate
of the grow-up solutions as well as uniform bounds for the equilibria.

Motivated by the this consideration, the present paper reports on
three main groups of results. We obtain estimates for the growth of the
solutions in Lp, for p ≥ 2, and W 1,2 which depend on the nonlinearity
g and on b. Moreover, an upper bound for the distance between two
distinct solutions is obtained in L2. Lastly, uniform estimates for the
bounded equilibria are obtained in Lp, for every p > 1.

In the context of the existing theory, several problems related to our
results are worth mentioning. In what follows, some of those are briefly
discussed.

As one can observe in [5], an exponential growth for the L2-norm
of the unbounded solutions is expected. The estimate in Corollary 5.2
corroborates this fact by providing a rigorous proof.

Moreover, as mentioned in Section 3, (1.1)–(1.2) admits bounded
equilibria and equilibria at infinity. On one hand, it is known that
b = n2, n ∈ N, leads to non-hyperbolic equilibria at infinity, that
is, equilibria with the eigenvalue λ = 0 associated. For these critical
values of b, bounded equilibria may accumulate on a pair of equilibria
at infinity. See [5] and [15, subsection 5.3]. On the other hand, by
assuming that 0 < b < 1, we obtain in Proposition 6.4 a uniform bound
for the L2-norm of the equilibria to equation (1.1), which depends
explicitly on b; as b goes to 0 or 1 this estimate tends to +∞. Therefore,
our estimate is consistent with the expected behavior of the equilibria
for the critical values b = 0, 1.

To conclude these remarks, we mention a connection between one of
our estimates and a result from the theory of inertial manifolds that
applies in the context of the present paper.

It is known that there exists an inertial manifold M, that is, an
invariant exponentially attracting manifold, of finite dimension N ,
associated with equation (1.1), see [5, 18]. This implies that every
solution u of (1.1)–(1.2) approaches M exponentially. In [13], a lower
bound is obtained for the growth of trajectories on the inertial manifold
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M. On the other hand, in Corollary 5.2, we have obtained an upper
bound for the growth rate of solutions to (1.1). By taking N sufficiently
large, one can easily verify that these bounds are consistent.

Acknowledgments. The authors thank D. Gomes and two anony-
mous referees for their comments and suggestions on the present paper.
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