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INTERSECTIONS ON TROPICAL MODULI SPACES

JOHANNES RAU

ABSTRACT. This article explores to which extent the
algebro-geometric theory of rational descendant Gromov-
Witten invariants can be carried over to the tropical world.
Despite the fact that the tropical moduli-spaces we work
with are non-compact, the answer is surprisingly positive.
We discuss the string, divisor and dilaton equations, we
prove a splitting lemma describing the intersection with a
“boundary” divisor, and we prove general tropical versions
of the WDVV, respectively, topological recursion equations
(under some assumptions). As a direct application, we
prove that, for the toric varieties P1, P2, P1 × P1 and with
Ψ-conditions only in combination with point conditions, the
tropical and classical descendant Gromov-Witten invariants
coincide (which extends the result for P2 in [17]). Our
approach uses tropical intersection theory and unifies and
simplifies some parts of the existing tropical enumerative
geometry (for rational curves).

Introduction. Over the last few years, the list of results in tropical
enumerative geometry has become quite long. However, lacking an
appropriate tropical intersection theory, most existing results are
obtained by:

• relating the tropical numbers directly to the classical ones (cf.,
[18]) and then using the algebro-geometric theory, or

• involving ad hoc computations (eg., [3, 5, 9, 14, 17]), which
moreover, have to be repeated for each new class of enumera-
tive problem.

On the other hand, based on [19], the basic constructions of tropical
intersection theory are now developed in [1] (see also [2, 13]). Further-
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more, in [8], the authors show that the moduli spaces of rational trop-
ical curves are tropical varieties (i.e., satisfy the balancing condition).
Hence, we can apply intersection theory to them. In [20], Mikhalkin
proposes the definition of tropical Ψ-divisors in tropical moduli spaces
of abstract curves, and they were first studied in [15]. In summary, all
the tools needed to develop a tropical analogue of classical Gromov-
Witten theory for rational curves are at our disposal, and the present
article tries to carry out this program (as mentioned before, first steps
are contained e.g., in [8, 15, 17]).

The “ready for use” main Theorems 5.18 and 5.20 state that, for P1,
P2 and P1×P1, and with Ψ-conditions only in combination with point
conditions, the tropical and conventional descendant Gromov-Witten
invariants coincide. For the case of P2, this equality was already proven
in the previous paper [17] joint with Markwig. One should emphasize
that both results are obtained by checking that the involved numbers
satisfy the same recursive formulas, and not by proving some sort of
correspondence theorem.

This article is a continuation of [17], and some statements can
be found in older versions there. The focus here is to consequently
replace older ad hoc computations by more appropriate tools from
tropical intersection theory. As a consequence, we typically obtain
more general statements (e.g., working in any dimension).

We work with non-compact tropical moduli spaces, i.e., fans in
RN , due to the fact that compactifications and their intersection
theory have not yet been satisfactorily constructed. However, the non-
compact approach has its limitations. This will become visible, e.g.,
from the assumptions we need in our general WDVV and topological
recursion statements.

Let us also mention that in subsection 1.4 we show that the fan
displacement rule for Minkowski weights describing toric intersection
theory (cf., [7]) coincides with the intersection product of tropical
cycles introduced in [1, Section 9] (see also [13]).

The article contains the following parts. Section 1 repeats the basics
of tropical intersection theory from [1] and adds some results which
will be important later. In Section 2, we study the intersection ring
of Mn, the space of abstract rational tropical curves. In Section 3,
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we extend this to Mlab
n (Rr,Δ), the space of parametrized curves in

Rr. In particular, we prove general versions of the string, dilaton
and divisor equations. Section 4 deals with the intersection of a one-
dimensional family of curves with a boundary divisor. By analogy
with the classical case, we prove a “splitting lemma” which allows
computing this intersection as a product of intersections on smaller
moduli spaces. Finally, in Section 5, we put things together and prove,
under some conditions, the WDVV and topological recursion equations
mentioned above.

1. Intersection theory. In this section, we will establish the parts
of tropical intersection theory that we will need to attack the problems
of tropical Gromov-Witten theory in a satisfactory way. Subsection 1.1
gives a quick overview on the definitions and results from [1, 2] that
we will need (however, note that our notation will sometimes differ
slightly from the original ones). Subsections 1.2–1.7 contain some new
material. In particular, subsection 1.4 contains a proof of the fact
that toric intersection theory (as described by the fan displacement
rule in [7]) and tropical intersection theory for fans are identical. (An
alternative proof can be found in [13, Theorem 4.4]).

1.1. The basics. A cycle X is a balanced (pure-dimensional, weight-
ed, rational and polyhedral) complex in a finite-dimensional vector
space V = Λ ⊗ R with underlying lattice Λ (the most common
case is V = Rr, whose underlying lattice, if not specified otherwise,
is Zr). The top-dimensional polyhedra in X are called facets, the
codimension 1 polyhedra are called ridges. Balanced means that, for
each ridge τ ∈ X , the following balancing condition at τ is satisfied:
the weighted sum of the primitive vectors of the facets σ around τ∑

σ∈X(dim(X))

τ<σ

ω(σ)vσ/τ

vanishes “modulo τ ,” or, precisely, lies in the linear vector space
spanned by τ , denoted by Vτ . Here, ω(σ) denotes the weight of a
facet σ, and a primitive vector vσ/τ of σ modulo τ is a vector in Λ
that points from τ towards σ and fulfils the primitive condition: the
lattice Zvσ/τ + (Vτ ∩ Λ) must be equal to the lattice Vσ ∩ Λ. Slightly
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differently, in [1], the class of vσ/τ modulo Vτ is called the primitive
vector and vσ/τ is just a representative of it. We will abbreviate the
lattice Vσ ∩ Λ by Λσ.

The support of X , denoted by X , is the union of all facets in X
with non-zero weight. We call X irreducible if, for any cycle Y of the
same dimension with |Y | ⊆ |X |, there exists an integer μ ∈ Z such
that Y = μ ·X . The positive part of X , denoted by X+, is the set of
all faces contained in a facet with positive weight. A general element
x of X is an element x ∈ |X | that lies in the interior of a facet. If
the underlying polyhedral complex is a fan (i.e., if all polyhedra are
actually cones with vertex in 0), we call X a fan cycle (or sometimes
just fan).

In fact, given a cycle X , we do not really want to fix its structure as
a polyhedral complex but only its support and its weights. Therefore,
by abuse of notation, a cycle X also denotes the class of balanced
polyhedral complexes with the same support and agreeing weights (on
the common refinement).

A (non-zero) rational function on X is a function ϕ : |X | → R that
is integer affine on each polyhedron. Here, integer linear means that
it maps lattice elements to integers, and integer affine means that it
is a sum of an integer linear function (called the linear part) and a
real constant. If X is a fan, we also assume ϕ(0) = 0. The divisor
of ϕ, denoted by div(ϕ) = ϕ · X , is the balanced subcomplex of X
constructed in [1, subsection 3.3], namely, the codimension 1 skeleton
X \X(dimX) together with the weights ωϕ·X(τ) for each ridge τ ∈ X .
These weights are given by the formula:

ωϕ·X(τ) =
∑

σ∈X(dim X)

τ<σ

ω(σ)ϕσ(vσ/τ )− ϕτ

( ∑
σ∈X(dim X)

τ<σ

ω(σ)vσ/τ

)
,

where ϕσ : Vσ → R denotes the linear part of the affine function ϕ|σ.
Note that the balancing condition of X around τ ensures that the
argument of ϕτ is indeed an element of Vτ . Essentially, this weight
measures the change of slope of ϕ when traversing the ridge τ , as
illustrated in the following picture.
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R2R div(max{x, 0})

Γmax{x,0} Γmax{x,y,0}

div(max{x, y, 0})

To be more precise, let Γϕ be the graph of ϕ inX×R. It is a polyhedral
complex whose polyhedra are in one-to-one correspondence with those
of X , but in general Γϕ is not balanced. However, it can be completed
to a cycle by adding facets in the (0,−1)-direction at each ridge of Γϕ,
equipped with the above weights. Now, if we (imaginary) intersect
this tropically completed graph of ϕ with X × {−∞} (i.e., compute
the tropical zero locus of ϕ), we obtain the cycle div(ϕ) = ϕ ·X of our
definition.

If ϕ is globally affine (respectively, linear), all weights are zero,
which we denote by ϕ · X = 0. Let the support of ϕ, denoted by
|ϕ|, be the subcomplex of X containing the points x ∈ |X | where
ϕ is not locally affine. Then we have |ϕ · X | ⊆ |ϕ|. Furthermore,
the intersection product is bilinear (see [1, subsection 3.6]). As the
restriction of a rational function to a subcycle is again a rational
function, we can also form multiple intersection products ϕ1 ·. . .·ϕl ·X .
In this case, we will sometimes omit “·X” to keep formulas shorter.
Note that multiple intersection products are commutative (see [1,
subsection 3.7]).

A morphism of cycles X ⊆ V = Λ ⊗ R and Y ⊆ V ′ = Λ′ ⊗ R is
a map f : |X | → |Y | that is induced by a linear map bΛ → Λ′ and
that maps each polyhedron of X into a polyhedron of Y . We call f
an isomorphism and write X ∼= Y , if there exists an inverse morphism
and if, for all facets σ ∈ X , we have ωX(σ) = ωY (f(σ)).

Such a morphism pulls back rational functions ϕ on Y to rational
functions f∗(ϕ) = ϕ ◦ f on X . Note that the second condition of a
morphism makes sure that we do not have to refine X further. f∗(ϕ)
is already affine on each cone. The inclusion |f∗(ϕ)| ⊆ f−1(|ϕ|) holds,
as the composition of an affine and a linear function is again affine.

Furthermore, we can push forward subcycles Z of X to subcycles
f∗(Z) of Y of the same dimension. This is due to [8, 2.24, 2.25] in the
case of fans and can be generalized to complexes (see [1, subsection
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7.3]). We can omit further refinements here if we assume that f(σ) ∈ Y
for all σ ∈ X . Then f∗(Z) is defined by assigning the following weights
to the dim(Z)-dimensional polyhedra σ′ ∈ Y :

ωf∗(Z)(σ
′) =

∑
σ∈X

f(σ)=σ′

|Λσ′/f(Λσ)| · ωZ(σ).

By definition, we have |f∗(Z)| ⊆ f(|Z|). The projection formula (see
[1, subsection 4.8]) connects all the above constructions via

f∗(f∗(ϕ) ·X) = ϕ · f∗(X).

By [1, Definition 9.3], it is also possible to form the intersection
product of two cycles X,Y in V = Λ ⊗ R: we choose coordinates
x1, . . . , xr on Λ (and denote the same coordinates on the second factor
of V × V by y1, . . . , yr). Then the diagonal Δ in V × V is given by
Δ = max{x1, y1} · · ·max{xr, yr} · (V × V ). Furthermore, we consider
the function π : Δ → V, (x, x) 
→ x. Then the intersection product of
X and Y in V is given by

X · Y := π∗
(
max{x1, y1} · · ·max{xr, yr} · (X × Y )

)
.

This intersection product is independent of the chosen coordinates,
commutative, associative, bilinear, admits the identity element V and
satisfies (ϕ ·X) · Y = ϕ · (X · Y ), where ϕ is a rational function on X .

Let us now turn to the concept of rational equivalence (we summa-
rize [2]). Let X be a zero-dimensional cycle. Then the degree deg(X)
of X denotes the sum of the weights of all points in X . Now let X be
an arbitrary cycle, and let ϕ, ϕ̃ be two rational functions on X . We
call them (rationally) equivalent if ϕ− ϕ̃ is the sum of a bounded and
a globally linear function. Obviously, this property is preserved when
pulled back. Furthermore, if Y is a one-dimensional subcycle of X ,
then deg(ϕ · Y ) = deg(ϕ̃ · Y ) holds (see [1, Lemma 8.3]).

Let X be a cycle, and let Y be a subcycle. We call Y rationally
equivalent to zero, denoted by Y ∼ 0, if there exists a morphism
f : X ′ → X and a bounded rational function φ on X ′ such that

f∗(φ ·X ′) = Y.
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This property commutes with taking Cartesian products, intersection
products (of functions as well as of cycles) and with pushing forward.
Moreover, if Y is zero-dimensional, then Y ∼ 0 implies deg(Y ) = 0.

Let Ỹ be another subcycle of X . Then we call Y and Ỹ rationally

equivalent if Y −Ỹ is rationally equivalent to zero. The easiest example
of rationally equivalent cycles are translations. Let X be a cycle in
V = Λ ⊗ R, and let us denote by X + v the translation of X by an
arbitrary vector v ∈ V . Then

X ∼ X + v

holds (see also [17, Lemma 2.1]).

If X,Y live in V = Λ ⊗ R, we call them numerically equivalent if,
for any cycle Z in V of complementary dimension, the equation

deg(X · Z) = deg(Y · Z)
holds.

Let X be a cycle in V = Λ ⊗ R. We define the degree or recession
fan ofX , denoted by δ(X), as follows: δ(X) is supported on the purely
dim(X)-dimensional part of the polyhedral set⋃

σ∈X
rc(σ).

Here, the recession cone rc(σ) of a polyhedron σ is defined to be the
cone containing all vectors v ∈ V such that, starting at an arbitrary
point x ∈ σ, the ray x+ Rv is contained in σ. Now, for a fine enough
fan structure on this polyhedral set, the weights are given by

ωδ(X)(σ
′) :=

∑
σ∈X

σ′⊆rc(σ)

ωX(σ).

In particular, if X is a curve, then δ(X) is just the union of all
unbounded rays in X and the weights are the sums of the weights
of the rays in X of a given direction. Geometrically, we simply shrink
all bounded parts of X to a point and move the final single vertex to
the origin.
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The main result of [2] is that, for cycles X in V = Λ ⊗ R, rational
equivalence, numerical equivalence and “having the same degree”
coincides. To prove this, an important substep is to show that X
is always rationally equivalent to its degree,

X ∼ δ(X).

1.2. Local computation of intersection products. Let X be a
cycle, and let τ ∈ X be a polyhedron in X . We define the star of X
at τ to be the fan

StarX(τ) := {σ | τ < σ ∈ X},
where σ denotes the cone in V/Vτ spanned by the image of σ − τ
under the quotient map q : V → V/Vτ . We make it into a cycle by
defining ωStarX (τ)(σ) = ωX(σ) for all facets σ of StarX(τ) (note that q
preserves the codimension of the polyhedra). This fan contains all the
local information of X around τ and can be considered as the tropical
version of a small neighborhood of an interior point of τ (divided by
the linearity space Vτ ). Its dimension equals the codimension of τ in
X .

Furthermore, let ϕ be a rational function onX . Choose an arbitrary
affine function ψ with ϕ|τ = ψ|τ . Then ϕ − ψ induces a rational
function on StarX(τ) which we denote by ϕτ (and call it a germ
of ϕ at τ). This function is only unique up to adding a linear
function, which is enough for us as it does not change its divisor. The
following proposition shows that our intersection products are local
constructions (i.e., can be expressed in terms of stars and germs).

Proposition 1.1. Let X be a cycle with polyhedra τ < σ ∈ X. Let
ϕ, ϕ1, . . . , ϕl be rational functions on X. Then the following state-
ments are true:

(i) StarStarX (τ)(σ) = StarX(σ).
(ii) (ϕτ )σ = ϕσ on StarX(σ) (up to adding a linear function).
(iii) Starϕ·X(τ) = ϕτ · StarX(τ).
(iv) Starϕ1·...·ϕl·X(τ) = ϕτ1 · . . . · ϕτl · StarX(τ).
(v) If l = dim(X)− dim(τ), then

ωϕ1·...·ϕl·X(τ) = ωϕτ
1 ·...·ϕτ

l ·StarX (τ)({0}),
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i.e., we can compute the weight of τ in ϕ1 · . . . · ϕl ·X “locally”
in StarX(τ).

Proof. Items (i) and (ii) are immediate consequences of the defini-
tions. Item (iv) follows from (iii) by induction and (v) is just a special
case of (iv), namely, when ϕτ1 · . . . · ϕτl · StarX(τ) is zero-dimensional.
Hence, we are left with (iii).

Let r := dim(X) − dim(τ) be the codimension of τ in X . The
statement is trivial when r = 0: Both sides are 0. Assume r = 1. In
this case, we only have to check

ωϕ·X(τ) = ωϕτ ·StarX (τ)({0}).
By adding an affine function we can assume that ϕ|τ = 0 without
changing the intersection product and, in particular, the weight of τ
in ϕ · X . But then we can replace both weights according to their
definition and observe that

ωϕ·X(τ) =
∑

σ∈X(dim(X))

τ<σ

ω(σ)ϕσ(vσ/τ )

=
∑

σ̄∈StarX(τ)(1)

ω(σ̄)ϕτ (vσ̄/{0}) = ωϕτ ·StarX (τ)({0})

holds true, as [vσ/τ ] = vσ̄/{0} ∈ V/Vτ .

Now let us assume r > 1, and let τ ′ be a ridge in X . Then we can
use the previous case as well as (i) and (ii) and obtain

ωϕ·X(τ ′) r=1
= ωϕτ′ ·StarX (τ ′)({0})
(a), (b)
= ω(ϕτ )τ′ ·StarStarX (τ)(τ ′)({0})

r=1
= ωϕτ ·StarX(τ)(τ

′),

which proves the claim. �

We can extend this to the case of the intersection product of two
cycles.
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Proposition 1.2. Let X and Y be two cycles in V = R ⊗ Λ. Then
the equation

StarX·Y (τ) = StarX(τ) · StarY (τ)
holds for all polyhedra τ ∈ X · Y.

Proof. First, we fix some notation. Let x1, . . . , xr be a lattice basis
of Λ∨ such that the first d := codimV (τ) elements generate V ⊥

τ . When
we consider the product Λ × Λ, the same coordinates on the second
factor will be denoted by y1, . . . , yr. Furthermore, let Δ : V → V ×V ,
x 
→ (x, x) denote the diagonal map. By definition of the intersection
product of cycles and using Proposition 1.1 (iv) we have to compute

Starmax{x1,y1}···max{xr,yr}·(X×Y )(Δ(τ))

= max{x1, y1} · · ·max{xr, yr} · StarX×Y (Δ(τ))

and
max{x1, y1} · · ·max{xd, yd} · (StarX(τ) × StarY (τ)),

respectively. Thus, the statement follows from the fact that

max{xd+1, yd+1} · · ·max{xr, yr}
·(V × V/Δ(Vτ )) −→ V/Vτ × V/Vτ ,

(x, y) 
−→ (x, y)

is an isomorphism and can be restricted to an isomorphism of

max{xd+1, yd+1} · · ·max{xr, yr} · StarX×Y (Δ(τ))

and StarX(τ) × StarY (τ). �

1.3. Transversal intersections. Let us now consider “generic” in-
tersections.

Definition 1.3. Let X and Y be two cycles in V = Λ ⊗ R of
codimension c, respectively d. We say X and Y intersect transversally
ifX∩Y is of pure codimension c+d and if, for each facet τ inX∩Y , the
corresponding neighborhoods StarX(τ) and StarY (τ) are (transversal)
affine subspaces of V .
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In this case, by locality of the intersection product, the computation
of X · Y can be reduced to the intersection of vector spaces. This
motivates the following study of intersections of linear functions and
spaces.

Lemma 1.4. Let h1, . . . , hl be integer linear functions on V (l ≤
dim(V ) =: r), and define the rational functions ϕi := max{hi, 0} on
V . Let H : V → Rl be the linear function with H(x) = (h1(x), . . . ,
hl(x)) and let us assume that H has full rank. Then ϕ1 · . . . · ϕl · V is
equal to the subspace ker(H) with weight ind(H) := |Zl/H(Λ)|. Here
we give V the fan structure consisting of all cones where each of the
hi is either positive or zero or negative, with all weights being 1.

Proof. Let us assume l = 1 first (i.e., H = h1). In this case, we have
to compute the weight of the only ridge in V which is h⊥1 = ker(H).
This ridge is contained in the two facets corresponding to hi ≥ 0 and
hi ≤ 0. Let v≥ = −v≤ be corresponding primitive vectors. This
implies that, for example, v≥ generates the one-dimensional lattice
Λ/h⊥1 ∼= h1(Λ), and therefore, |Z/h1(Λ)| = h1(v≥). On the other
hand, we can compute the weight of h⊥1 in h1 · V to be

ωh1·V (h
⊥
1 ) = ϕ1(v≥) + ϕ1(v≤) = h1(v≥) + 0 = |Z/h1(Λ)|.

Now we make induction for l > 1. The induction hypothesis says that
ϕ2 · . . . ϕl · V is equal to the subspace ker(H ′) with weight ind(H ′),
whereH ′ = h2×· · ·×hl. By applying the case l = 1 to the vector space
ker(H ′) = (ker(H ′)∩Zr)⊗R, we obtain that ϕ1 ·. . . ϕl ·V is equal to the
subspace h⊥1 ∩ ker(H ′) = ker(H) with weight ind(h1|ker(H′)) · ind(H ′).
We have to show that this weight coincides with ind(H). This follows
from the exact sequence

0 → h1(ker(H
′) ∩ Λ) → H(Λ) → H ′(Λ) → 0

h1(x) 
→ H(x)=(h1(x), 0)
H(x) 
→ H ′(x)

and its induced quotient sequence

0 −→ Zl−1/H ′(Λ) −→ Zl/H(Λ) −→ Z/h1(ker(H
′)∩Λ) −→ 0. �
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Remark 1.5. In the special case l = r the weight of {0} in the
intersection product ϕ1 ·. . .·ϕr ·V is |Zr/H(Λ)|, which equals | det(M)|
whereM is a matrix representation of H with respect to a lattice basis
of Λ and the standard basis of Zr. This special case of the statement
is proven in [17, Lemma 5.1]. Note that, in this case, if det(M) is
zero, the intersection product is zero as well. Hence, this version can
be extended to the case where H does not have full rank.

Now we use this lemma to compute the intersection of two linear
subspaces.

Lemma 1.6. Let U and W be two subspaces of V = R ⊗ Λ (with
rational slope) such that U +W = V . If we consider U and W as
cycles with weight 1, their intersection product can be computed to be:

U ·W = |Λ/(ΛU + ΛW )| · (U ∩W ).

Proof. By definition, we have to compute

max{x1, y1} · · ·max{xr, yr} · (U ×W ),

(where we chose arbitrary coordinates on Λ). Instead of max{xi, yi},
we can as well subtract the linear function yi and use the functions
max{xi − yi, 0}. Now we can apply Lemma 1.4. In our case, the
function H is just

H : Λ× Λ −→ Λ,

(x, y) 
−→ x− y.

Restricted to U ×W , this provides

U ·W = |Λ/H(ΛU×ΛW )| ·π∗(ker(H)) = |Λ/(ΛU∓ΛW )| ·(U ∩W ). �

Now, as a combination of Proposition 1.2 and Lemma 1.6, we obtain
the following result.

Corollary 1.7. Let X and Y be two cycles in V = R⊗Λ that intersect
transversally. Then X · Y = (X ∩ Y, ωX∩Y ) with the following weight
function. Any facet τ in X ∩ Y is the intersection of two facets σ, σ′
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in X, respectively Y . Then the weight of τ = σ ∩ σ′ is

ωX∩Y (σ ∩ σ′) = ωX(σ)ωY (σ
′)|Λ/Λσ + Λσ′ |.

1.4. Comparison to the fan displacement rule. In [7], the au-
thors introduce Minkowski weights to describe the Chow cohomology
groups of a toric variety combinatorially. Moreover, they compute
the cup-product of these cohomology groups in terms of Minkowski
weights. In this subsection, we show explicitly that, when we inter-
pret Minkowski weights as tropical cycles, this cup-product coincides
with our product of tropical cycles. Another approach to this topic is
given in [12, Section 9] and [13].

Let Θ be a complete fan in a vector space V = R⊗Λ of dimension r
(in [7], the fan is called Δ and the lattice is called N). Let Θ(k) denote
the set of k-dimensional cones in Θ (in [7], the exponent indicates the
codimension, i.e., Δ(k) means Θ(r−k)).

Definition 1.8. (cf., [7, Section 2]). A Minkowski weight c of codi-
mension k is an integer-valued function on Θ(r−k) that satisfies, for
any τ ∈ Θ(r−k−1), ∑

σ∈Θ(r−k)

τ⊆σ

c(σ)vσ/τ ∈ Λτ

(in [7], primitive vectors are denoted by nσ,τ ).

Let c be a Minkowski weight of codimension k. Of course, if we
set X(c) to be the fan

⋃
0≤i≤r−kΘ

(i) with weight function c, the
Minkowski weight condition precisely coincides with our balancing
condition, i.e., X(c) is a tropical cycle of codimension k.

In [7], it is shown that Minkowski weights are in one-to-one cor-
respondence with the Chow cohomology classes of the toric variety
associated to the fan Θ and therefore admit a cup-product with the
following properties. Let c, c′ be Minkowski weights of codimension
k, k′. Then the cup-product c ∪ c′ is a Minkowski weight of codimen-
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sion k + k′ given by

(c ∪ c′)(τ) =
∑

σ∈Θr−k

σ′∈Θr−k′

τ⊆σ,σ′

mτ
σ,σ′ · c(σ) · c′(σ′).

Here, the coefficients are not unique but depend on the choice of a
generic vector v ∈ V . If we fix such a vector v, then

mτ
σ,σ′ =

{
|Λ/Λσ + Λσ′ | if (σ + v) ∩ σ′ �= ∅,
0 otherwise

(cf., [7, Introduction]). With the tools developed in the previous
sections, we can show easily (and purely tropically) that the cup-
product of Minkowski weights coincides with our intersection product
of tropical cycles in V . An independent proof of this statement is given
in [13, Theorem 4.4].

Theorem 1.9. Let c and c′ be Minkowski weights of codimension k, k′.
Then the following equation holds :

X(c) ·X(c′) = X(c ∪ c′).

Proof. For each facet τ in X(c ∪ c′), we have to show

ωX(c)·X(c′)(τ) = (c ∪ c′)(τ).
First, note that we can compute both sides locally on StarΘ(τ), where
we of course define the “local” Minkowski weights by c(σ) := c(σ) and
c′(σ′) := c′(σ′). For the left hand side, this follows from Lemma 1.2
and for the right hand side, it follows from

|Λ/Λσ + Λσ′ | = |(Λ/Λτ )/((Λσ + Λσ′)/Λτ )|.
Therefore, we can assume k + k′ = r and τ = {0}. In this case, by
plugging in the definition on the right hand side and choosing a generic
vector v ∈ V , it remains to show

deg(X(c) ·X(c′)) =
∑

σ∈Θr−k

σ′∈Θr−k′

(σ+v)∩σ′ �=∅

|Λ/Λσ + Λσ′ | · c(σ) · c′(σ′).
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Now, for a generic vector v ∈ V , we can assume that X(c) + v and
X(c′) intersect transversally (in fact, this is what the authors of [7]
mean by a generic vector). Note that, in fact, the sum on the right
hand side runs through all points in the intersection of X(c) + v and
X(c′). Therefore, by Corollary 1.7, it equals deg((X(c) + v) · X(c′)).
But as X(c) + v and X(c) are rationally equivalent, the equation
deg(X(c) ·X(c′)) = deg((X(c) + v) ·X(c′)) holds, and the statement
follows. �

1.5. Convexity and positivity. A non-zero cycle X is called pos-
itive, denoted X > 0, if all weights are non-negative. By throwing
away the facets with weight 0 (and all polyhedra contained in only
such facets) we can assume all weights to be positive. A rational func-
tion ϕ on X is called convex if it is locally the restriction of a convex
function on V . The pull-back f∗(ϕ) of a convex function is again con-
vex, as the composition of a convex function and a linear map is again
convex. Moreover, if Z is a subcycle of X , then ϕ||Z| is also convex on
Z. Combining positivity and convexity, we get the following result.

Proposition 1.10. Let X be a positive cycle, and let ϕ be a convex
function on X. Then:

(i) ϕ ·X is positive,

and

(ii) |ϕ| = |ϕ ·X |.

Proof. First of all, note that we can assume that X is a one-
dimensional fan, as all intersection weights can be computed locally
modulo the ridge (cf., Lemma 1.1 (iii)) and convexity is preserved when
adding linear functions or when considering the function induced on
the quotient. Thus, we assume that X = {{0}, ρ1, . . . , ρr} is a one-
dimensional fan with positive weights ω(ρi) > 0. The statements of
the lemma translate to:

(i) ϕ convex ⇒ ϕ ·X > 0,

(ii) ϕ convex, ϕ ·X = 0 ⇒ ϕ linear.
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We use the following criteria for linearity and convexity. Let ϕ be a
rational function on X , and let us abbreviate the primitive vector of
the ray ρi by vi. Then

(i) ϕ is linear if, and only if, for all λ1, . . . , λr ∈ R with
∑
i λivi = 0,

the following holds: ∑
i

λiϕ(vi) = 0;

(ii) ϕ is convex if, and only if, for all positive λ1, . . . , λr ≥ 0 with∑
i λivi = 0, the following holds:∑

i

λiϕ(vi) ≥ 0.

Now let ϕ be convex. We can apply criterion (ii) to the coefficients
ω(ρi), which are positive and satisfy

∑
i ω(ρi)vi = 0. This provides

ωϕ·X({0}) =
∑
i

ω(ρi)ϕ(vi) ≥ 0,

which proves (i).

For (ii), let us assume that
∑

i ω(ρi)ϕ(vi) = 0 (i.e., ϕ ·X = 0) but
ϕ is not linear. Then, by (i), there exist λ1, . . . , λr with

∑
i λivi = 0

but
∑

i λiϕ(vi) �= 0. Without loss of generality, we can assume∑
i λiϕ(vi) < 0 (otherwise, we replace λi by −λi). For large enough

C ∈ R the coefficients λ′i := λi+Cω(ρi) are all positive and still satisfy∑
i λ

′
ivi = 0 and

∑
i λ

′
iϕ(vi) < 0, which contradicts (ii). Therefore, ϕ

is linear, which proves (b). �

The following application of this proposition will be useful for us
later.

Proposition 1.11. Let f : X → Y be a morphism of cycles, and
let us assume that Y is positive. Let, furthermore, ϕ1, . . . , ϕl denote
convex functions on Y . Then the following equation of sets holds :

|f∗(ϕ1) · · · f∗(ϕl) ·X | ⊆ f−1(|ϕ1 · · ·ϕl · Y |).
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Proof. This can be proven by an easy induction. If l = 1, we have

|f∗(ϕ1) ·X | = |f∗(ϕ1)| ⊆ f−1(|ϕ1|) = f−1(|ϕ1 · Y |),
where the equalities follow from Proposition 1.10 (a). Now, for
arbitrary l, we can apply the case of a single function to ϕl, obtaining

|f∗(ϕl) ·X | ⊆ f−1(|ϕl · Y |).
This shows that we can restrict the morphism f to f : f∗(ϕl) · X →
ϕl · Y . As ϕl · Y is still positive by Proposition 1.10 (b), we can apply
the induction hypothesis to this restriction, which yields the result. �

1.6. Complete intersections. We define the set of m-dimensional
complete intersections Zc.i.

m (X) ⊂ Zm(X) to be the set ofm-dimensional
cycles in X obtained as an intersection product ϕ1 · · ·ϕl · X (where
l = dim(X)−m).

Let C,C′ ∈ Zc.i.∗ (X) be complete intersections given by C =
ϕ1 · · ·ϕl ·X and C′ = ϕ′

1 · · ·ϕ′
l′ ·X . Then we define

C · C′ := ϕ1 · · ·ϕl · ϕ′
1 · · ·ϕ′

l′ ·X.
Using commutativity of the intersection product of functions, this
multiplication is independent of the chosen functions, commutative
and satisfies |C · C′| = |C| ∩ |C′|. Note that, if X = V = Λ ⊗ R, it
follows from [1, Corollary 9.8] that this definition coincides with the
usual intersection product of cycles.

Let C ∈ Zc.i.
m (X) be given by C = ϕ1 · · ·ϕl ·X , and let f : Y → X

be a tropical morphism. Then we would like to define the pull-back of
C along f to be the complete intersection

f∗(C) := f∗(ϕ1) · · · f∗(ϕl) · Y.
However, in general, this definition is not independent of the chosen
functions ϕ1, . . . , ϕl. For us, it is enough to consider the case of
projections where this indeterminacy does not occur.

Proposition 1.12. Let X and Y be two cycles, and let π : X×Y → X
be the projection onto the first factor. Moreover, let Z be a complete
intersection of X × Y , and consider the map f = π|Z : Z → X. Now,
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if C = ϕ1 · · ·ϕl ·X is a complete intersection in X, then the pull-back

f∗(C) := f∗(ϕ1) · · · f∗(ϕl) · Z
is well defined, and the equation

|f∗(C)| ⊆ f−1(|C|)
holds.

Proof. First, we apply [1, subsection 9.6], which yields

π∗(ϕ1) · · ·π∗(ϕl) · (X × Y ) = (ϕ1 · · ·ϕl ·X)× Y = C × Y.

Therefore, f∗(ϕ1) · · · f∗(ϕl) · Z is just the product of the complete
intersections C × Y and Z, which does not depend on any choices.
Moreover, its support is contained in |C×Y |, and the equation of sets
follows. �

Remark 1.13 (Pulling back preserves numerical equivalence). Let C
and C′ be complete intersections in Rr, and let f : Y → Rr be a
tropical morphism. Then, if C and C′ are numerically equivalent, also
f∗(C) and f∗(C′) are numerically equivalent in the following sense.
If Z is an arbitrary complete intersection in Y of complementary
dimension, then

deg(f∗(C) · Z) = deg(f∗(C′) · Z)
holds. This follows from the projection formula,

deg(f∗(C) · Z) = deg(f∗(f∗(C) · Z)) = deg(C · f∗(Z)).
In particular, if we move around C in V , the numerical properties of
the pull-backs of the original and the translated cycle coincide.

1.7. General position. We now investigate what can be said about
the set-theoretic preimage of a general translation of a cycle under a
morphism f . This section is a simple generalization of [17, Section
3], where f is (a combination of) evaluation morphisms.

Lemma 1.14. Let X be a pure-dimensional polyhedral complex, and
let f : X → Rr be a morphism of polyhedral complexes (i.e., f is
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linear on every polyhedron of X). Furthermore, let C be a polyhedral
complex in Rr and consider the subcomplex f−1(C) of X consisting of
all polyhedra τ ∩f−1(γ), τ ∈ X, γ ∈ C. Then for a general translation
C ′ = C + v (i.e., v ∈ Rr can be chosen from an open dense subset of
Rr) the codimension of each non-empty polyhedron τ ∩ f−1(γ) of X is
equal to

codimX(τ ∩ f−1(γ)) = codimX(τ) + codimRr (γ).

Proof. For each τ in X and γ in C, we consider the map

fτ : AffSpan (τ) −→ Rr,

induced by f |τ . Now we are interested in τ ∩ f−1(γ′) = τ ∩ f−1
τ (γ′)

for general translations γ′ of γ. We must distinguish the cases
Im (fτ ) + Vγ = Rr and Im (fτ ) + Vγ �= Rr. In the latter case, f−1

τ (γ′)
is empty for general γ′. In the former case, f−1

τ (γ′) is a polyhedron of
dimension dim(τ)+dim(γ)− r, and for general γ′, it is disjoint from τ
or intersects the interior of τ , in which case τ ∩ f−1

τ (γ′) has the same
dimension dim(τ) − codimRr(γ), which is the expected dimension.

As there are only finitely many pairs τ, γ, this holds simultaneously
for all pairs for general enough translations of C. �

This technical statement has the following more applicable conse-
quences.

Proposition 1.15 (Preimages of general translations). Let fk : X →
Rr, k = 1, . . . , n be morphisms of pure-dimensional polyhedral com-
plexes, and let Ck, k = 1, . . . , n be cycles in Rr. Then, for a gen-
eral translation C′

k = Ck + vk, vk ∈ Rr, the following holds. Either

Z := f−1
1 (C′

1) ∩ · · · ∩ f−1
n (C′

n) is empty or

(i) the codimension of Z in X equals the sum

codimX(Z) =

n∑
k=1

codimRr (Ck);

(ii) Z is pure-dimensional ;
(iii) if a polyhedron α of Z is contained in a polyhedron τ of X, the

codimensions satisfy codimX(τ) ≤ codimZ(α) (in particular, the
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interior of a facet of Z is contained in the interior of a facet of
X);

(iv) if the images fk(α) of a polyhedron α of Z are contained in poly-
hedra γk of Ck, the codimensions satisfy

∑n
k=1 codimCk

(γk) ≤
codimZ(α).

Proof. It is easy to prove the statement in the case n = 1: (i), (ii)
and (iii) are immediate consequences of Lemma 1.14 and (iv) follows
from applying Lemma 1.14 to the (r − codimZ(α) − 1)-dimensional
skeleton of C1 (if γ1 belonged to this skeleton, α would be contained
in its preimage, which (for general translations) contradicts (i)). Now
the statement follows if we apply the case of a single morphism to
f1 × · · · × fn : X → (Rr)n and C := C1 × . . .× Cn. �

Remark 1.16. Sticking to the notation of the previous statement,
let us assume that X is a cycle and that the maps fk are tropical
morphisms. Moreover, we assume that the maps fk are projections (at
least after composing with an isomorphism) and that the complexes
Ck are complete intersections. Then f∗

1 (C1) · · · f∗
n(Cn) is also a pure-

dimensional complex of the same dimension as f−1
1 (C′

1)∩. . .∩f−1
n (C′

n).
Moreover, 1.12 shows that

|f∗
1 (C1) · · · f∗

n(Cn)| ⊆ f−1
1 (C′

1) ∩ . . . ∩ f−1
n (C′

n)

holds. Hence, in this case we can think of f∗
1 (C1) · · · f∗

n(Cn) as being
the polyhedral set f−1

1 (C′
1) ∩ · · · ∩ f−1

n (C′
n) with the additional data

of weights (some of which might be zero).

2. Intersections on the space of abstract curves. Let us start
with a definition of smooth abstract curves. As a local model of a curve
we will use the following fan. Let e1, . . . , er be the standard basis in
Rr and set e0 := −e1 − · · · − er. We define the one-dimensional fan

Lr := {{0},R≥(−e0), . . . ,R≥(−er)},
with weights ω(R≥(−ei)) = 1 for all i. This fan is balanced because of
e0+· · ·+er = 0. Note that this fan is also irreducible, as e0+· · ·+er = 0
is the only relation that the generating vectors fulfill.
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R3

L3

−e2
−e3

−e1
−e0R2

L2

R

L1

Definition 2.1. A smooth abstract curve C is a one-dimensional
connected cycle that is locally isomorphic to Lr for suitable r, i.e.,
for each vertex V in C we have StarC(V ) ∼= Lval (V ). The genus of C
is the first Betti number of |C|. An n-marked smooth abstract curve
(C, x1, . . . , xn) is a smooth abstract curve C with n unbounded rays
(called leaves), which are labeled by x1, . . . xn. If we instead label the
leaves by elements of some finite set I, we will call it an I-marked
curve.

Remark 2.2. We will often omit the word “smooth” here as we will
not consider other abstract curves (which are allowed to have different
one-dimensional fans as local structures). Note that, by definition, C
is (locally) irreducible. We will always consider abstract curves up to
isomorphisms.

Note that the valence of a vertex V in C completely fixes the local
structure (which is Lval (V )). Hence, C is in fact completely determined
by the underlying metric graph, i.e., the combinatorial graph together
with the (lattice length) of the edges. This is the definition in most
existing literature, in particular in [8]. We will later be interested in
parametrized curves, i.e., maps f : C → Rr. With the “metric graph”
definition, the balancing condition has to be incorporated into the
definition of these maps (see [8, subsection 4.1]). With our definition,
we can just impose that f should be a morphism of tropical cycles,
giving the same result. Note that our definition also requires that
a global embedding C ⊂ RN of our curve exists (which we then
forget as we identify isomorphic curves). This is done to avoid some
technicalities involved in glueing abstract tropical cycles. However, we
will see that (at least for rational curves) this is not a restriction as
any “metric graph” curve can be embedded.
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Remark 2.3 (Smoothness criterion). Let us mention two simple
criteria to decide whether a one-dimensional fan with r + 1 rays is
isomorphic to Lr or not (i.e., smoothness criteria).

Let X be a one-dimensional fan in V = Λ ⊗ R with r + 1 rays,
all with weight 1 and generated by the primitive vectors v0, . . . , vr.
Let VX be the vector space spanned by X . Then the following are
equivalent:

(i) X is isomorphic to Lr.
(ii) The equations v0 + . . . + vr = 0, dim(VX) = r and VX ∩ Λ =

Zv0 + · · ·+ Zvr hold.
(iii) For arbitrary coefficients λ0, . . . , λr ∈ R, we have

(a)

r∑
i=0

λivi = 0 ⇐⇒ λ0 = · · · = λr ⇐⇒ λi − λj = 0 for all i, j;

(b)

r∑
i=0

λivi ∈ Λ ⇐⇒ λi − λj ∈ Z for all i, j.

The moduli space of (abstract smooth) n-marked rational tropical

curves, denoted by Mn, is the fan in R(
n
2)/Im (Φn) that parametrizes

metric trees with positive lengths on the bounded edges (and infinite
lengths on the unbounded edges). The explicit construction of this
space can be found in [20, 21] and [8, Section 3]. The cones of Mn

are in one-to-one correspondence with combinatorial types of n-marked
trees (with 2-valent vertices removed), and the dimension of a cone
equals the number of bounded edges in the respective combinatorial
type. A general point in Mn (i.e., an element in the interior of a
facet) is a three-valent metric tree with n − 3 bounded edges (hence,
dim(Mn) = n− 3). When all facets are equipped with weight 1, Mn

fulfills the balancing condition. Hence, Mn is a tropical fan cycle. We
denote the leaves by x1, . . . , xn. If we work with Mn+1, the extra leaf
is labeled by x0. As M3 is just a single point, we assume n ≥ 4 in
most cases.
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edge of length 1

VI|J := ∈ Mn.
xi,

i ∈ I
xj ,
j ∈ J

The notation I | J denotes a non-trivial partition of [n] = {1, . . . , n}
(or of {0} ∪ [n] if we work with Mn+1) into the two disjoint subsets
I and J . In most cases–the few exceptions will be mentioned–we
will consider this partition to be unordered. Occasionally, we use Ic

to denote the complement of I and write I | Ic. If |I| �= 1 �= |J |,
such a partition describes a ray in Mn generated by the metric tree
VI|J ∈ Mn with only one bounded edge: An edge of a tree is uniquely
determined by the partition I | J obtained when removing the edge. In
this sense, we can regard the partitions I | J as “global” labels of the
edges of a tree, where I | J labels the leaf xi if I = {i} or J = {i}, and
a bounded edge otherwise. A cone τ of Mn is generated by the vectors
VI|J for all partitions which correspond to edges in the combinatorial
type of τ . In particular, it is natural to use the lengths of the bounded
edges as local coordinates of a cone of Mn—this identifies each cone
τ of Mn with the positive orthant of Rdim(τ).

Let us make some remarks here. We sometimes also think of VI|J
as a vector in R(

n
2), in which case we also allow |I| = 1 or |J | = 1 to

get simpler formulas. However, as

V{k}|[n]\{k} = Φn(0, . . . , 0, 1, 0, . . . , 0),

these vectors vanish modulo Im (Φn).

Note that, for the following purposes, the underlying lattice of

R(
n
2)/Φn(R

n) is not Z(
n
2)/Φn(Z

n) but is the lattice generated by the
vectors VI|J , denoted by Λn (see [8, subsection 3.3]). This is a
technical issue, as it does not change the lattices of the cones Λτ ,
τ ∈ Mn but is necessary for making maps such as forgetful maps
integer affine.

As mentioned above, any metric tree can be realized uniquely by a
smooth rational curve in the sense of Definition 2.1 (we actually prove
this in Proposition 2.19). Therefore, Mn really parametrizes what is
promised by its name.
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Comparing Mn to its classical counterpart, note that we will
stick to the non-compact part of smooth curves and will not use a
compactification. However, the “recursive structure” of the boundary
known from the classical moduli space of stable curves is already visible
inMn (without adding a “boundary”). Namely, let τ be a cone ofMn,
and let Γ denote the corresponding combinatorial type of n-marked
trees. Then it is easy to check that the star around τ satisfies

StarMn(τ) =
∏

ν vertex
of Γ

Mval(ν),

i.e., can be described as the product of “smaller” moduli spaces.

We will now define divisors, respectively, rational functions that
play the role of “boundary” divisors in our moduli space. More
precisely, if we actually would compactify Mn, these divisors should
be rationally equivalent to the actual boundary divisors. All these
divisors lie in the codimension 1 skeleton of Mn, and they therefore
represent higher-valent curves. As Mn is simplicial, we can define a
rational function on Mn by assigning an integer to each I | J : the
integers are the values of the function at VI|J , and on each cone we
extend the function by linearity.

Definition 2.4. We define the rational function ϕI|J by

ϕI|J(VI′|J′) :=

{
1 if I = I ′ or I = J ′,
0 otherwise.

Furthermore, we use the notation,

ϕk,l := ϕ{k,l}|[n]\{k,l},

for k �= l.

The ridges (codimension 1 cells) ofMn correspond to combinatorial
types of curves with one 4-valent vertex, which we will draw like this:

A
D×BC .

Here A, B, C and D denote the four parts of the combinatorial type
adjacent to the 4-valent vertex and, by abuse of notation, also the
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A

A

B

C

D

ridge

adjacent facets

C D

BA

D C

BA

B D

C

sets of leaves belonging to this part (as, in most cases, this is the only
information needed). If we want to compute the weight of a ridge AD×BC
in the divisor of a rational function on Mn, we need to know how Mn

looks locally around A
D×BC . Obviously, StarMn(

A
D×BC) contains three

facets corresponding to the three possibilities of “resolving” the 4-
valent vertex by inserting a new bounded edge. The (representatives
of the) primitive vectors are VA∪B|C∪D, VA∪C|B∪D and VA∪D|B∪C . For
the balancing condition around A

D×BC , it suffices to show the equation:

VA∪B|C∪D + VA∪C|B∪D + VA∪D|B∪C
= VA|B∪C∪D + VB|A∪C∪D + VC|A∪B∪D + VD|A∪B∪C ,

as all vectors on the right hand side lie in the vector space spanned
by the ridge AD×BC , as required. But the equation follows from the fact
that, on the level of metric trees, the distance between two marked
leaves is identical on both sides. If both leaves belong to the same set
A,B,C,D, the distance is 0; if not, it is 2.

Let us now compute the divisors of the functions ϕI|J . In the
following, a formula involving I, J and A, B, C, D stands for all
permuted formulas as well, e.g., I = A means “I = A or I = B or
J = A . . . .”

Lemma 2.5. The boundary divisor div(ϕI|J ) carries the weight func-
tion

ωϕI|J (
A
D×BC) =

⎧⎪⎨⎪⎩
1 if I = A ∪B,
−1 if I = A,

0 otherwise.

Proof. Following from the previous discussion, the weight of AD×BC
in div(ϕI|J ) is, by definition,
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ωϕI|J (
A
D×BC) = ϕI|J(VA∪B|C∪D) + ϕI|J (VA∪C|B∪D)

+ ϕI|J (VA∪D|B∪C)− ϕI|J (VA|B∪C∪D)

− ϕI|J (VB|A∪C∪D)− ϕI|J (VC|A∪B∪D)

− ϕI|J (VD|A∪B∪C).

Hence, this weight is 1 if I is the union of two of the sets A,B,C,D
and −1 if I equals one of the four sets. Otherwise, it is 0. �

These divisors were computed before by Herold (see [11]).

Remark 2.6. In terms of the general toric geometry rules, the func-
tions ϕI|J , respectively the divisors div(ϕI|J ), are the tropical ana-
logues of the irreducible components of the boundary of the classical
moduli space of stable curves M0,n. Instead of using this fact ex-
plicitly, in the following we will show in purely tropical terms that the
tropical divisors show the same intersection-theoretic behavior as their
classical counterparts. (We will need this anyway when dealing with
parametrized curves later on.)

Lemma 2.7. The equation,

ϕi,j · ϕi,k ·Mn = 0,

holds for n ≥ 4 and pairwise different i, j, k ∈ [n].

Proof. An abstract curve C cannot simultaneously have bounded
edges with partitions {i, j} | {i, j}c and {i, k} | {i, k}c (as, for example,
the first partition forces i and k to be adjacent to the same three-
valent vertex). Let C be a curve in |ϕi,k|. At least after resolving a
four-valent vertex, it contains an edge with partition {i, k} | {i, k}c
and can therefore not contain an edge with partition {i, j} | {i, j}c.
But ϕi,j just measures the length of such an edge, if present. Thus,
ϕi,j ||ϕi,k| ≡ 0. �

Analogues of Ψ-classes on tropical Mn have been defined by
Mikhalkin ([20]). Their intersections were studied in in [15]. We use
the notion Ψ-divisor, instead of Ψ-class, to emphasize that, in contrast
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to the algebro-geometric case, tropically Ψ-divisors are not defined up
to rational equivalence. (Again, in the toric geometry language, the
tropical Ψ-divisors are just the Minkowski weights associated to the
classical ones.) In order to perform intersections, we need to describe
our Ψ-divisors by rational functions. Let us recall the important defi-
nitions and results of [15] here.

Definition 2.8. We define the kth Ψ-function ψk by

ψk(VI|J ) :=
|I|(|I| − 1)

(n− 1)(n− 2)
,

for all partitions I | J with |I|, |J | ≥ 2 and k ∈ J .

Remark 2.9. Our function ψk equals the function 1/
(
n−1
2

)
fk defined

in [15] (which follows from [15, Lemma 2.6]). In particular, ψk is a
convex function (cf., [15, Remark 2.5]). Note that, in this paper, ψk
and ϕI|J denote functions and not their corresponding divisors. On
the other hand, as mentioned in subsection 1.6, this is only a matter
of notation. For intersection-theoretic purposes, the actual choice of a
function defining the same divisor does not matter.

Remark 2.10. Obviously, the numbers ψk(VI|J ) are only rational. A
generalization of intersection theory to rational numbers is straight-
forward but also essentially unnecessary. The weights of the divi-
sor of ψk turn out to be integers (see the following proposition) and
there exist integer rational functions producing the same divisor (see
Lemma 2.24). This particular function ψk was chosen in [15] because
of its symmetry.

Proposition 2.11. (See [15, subsection 3.5]). The divisor div(ψk)
consists of the cones corresponding to trees where the marked leaf k
is at a four-valent vertex, i.e., the weight of a facet in div(ψk) (which
is a ridge in Mn) is :

ωψk
(AD×BC) =

{
1 if {k} = A,

0 otherwise.
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Remark 2.12. As mentioned above, in toric geometry language and
taking into consideration the embedding of the classical moduli space
of stable curves in the toric variety associated to Mn, it is easy to
see that div(ψk) indeed represents the Minkowski weight associated to
the classical kth Ψ-class. To check this, consider the one-dimensional
boundary stratum S in the classical moduli space corresponding to
reducible curves with dual graph A

D×BC . Each of such curves contains
exactly one P1-component with four special points, whereas all other
components carry exactly three special points and therefore are rigid.
Hence, S is isomorphic to the moduli space of four-marked stable
curves M0,4

∼= P1. Let Lk be the line bundle whose fibre over a
point corresponding to a curve C is the cotangent space T ∗

xk
C at the

marked point xk. By definition, the classical Ψ-class is just the first
Chern class of this line bundle. To compute the associated Minkowski
weight, we should evaluate this Chern class on the one-dimensional
boundary stratum described above. If A = {k}, this means that xk is
one of the four special points on the non-rigid component. It follows
that Lk|S is equal to the corresponding Ψ line bundle on M0,4 and

we can compute deg(Lk|S) = 1. (For example, representing M0,4 as
the pencil of conics through four points in the plane, there is exactly
one conic with prescribed tangent line at one of the four points.) If
A �= {k}, the marked point xk lies on one of the rigid components.
Therefore, Lk|S is the trivial line bundle and deg(Lk|S) = 0. This
reproduces the weights from our proposition. Again, let us emphasize
that we do not really use this derivation as our arguments are purely
tropical.

Notation 2.13. As in the conventional case we will introduce the
following τ -notation that makes formulas shorter and hides “unimpor-
tant” data such as the number of marked leaves. For any positive
integers a1, . . . , an, we define

(τa1 · . . . · τan) := ψa11 · . . . · ψann · Mn.

Every factor τak stands for a marked leaf, and the index ak serves as
the exponent with which the corresponding Ψ-function appears in the
intersection product. If

∑
ak = dim(Mn) = n − 3, the above cycle

is zero-dimensional (in fact, its only point corresponds to the curve
without bounded edges where all leaves are adjacent to one single
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vertex), and we define

〈τa1 · . . . · τan〉 := deg
(
ψa11 · . . . · ψann ·Mn

)
.

The main theorem of [15] computes these intersection products of
Ψ-divisors.

Theorem 2.14. (Intersections of Ψ-divisors for abstract curves, see
[15, subsection 4.1]). The intersection product (τa1 · . . . · τan) is the
subfan of Mn consisting of the closure of the cones of dimension
n− 3−∑n

i=1 ai whose interior curves C have the following property.

Let k1, . . . , kq ⊆ N be the marked leaves adjacent to a vertex V of
C. Then the valence of V is

val(V ) = ak1 + . . .+ akq + 3.

Let us define the multiplicity of this vertex to be mult(V ) :=
(
val(V )−3
ak1 ,...,akq

)
.

Then the weight of such a cone σ in X is

ωX(σ) =
∏
V

mult(V ),

where the product runs through all vertices V of an interior curve of σ.

In this section we reprove the zero-dimensional case of this theorem
(see Remark 2.22). To do this, we first have to analyze how Ψ and
boundary divisors intersect and how they behave when pulled back or
pushed forward along forgetful morphisms.

Lemma 2.15. The following holds

ϕi,j · ψi · Mn = 0

for n ≥ 4 and i �= j ∈ [n].

Proof. Curves in |ψi| cannot contain a bounded edge with partition
{i, j} | {i, j}c, as the leaf i does not lie at a three-valent vertex. Thus,
ϕi,j vanishes on |ψi|. �
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The forgetful map Mn+1 → Mn that forgets the extra leaf x0 is
denoted by ft0 (cf., [9, subsection 4.1] and [8, subsection 3.8]). By [8,
subsection 3.9], this map is a tropical morphism. Therefore, we can
ask how Ψ-functions behave when pulled back along ft0.

Lemma 2.16 (Pull-back of Ψ-functions). Let n ≥ 4, and let ft0 :
Mn+1 → Mn be the morphism that forgets the leaf x0. For k ∈ [n],
the following holds :

div(ψk) = div(ft∗0 ψk) + div(ϕ0,k).

Proof. This can be proven by explicitly computing the weights of
the codimension 1 faces of the three divisors. We distinguish four cases
(up to renaming A, B, C and D):

ωf (
A
D×BC) f = ψk f = ft∗0 ψk f = ϕ0,k

A = {0, k} 0 1 −1
A = {0}, B = {k} 1 0 1

A = {0, . . .}, B = {k} 1 1 0
otherwise 0 0 0

�

Corollary 2.17. Let n ≥ 4, and let ft0 : Mn+1 → Mn be the
morphism that forgets the leaf x0. Then, for k ∈ [n], the following
formulas hold :

(i) ϕ2
0,k = ft∗0(ψk) · ϕ0,k,

(ii) ψak = ft∗0(ψk)
a + ft∗0(ψk)

a−1 · ϕ0,k,
(iii) ψak = ft∗0(ψk)

a + (−1)a−1ϕa0,k.

Proof. All the formulas follow directly from Lemmas 2.15 and
2.16. �

Lemma 2.18. Let n ≥ 4, let ft0 : Mn+1 → Mn be the morphism that
forgets the leaf x0 and choose k ∈ [n]. Then

ft0∗(div(ϕ0,k)) = ft0∗(div(ψk)) = Mn.
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Proof. We show ft0∗(div(ϕ0,k)) = Mn by direct computation. Let
σ′ be a facet ofMn corresponding to a three-valent combinatorial type.
Let V be the vertex adjacent to k. Then there exists precisely one cone
σ in div(ϕ0,k) whose image under ft0 is σ′, namely, the cone obtained
by attaching the additional leaf x0 to the vertex V . Moreover, on such
a cone, the length of the bounded edges remain unchanged under ft0,
and therefore ft0(Λσ) = Λσ′ . On the other hand, cones in div(ϕ0,k)
with negative weight are not mapped injectively, as in this case x0 is
adjacent to a three-valent vertex, and stabilization is needed. This
shows that ft0∗(div(ϕ0,k)) = Mn.

The equation ft0∗(div(ψk)) = Mn follows from the same argument
or by using Lemma 2.16, the projection formula and ft0∗(Mn+1) = 0
(because the dimension is too big). �

It is well known that, for the classical moduli space M0,n, the
forgetful morphism plays the role of the universal family (cf., [16,
subsection 1.3]). In the tropical setting, we can prove the following
statement.

Proposition 2.19 (Family property of ft0 for abstract curves). Let

p be a point in Mn, and let Cp = ft−1
0 (p) be the fibre of p under the

forgetful morphism ft0 : Mn+1 → Mn. Then the following holds :

(i) Cp has the canonical structure of a one-dimensional polyhedral
complex.

(ii) The leaves of Cp (as the graph itself) are the facets where x0 and
another leaf xi lie at the same 3-valent vertex (i.e., the leaves

are given by Li := {y ∈ Cp | ϕ0,i(y) > 0}). Moreover, p ∈ Mn

represents the n-marked metric graph (Cp, L1, . . . , Ln).
(iii) When we equip all its facets with weight 1, Cp is a smooth abstract

curve (in the sense of Definition 2.1).
(iv) Let

∑
k μkpk = ϕ1 · . . . · ϕn−3 · Mn be a zero-dimensional cycle

in Mn obtained as the intersection product of convex functions
ϕj. Then

ft∗0(ϕ1) · . . . · ft∗0(ϕn−3) ·Mn+1 =
∑
k

μkCpk .

We write this as ft∗0(
∑

k μkpk) =
∑

k μkCpk .
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Proof.

(i) As a polyhedral complex, Cp consists of the polyhedra ft0 |−1
σ (p)

for each cone σ of Mn+1. The dimension of these polyhedra
can be at most one as dim(f0(σ)) ≥ dim(σ) − 1 (it depends on
whether x0 is adjacent to a three-valent or higher-valent vertex).

(ii) Let Γp denote the n-marked metric graph represented by p. The
bijective map Γp → Cp indicated in the picture identifies the two
graphs.

x5

x4

x2

x1Γp x5

x4

x2

x1

x0x3x3

∈ Cp

(iii) Let V be a vertex of Cp. It corresponds to the metric graph Γp
with the extra leaf x0 adjacent to one of the vertices. Let us
label the other edges adjacent to this vertex by 1, . . . ,m, and let
us divide the other leaves [n] = I1 ·∪ . . . ·∪ Im according to via
which edge one reaches xi from x0. There are m facets in Cp
adjacent to V corresponding to moving x0 on one of the edges.
Hereby, one has to shorten the edge Ik | Ick as much as the length
of Ik ∪ {x0} | (Ik ∪ {x0})c increases.

...

...

E2

xi, i ∈ I1
xi, i ∈ Im

E1 Em

xi, i ∈ I2

x0

x0 x0

x0
1 −1

−1
1

V1
V2

Vm

−1 1

Thus, the primitive integer vector of the corresponding facet with
respect to V is given by

Vk := VIk∪{x0} − VIk .

Note that this formula as well as the following ones also hold
in the case that Ik consists only of a single leaf xi (which
means xi is adjacent to the same vertex as x0), as V{xi} =

0 ∈ R(
n+1
2 )/Im (Φn+1). To prove the statement, we now use

Remark 2.3 and verify conditions (i) and (ii), which can be done
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by applying some formulas of [15]. Let S be the set of two-
element subsets of [n] (i.e., not containing 0). It follows from [15,
subsections 2.3, 2.4, 2.6] that the vectors VS , S ∈ S fulfill (i) and

(ii) (with V = R(
n+1
2 )/Im (Φn+1) and Λ = Λn). Furthermore,

[15, subsection 2.6] gives us a representation of our vectors in
terms of the vectors VS , namely,

VIk =
∑
S∈S
S⊆Ik

VS

VIk∪{x0} =
∑
S∈S

S∩Ik=∅

VS ,= −
( ∑

S∈S
S∩Ik �=∅

VS

)
,

and therefore,

Vk = −
(∑
S∈S

|S ∩ Ik| · VS
)
.

Now let λ1, . . . , λm be arbitrary real coefficients. Then we obtain
the formula

m∑
k=1

λkVk = −
( ∑

{i,j}∈S
i∈Ik, j∈Ik′

(λk + λk′ ) · V{i,j}
)
.

Now all differences of two coefficients on the left hand side λk−λ′k
can be obtained as differences of two coefficients on the right hand
side (choose elements i ∈ Ik, j ∈ Ik′ , l ∈ Ik′′ ; then the coefficients
of V{i,l} and V{j,l} differ by λk + λk′′ − λk′ − λk′′ = λk − λk′ ).
Conversely, a right hand side difference of coefficients equals the
sum of two left hand side differences. (The coefficients of V{i1,i2}
and V{j1,j2} differ by (λk1 − λl1) + (λk2 − λl2), where i1 ∈ Ik1 ,
i2 ∈ Ik2 , j1 ∈ Il1 , j2 ∈ Il2 .) Hence, as Remark 2.3 conditions (i)
and (ii) hold for the vectors VS , they also hold for the vectors
Vk.
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(iv) First of all, the set-theoretic equation

| ft∗0(ϕ1) · . . . · ft∗0(ϕn−3) ·Mn+1|
⊆ ft−1

0 (|ϕ1 · . . . · ϕn−3 · Mn|) =
⋃
k

|Cpk |.

follows from Proposition 1.11. But the sets |Cpk | are pairwise
disjoint (as they are fibres of pairwise different points) and belong
to irreducible cycles (as the curves Cpk are smooth abstract
curves). Thus, any one-dimensional cycle whose support lies in⋃
i |Cpk | is actually a sum

∑
k λkCpk , λk ∈ Z.

So it remains to check that, in our case, these coefficients λk coincide
with μk. To do this, we choose an arbitrary leaf xi �= x0 and consider
the function ϕ0,i on Cpk . On the leaf Li of Cpk , where x0 and xi are
adjacent to the same three-valent vertex, it measures the length of the
third edge, elsewhere it is constantly zero. Thus, ϕ0,i · Cpk = Vpk ,
where Vpk is the vertex of Cpk adjacent to Li (where x0 and xi lie
together at a higher-valent vertex). Thus, we get

ft0∗

(
ϕ0,i ·

(∑
k

λkCpk

))
= ft0∗

(∑
k

λkVpk

)
=
∑
k

λkpk.

On the other hand, we can use the projection formula and Lemma 2.18
and compute

ft0∗
(
ϕ0,i · ft∗0(ϕ1) · . . . · ft∗0(ϕn−3) · Mn+1

)
= ϕ1 · . . . · ϕn−3 · ft0∗(ϕ0,i · Mn+1) =

∑
k

μkpk.

Comparing the coefficients proves the statement. �

Remark 2.20. Hence, there is a one-to-one correspondence between
curves according to the “old” definition (i.e., as metric graphs) and
Definition 2.1. In particular, Mn parametrizes smooth abstract curves
in our sense.
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Theorem 2.21 (String equation for abstract curves). For zero-
dimensional intersection products of Ψ-divisors the following holds.〈

τ0

n∏
k=1

τak

〉
d
=

n∑
i=1

〈
τai−1

∏
k �=i

τak

〉
d

Proof. The proof is identical to the algebro-geometric one. We must
compute the degree of the intersection product

∏n
k=1 ψ

ak
k ·Mn+1. First

we replace each term ψakk (k �= 0) by ft∗0(ψk)
ak+ft∗0(ψk)

ak−1 ·ϕ0,k using
Corollary 2.17 (ii) and multiplying the product out. As ϕ0,k ·ϕ0,k′ = 0
for k �= k′ (see equation (2.7)), we only get the following n+ 1 terms.

n∏
k=1

ft∗0(ψk)
ak · Mn+1 +

n∑
i=1

ft∗0(ψi)
ai−1 · ∏

k �=i
ft∗0(ψk)

ak · ϕ0,i · Mn+1.

Now we push this cycle forward along ft0 and use projection formula.
The first term vanishes for dimension reasons and, as ϕ0,i pushes
forward to Mn by Lemma 2.18, the other terms provide the desired
result. �

Remark 2.22. As in the classical case, the string equation suffices
to compute all intersection numbers of Ψ-divisors of abstract curves.
Namely, if

∑
ai = n− 3, the equation

〈τa1 · . . . · τan〉 =
(n− 3)!

a1! · . . . · an!
holds. This was proven in [15, subsection 4.2] using the paper’s main
theorem [15, subsection 4.1] (cited here in Theorem 2.14). Note,
however, that in order to prove the string equation it was not necessary
to use [15, subsection 4.1]. Another independent proof of the above
equality is given in [13, Proposition 7.4].

Lemma 2.23. Let n > 4, and let ft0 : Mn+1 → Mn be the morphism
that forgets the last leaf. Then

ft0∗(div(ϕI|J ))=

{
Mn if I={0, k} or J={0, k} for some k ∈ [n],

0 otherwise.
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Proof. The first part is shown in Lemma 2.18. So let us prove
the second part. First, we choose i ∈ I and j ∈ J , both different
from 0. Consider a facet σ′ in Mn corresponding to a combinatorial
type where xi and xj are adjacent to the same 3-valent vertex V .
All ridges in Mn+1 mapping onto σ′, are obtained by attaching x0
to any of the vertices. If not attached to V , the induced partition
A,B,C,D cannot separate i and j. If attached to V , the induced
partition is {0}, {i}, {j}, D. It follows from {0, i} �= I and {0, j} �= J
that D intersects both I and J and, therefore, none of these types is
contained in div(ϕI|J ). Hence, σ′ is not contained in the push-forward
of div(ϕI|J). But Mn is irreducible, thus ft0∗(div(ϕI|J)) = 0. �

Lemma 2.24. For n ≥ 4, we define

(x1|x2, x3) :=
∑
I|J
1∈I

2,3∈J

div(ϕI|J).

Then
div(ψ1) = (x1 | x2, x3).

Proof. We use induction on the number of leaves n. For n = 4,
only the partition {1, 4} | {2, 3} contributes to the sum. But div(ψ1)
as well as div(ϕ1,4|2,3) is just the single vertex in M4 parametrizing

the curve 1
4×2

3 with weight 1. For the induction step, assume n ≥ 4,
and consider the morphism ft0 : Mn+1 → Mn that forgets the leaf
x0. Let I

′ | J ′ be a partition of [n]. Then ft∗0(ϕI′|J′) measures the sum
of the lengths of the edges separating I ′ and J ′ if present. Hence, we
obtain

ft∗0(ϕI′|J′) = ϕI′∪{0}|J′ + ϕI′|J′∪{0}.

Using the induction hypothesis, we conclude that ft∗0(ψ1) equals the
sum on the right hand side except for the partition {0, 1} | {0, 1}c.
This missing summand is provided by Lemma 2.16. �

Lemma 2.25. Let n ≥ 4, and let ft0 : Mn+1 → Mn be the morphism
that forgets the leaf x0. Then

ft0∗(div(ψ0)) = (n− 2)Mn.
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Proof. We express ψ0 as (x0 | x1, x2) by Lemma 2.24 and use
linearity of the push-forward. Lemma 2.23 says that we get one Mn

for each ϕ{0,k}|{0,k}c and zero for each other ϕI|J . As k runs through
{3, . . . , n}, the statement follows. �

Proposition 2.26 (Dilaton equation for abstract curves). Let〈 n∏
k=1

τak

〉
be a zero-dimensional intersection product. Then〈

τ1 ·
n∏
k=1

τak

〉
= (n− 2)

〈 n∏
k=1

τak

〉
.

Proof. The proof is identical to the algebro-geometric one, using
Lemma 2.15, Corollary 2.17, Lemma 2.18, Lemma 2.25 and the pro-
jection formula.

As degree is preserved, we push forward (τ1 ·
∏n
k=1 τak) along the

forgetful morphism ft0 forgetting the extra leaf x0 corresponding to the
factor τ1. To see what happens, we use Corollary 2.17 (b) and replace
each term ψakk by ft∗0(ψk)

ak + ft∗0(ψk)
ak−1 · ϕ0,k. When we multiply

the whole product out, all summands containing a factor ϕ0,k vanish
when multiplied with ψ0 (see Lemma 2.15). It follows that

ψ0 ·
n∏
k=1

ψakk = ψ0 ·
n∏
k=1

ft∗0(ψk)
ak ,

and the projection formula together with ft0∗(div(ψ0)) = (n − 2)Mn

from Lemma 2.25 gives the desired result. �

3. Intersections on the space of parametrized curves. In
the previous section, we proved that the tropical ‘boundary divisors’
and Ψ-divisors satisfy exactly the same intersection-theoretic formulas
as their classical counterparts. We did this using purely tropical
arguments but could have instead used tropicalization methods and
toric intersection theory (cf., [13]). The situation changes as we move
on to curves together with maps to Rn. In this case, as M0,n(P

n, d)
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does not admit a nice toric embedding, therefore the tropicalization
of its intersection ring is not yet well understood. (In fact, we will
see that, at least with our definitions, the intersection theories are not
completely identical.) So at least, from now on, we are somehow forced
to take this purely tropical approach. Let us start with the necessary
definitions.

A (labeled) degree Δ in Rr is a finite set of labels together with a
map Δ → Zr \{0} to the set of non-zero integer vectors. Furthermore,
the images of this map are denoted by v(xi), i ∈ Δ, as they will later
play the role of the directions of the leaves xi, sum up to zero, i.e.,∑

i∈Δ v(xi) = 0. The number of elements in Δ is denoted by #Δ (to
distinguish it from the support of a cycle). As an example, we define
the projective degree d (in dimension r) to be the set [(r + 1)d] with
the map

[(r + 1)d] −→ Zr \ {0},
1, . . . , d 
−→ −e0,

d+ 1, . . . , 2d 
−→ −e1,
...
...

rd+ 1, . . . , (r + 1)d 
−→ −er,
where, as usual, e1, . . . , er denote the standard basis vectors and
e0 := e1 + . . .+ er.

Definition 3.1. An n-marked (labeled) parametrized curve of degree Δ
in Rr is a tuple (C, h), where C is an [n] ·∪Δ-marked smooth abstract
curve and h : C → Rr is a tropical morphism such that, for all leaves
xi, the ray h(xi) ⊆ Rr has direction v(xi). Here, v(xi) is set to be
zero if i ∈ [n] (i.e., the marked leaves xi, i ∈ [n] are contracted to a
point). The genus of (C, h) is defined to be the genus of C.

Remark 3.2. The leaves xi, i ∈ [n] are called marked leaves, as they
correspond to the marked points of stable maps classically. Marked
leaves are contracted by h. In contrast to that, we call the leaves xi,
i ∈ Δ non-contracted leaves. Our curves are called “labeled” as the
non-contracted leaves are also labeled.
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Two parametrized curves (C, h) and (C′, h′) are called isomorphic
(and therefore identified in the following) if there exists an isomor-
phism Φ : C → C′ identifying the labels and satisfying h = h′ ◦ Φ.

Let us compare our definition to [8, Definition 4.1]. Conditions (a)
and (b) in that definition make sure that h is a tropical morphism in
our sense (at least locally; but again, considering the family property
of ft0, ev0 overMlab

n (Rr,Δ) we will see that a global integer affine map
h always exists). Condition (c) is also contained in our definition.

Let Mlab
n (Rr,Δ) be the moduli space of rational n-marked labeled

parametrized curves of degree Δ in Rr. Its construction as a tropical
cycle can be found in [8, subsection 4.7]. After fixing one of the
marked leaves xi as an anchor leaf (we avoid “root leaf” as, from the
botanic point of view, this does not make much sense), we can identify
Mlab

n (Rr,Δ) with M[n]∪Δ × Rr, where the first factor parametrizes
the abstract curve C and the second factor contains the coordinates of
the image point of the anchor leaf xi. As our curves are rational, this
suffices to fix the morphism h. Indeed, as Δ determines the directions
of all leaves, we can use the balancing condition to recursively compute
the directions of all bounded edges as well. Hence, h is uniquely
determined by the lengths of the edges and the coordinates of one
image point (in our case, h(xi)).

So, again, cones in Mlab
n (Rr,Δ) correspond to combinatorial types

of the underlying abstract curves, but this time the minimal cone is
not zero- but r-dimensional because we can move the curve in Rr.

For enumerative purposes, we would like to identify curves whose
only difference is the labeling of the non-contracted leaves. Let
Mn(R

r,Δ) denote the set of these unlabeled curves. Then the number
of elements in a general fibre of the map Mlab

n (Rr,Δ) → Mn(R
r,Δ)

forgetting the labeling of the non-contracted leaves equals the number
of possibilities to label a general unlabeled curve, which is

Δ! :=
∏

v∈Zr\{0}
n(v)!,

where n(v) denotes the number of times v occurs as v(xi), i ∈ Δ.
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Therefore, each enumerative invariant computed onMlab
n (Rr,Δ) must

simply be divided by Δ! to get the corresponding one in Mn(R
r,Δ).

From now on, I | J denotes a (non-empty) partition of [n] ·∪Δ (or

{0} ·∪ [n] ·∪Δ if we work with Mlab
n+1(R

r,Δ)). Again, such partitions
can be used as global labels of the edges of our curves. The direction
of the image of the corresponding edge under h is given by

vI|J :=
∑
i∈I

v(xi) = −
(∑
j∈J

v(xj)

)
(as an exception, the ordering of I and J plays a little role here,
namely, vI|J = −vJ|I). We call I | J reducible if vI|J = 0 (i.e., if the
corresponding edge is contracted). This is equivalent to requiring that
the corresponding split sets ΔI = I ∩ Δ and ΔJ = J ∩ Δ fulfill the
balancing condition, i.e., are degrees on their own. Also the marked
leaves split up into [n] = {i ∈ I | v(xi) = 0} ·∪ {j ∈ I | v(xj) = 0}.
In this sense, the partition corresponds (nearly) to a conventional
partition (S′, β′ | S′′, β′′) of the marked points S = S′ ·∪ S′′ and the
degree β = β′ + β′′, occurring for example in the classical splitting
lemma. However, note that, in the tropical setting, it is possible to
permute non-contracted leaves with the same direction vector between
I and J without changing the corresponding conventional partition;
hence, in general, several tropical reducible partitions correspond to
the same conventional partition. The non-reducible partitions I | J
(i.e., vI|J �= 0) do not correspond to such a partition.

There exists a forgetful map ft′ : Mlab
n (Rr,Δ) → M[n]∪Δ for-

getting just the position of a curve in Rr. This forgetful map ft′ :
Mlab

n (Rr,Δ) → M[n]∪Δ is a morphism of tropical varieties, as after

choosing a anchor leaf and identifying Mlab
n (Rr,Δ) with M[n]∪Δ×Rr,

ft′ is just the projection onto the first factor. We use this to define
Ψ-functions on Mlab

n (Rr,Δ).

Definition 3.3 (Ψ-functions for parametrized curves). For a partition
I | J of [n] ∪ Δ we define the function ϕI|J on Mlab

n (Rr,Δ) to be

ft′∗(ϕabstr
I|J ), where ϕabstr

I|J is the corresponding function on M[n]∪Δ.
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For i = 1, . . . , n, we define the kth Ψ-function on Mlab
n (Rr,Δ) to be

ψk := ft′∗(ψabstr
k ), where the ψabstr

k is the kth Ψ-function on M[n]∪Δ.

Remark 3.4. Again, in spite of defining functions, we are actually
interested in the divisors. Note that, by Proposition 1.12, the pull-
backs of the respective divisors do not depend on the particular
functions. Note that, in [17, Definition 2.2], we used the notation
ψk for the divisor instead of the rational function.

We can immediately generalize Theorem 2.14 to parametrized
curves (cf., [17, Lemma 2.4]).

Proposition 3.5 (Intersections of Ψ-divisors for parametrized curves).
Let a1, . . . , an be positive integers, and let X =

∏n
k=1 ψ

ak
k ·Mlab

n (Rr,Δ)
be a product of Ψ-divisors. Then X is the subfan of Mlab

n (Rr,Δ) con-
sisting of the closure of the cones of dimension n+#Δ− 3−∑n

i=1 ai
whose interior curves C have the following property.

Let k1, . . . , kq ⊆ [n] be the marked leaves adjacent to a vertex V of
C. Then the valence of V is

val(V ) = ak1 + · · ·+ akq + 3.

Let us define the multiplicity of this vertex to be mult(V ) :=
(
val(V )−3
ak1 ,...,akq

)
.

Then the weight of such a cone σ in X is :

ωX(σ) =
∏
V

mult(V ),

where the product runs through all vertices V of an interior curve of σ.

Proof. Choose an anchor leaf, and identify Mlab
n (Rr,Δ) with

M[n]∪Δ × Rr. Then ft′ is just the projection on the first factor and
we can apply [1, subsection 9.6], i.e., instead of intersecting the pull-
backs of the fk on the product, we can just intersect the fk on the
first factor and then multiply with R2. Thus,

X =

( n∏
k=1

(ψabstr
k )ak · M[n]∪Δ

)
× Rr,
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where here ψabstr
k denotes a Ψ-function onM[n]∪Δ. Now, as the weight

of Rr is one and the combinatorics of a curve do not change under ft′,
the statements follow from Theorem 2.14. �

Proposition 3.6. Let ft0 be the map Mlab
n+1(R

r,Δ) → Mlab
n (Rr,Δ)

that forgets the extra leaf x0, and assume n + #Δ ≥ 4 (and n ≥ 1).
Furthermore, let xi, xj and xk be pairwise different leaves. Then the
following equations hold (where all the occurring intersection products
are computed in Mlab

n (Rr,Δ) or Mlab
n+1(R

r,Δ), respectively):

(a) ϕi,j · ϕi,k = 0.
(b) ϕi,j · ψi = 0.
(c) div(ψk) = div(ft∗0 ψk) + div(ϕ0,k).
(d) ϕ2

0,k = − ft∗0(ψk) · ϕ0,k.

(e) ψak = ft∗0(ψk)
a + ft∗0(ψk)

a−1 · ϕ0,k.
(f) ψak = ft∗0(ψk)a + (−1)a−1ϕa0,k.

(g) ft0∗(div(ϕ0,k)) = ft0∗(div(ψk)) = Mlab
n (Rr,Δ).

(h)

ft0∗(div(ϕI|J )) =

⎧⎪⎨⎪⎩
Mlab

n (Rr,Δ) if I = {0, k} or J = {0, k}
for some k ∈ [n],

0 otherwise.

(i) div(ψi) = (xi | xj , xk) :=
∑

I|J
i∈I
j,k∈J

div(ϕI|J), where the sum also

runs through non-reducible partitions.
(j) ft0∗(div(ψ0)) = (n+#Δ−2)Mlab

n (Rr,Δ), (which is different from
the algebro-geometric factor n− 2 that equals the abstract case).

Proof. As in the proof of Proposition 3.5, we apply [1, subsection
9.6] to the morphism ft′ : Mlab

n (Rr,Δ) = M[n]∪Δ × Rr → M[n]∪Δ,
forgetting the position in Rr. This means that, instead of computing
the intersection product on Mlab

n (Rr,Δ), we can compute them on
M[n]∪Δ and therefore use the corresponding statements for abstract

curves. For statements c–h and j, we also use ft0 = ftabstr0 × id. �

Definition 3.7 (Evaluation maps and their pull-backs). The eval-
uation map evk : Mlab

n (Rr,Δ) → Rr, for k ∈ [n], maps each
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parametrized curve (C, h) to the position of its kth leaf h(xk) (see [8,
subsection 4.2]). If we choose one of the marked leaves, say xa, as an
anchor leaf, then the evaluation maps are morphisms fromM[n]∪Δ×Rr

to Rr obeying the following mapping rule:

(Cabstr, P ) 
−→ P +
∑
I|J
a∈I
k∈J

ϕI|J(C abstr) vI|J .

In particular, if our anchor leaf is chosen to be xk, then evk is just
the projection onto the second factor. Let C ∈ Zc.i.

m (Rr) be given by
C = h1 · . . . · hl ·X . Then we can apply Proposition 1.12 which states
that there is a well-defined pull-back of C along evk

ev∗k(C) := ev∗k(h1) · . . . · ev∗k(hl).

Proposition 3.8 (Family property of ft0, ev0 for parametrized curves).

Let p be a point in Mlab
n (Rr,Δ), and let Cp = ft−1

0 (p) be the fibre of
p under the forgetful morphism ft0 : Mlab

n+1(R
r,Δ) → Mlab

n (Rr,Δ).
Then the following hold :

(i) When we equip all its facets with weight 1, Cp is a rational

smooth abstract curve. Its leaves are naturally [n] ·∪Δ-marked

by Li := {y ∈ Cp | ϕ0,i(y) > 0}.
(ii) The tuple (Cp, ev0 ||Cp|) is an n-marked parametrized curve of

degree Δ. Moreover, p represents (Cp, ev0 ||Cp|).
(iii) Let

∑
k μkpk = ϕ1 · . . . · ϕn+#Δ−3 · Mlab

n (Rr,Δ) be a zero-

dimensional cycle in Mlab
n (Rr,Δ) obtained as the intersection

product of convex functions ϕj. Then

ft∗0(ϕ1) · . . . · ft∗0(ϕn+#Δ−3) ·Mlab
n+1(R

r,Δ) =
∑
k

μkCpk .

We write this as

ft∗0

(∑
k

μkpk

)
=
∑
k

μkCpk .
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Proof.

(i) First of all, let us fix an anchor leaf xa, a ∈ [n] in order to
identify Mlab

n+1(R
r,Δ) = Mn+#Δ+1 × Rr and Mlab

n (Rr,Δ) =

M[n]∪Δ×Rr. We again use ft0 = ftabstr0 × id, where ftabstr0 is the
corresponding forgetful map on abstract spaces. Then the fibre
of p = (p′, P ) equals Cp′ ×{P}, where Cp′ is the [n] ·∪Δ-marked
rational smooth abstract curve considered in Proposition 2.19
(i)–(iii).

(ii) We have to check that the direction of the rays ev0(Li) are
correct. For curves in Li, the only length that varies is that
of the third edge adjacent to the same three-valent vertex as xi
and x0. Hence, we can use the description of ev0 in Definition 3.7
and obtain, for all y ∈ Li,

ev0 |Li(y) = Q+ ϕ0,i(y) · v{0,i}|{0,i}c ,

where Q ∈ Rr is some constant vector. But v{0,i}|{0,i}c =
v(xi) + v(x0) = v(xi) is the expected direction.

To show that p = (p′, P ) represents (Cp, ev0 ||Cp|), it actually suffices
to prove that the anchor leaf La of Cp is mapped to the point P under
ev0, which is obviously the case as ev0 |La = eva |La , and eva is just
the projection on the second factor of Cp′ × {P}.
We can literally use the same proof as in the abstract case Proposi-
tion 2.19 (iv) using Proposition 3.6 g. �

Notation 3.9 (Tropical Gromov-Witten invariants). Let us now
extend our τ -notation to the case of parametrized curves. For any
positive integers a1, . . . , an and complete intersection cycles C1, . . . , Cn
∈ Zc.i.∗ (Rr), we define

(τa1(C1) · . . . · τan(Cn))R
r

Δ

:= ψa11 · ev∗1(C1) · . . . · ψann · ev∗n(Cn) ·Mlab
n (Rr,Δ).

Once again, each factor τak(Ck) stands for a marked leaf subject to
ak Ψ-conditions and to the condition that it must meet Ck. Let ck be
the codimension of Ck in Rr. If

∑
(ak + ck) = dim(Mlab

n (Rr,Δ)) =
n + #Δ + r − 3, the above cycle is zero-dimensional, and we denote
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its degree by
〈τa1(C1) · . . . · τan(Cn)〉R

r

Δ .

These numbers are called tropical descendant Gromov-Witten invari-
ants. In [17], these numbers were studied in the cases r = 2, Δ = d,
and all Ci are tropical lines.

Remark 3.10 (Enumerative meaning of tropical Gromov-Witten
invariants). Let (τa1(C1) · . . . · τan(Cn)) be an intersection product
as defined above. If we set X =

∏n
k=1 ψ

ak
k · Mlab

n (Rr,Δ) and apply
Proposition 1.15 to the morphisms evk : X → Rr, we can conclude the
following (as discussed in Remark 1.16). After replacing all the cycles
Ck by general translations (called general conditions in the following),
Z := τa1(C1) · . . . · τan(Cn)) is the set of curves C such that

• every vertex V ∈ C with adjacent marked leaves k1, . . . , kq
fulfills

val(V ) ≥ ak1 + . . .+ akq + 3;

• for all k = 1, . . . , n, the following holds:

evk(C) ∈ Ck.

Additionally, the facets of Z (i.e., general curves) are equipped with
(possibly zero) weights.

Moreover, assume that all the cycles Ck can be described by convex
functions h1 · · ·hl · Rr. Then, by Proposition 1.10, all these weights
are positive (in particular, |Z| really is the set of such curves).
Thus, if Z is zero-dimensional, deg(Z) = 〈τa1(C1) · . . . · τan(Cn)〉
is the number of curves satisfying the above properties, counted
with a certain integer multiplicity/weight. Now, again, if all Ck
can be described by convex functions, all these multiplicities and, in
particular, 〈τa1(C1) · . . . · τan(Cn)〉 are positive.

Let ft0 : Mlab
n+1(R

r,Δ) → Mlab
n (Rr,Δ) be the morphism that

forgets the leaf x0. Then, by abuse of notation, the equation,

ft∗0(evk) = evk,
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holds for all k ∈ [n]. This equality directly implies the following ex-
tensions of the string and dilaton equation to the case of parametrized
curves.

Theorem 3.11 (String equation for parametrized curves). Let(
τ0(R

r) ·
n∏
k=1

τak(Ck)

)
Δ

be a zero-dimensional cycle. Then

〈τ0(Rr) ·
n∏
k=1

τak(Ck)〉Δ =

n∑
k=1

〈τak−1(Ck) ·
∏
l �=k

τal(Cl)〉Δ.

Theorem 3.12 (Dilaton equation for parametrized curves). Let
(τ1(R

r) ·∏n
k=1 τak(Ck))Δ be a zero-dimensional cycle. The following

equation holds :〈
τ1(R

r) ·
n∏
k=1

τak(Ck)
〉
Δ
= (n+#Δ− 2)

〈 n∏
k=1

τak(Ck)

〉
Δ

.

Proofs. In both cases, the proofs are completely analogous to the
abstract case using Proposition 3.6 and ft∗0(evk) = evk. �

Remark 3.13. Note that the factor appearing in the dilaton equation
is different from the algebro-geometric one, due to ft0∗(ψ0) = (n +
#Δ− 2) · Mlab

n (Rr,Δ) (cf., Proposition 3.6 (j)).

Lemma 3.14. Let h be a rational function. Then

ev∗k(h) · ϕk,l · Mlab
n (Rr,Δ) = ev∗l (h) · ϕk,l · Mlab

n (Rr,Δ).

Proof. In all curves corresponding to points in div(ϕk,l), the leaves
k and l lie at a common vertex. Therefore, their coordinates in Rr

must agree, which means evk || div(ϕk,l)| = evl || div(ϕk,l)|. The result
follows. �

For a given labeled degree Δ, we define δ(Δ) to be the associated
unlabeled degree in the sense of subsection 1.1: δ(Δ) is the one-
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dimensional balanced fan in Rr consisting of all the rays generated
by the direction vectors vk, k ∈ Δ, appearing in Δ. The weight of
such a ray R≥v, where v is primitive, is given by∑

k∈Δ
vk∈Z>0v

|Zv/Zvk|.

Obviously, if (C, h) ∈ Mlab
n (Rr,Δ) is an arbitrary n-marked parametrized

curve of degree Δ, then, by definition, δ(h(C)) = δ(Δ) holds.

For a given rational function h on Rr we define h · Δ to be
deg(h · δ(Δ)).

Lemma 3.15. Let h be a rational function on Rr, and define Y :=
ev∗0(h) ·Mlab

n+1(R
r,Δ). Then

ft0∗(Y ) = (h ·Δ)Mlab
n (Rr,Δ).

Proof. As our moduli space Mlab
n (Rr,Δ) is irreducible, we know

that ft0∗(Y ) = α · Mlab
n (Rr,Δ) for an integer α. To compute this

number, we set m := n+#Δ+r−3 and consider the zero-dimensional
intersection product Z = ϕ1 · · ·ϕm · Mlab

n (Rr,Δ) of arbitrary convex
functions ϕ1, . . . , ϕm such that deg(Z) �= 0 (e.g., Z = ψm−r

1 · ev1(P )
for some point P ∈ Rr). If we pull back Z along ft0, we know by the
projection formula that

deg(ev0(h) · ft∗0(Z)) = α · deg(Z).
On the other hand, by the family property of ft0, we know that Z is
the union of curves represented by the points in Z (with equivalent
weights) and therefore the push-forward ev0∗(ft∗0(Z)) is rationally
equivalent to its degree

δ(ev0∗(ft∗0(Z))) = deg(Z) · δ(Δ).

So, applying the projection formula to ev0, we obtain

deg(ev0(h) · ft∗0(Z)) = deg(Z) · (h ·Δ).

But this implies h ·Δ = α, which proves the claim. �
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We can now prove the following rather general version of the divisor
equation.

Theorem 3.16 (Divisor equation). Let h be a rational function on
Rr, and let (

∏n
k=1 τak(Ck))Δ be a one-dimensional cycle. Then〈

τ0(h) ·
n∏
k=1

τak(Ck)
〉
Δ
= (h ·Δ)

〈 n∏
k=1

τak(Ck)
〉
Δ

+

n∑
k=1

〈τak−1(h · Ck)
∏
l �=k

τal(Cl)〉Δ.

Proof. First we use Proposition 3.6 (a) and (e). We replace each
factor ψakk by ft∗0(ψk)

ak+ft∗0(ψk)
ak−1 ·ϕ0,k and multiply out. All terms

containing two ϕ-factors vanish. In terms with only one factor ϕ0,k,
we replace ev0(h) by evk(h) using Lemma 3.14. Now we push forward
along ft0 and produce the desired equation by applying Lemma 3.15
and ft0∗(div(ϕ0,k)) = Mlab

n (Rr,Δ). �

Note that the divisor equation can be used to prove the statement
of [17, Proposition 2.10].

4. The splitting lemma. The basic fact used to compute Gromov-
Witten type invariants of Mg,n(X, β) is the recursive structure of its
boundary: its irreducible components correspond to reducible curves
with a certain partition of the combinatoric data and therefore are
(nearly) a product of two “smaller” moduli spaces. In this section,
we will investigate how far this principle can be carried over to the
tropical world.

4.1. The case of abstract curves.

Definition 4.1. Let S be a finite set. By MS , we denote the moduli
space of |S|-marked tropical curves M|S| where we label the leaves by
elements in S. For each partition I | J of [n], we construct the map
ρI|J : MI∪{x} × MJ∪{y} → ϕI|J · Mn by the following rule. Given
two curves (pI , pJ ) ∈ MI∪{x}×MJ∪{y}, we remove the extra leaves x
and y and glue the curves together at the two vertices to which these
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leaves have been adjacent. In other words, we glue x and y together
by creating a bounded edge whose length we define to be 0. In the
coordinates of the space of tree metrics, this map is given by the linear
map

ρI|J : R(
I
2) × R(

J
2) −→ R(

n
2),

(pI , pJ) 
−→ p,

where

pk,l :=

⎧⎪⎨⎪⎩
pIk,l if k, l ∈ I,

pJk,l if k, l ∈ J,

pIk,x + pJy,l if k ∈ I, l ∈ J.

Caution. This map does not induce a linear map on the corresponding
quotients in which our moduli spaces are balanced and therefore
ρI|J is not a tropical morphism of our moduli spaces. In addition,
ρI|J is not even locally linear around ridges of our moduli spaces
considered as balanced complexes in the quotients. On the other
hand, ρI|J is at least piecewise linear (i.e., it is linear on all cones
of MI∪{x}×MJ∪{y}). Its image is a polyhedral complex, namely, the

positive part of ϕI|J ·Mn (i.e., it consists of all (faces of) facets AD×BC
with A ∪B = I).

Definition 4.2 (Morphisms of rational polyhedral complexes). Let
X and Y be (rational) polyhedral complexes. Then a morphism of
polyhedral complexes is a map ρ : |X | → |Y | that satisfies, for each
polyhedron σ ∈ X :

(i) ρ(σ) ∈ Y ,
(ii) ρ|σ is affine linear,
(iii) ρ(Λσ) ⊆ Λρ(σ).

We call ρ an isomorphism of polyhedral complexes if there exists an
inverse morphism. In other words, an isomorphism is a bijection
between |X | and |Y | (as well as between X and Y ) and ρ(Λσ) = Λρ(σ)
for all σ ∈ X .

Lemma 4.3 (Intersections of Ψ-functions with the boundary). The
facets of the fan ϕI|J · ψa11 · . . . · ψann · Mn with positive weight are
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precisely the cones σ in Mn with the following properties. Consider a
curve in the interior of σ. Let E(V ) ∈ [n] be the set of leaves adjacent
to a vertex V , and let P (V ) be the val (V )-fold partition of [n] obtained
by removing V. Then the following hold :

(a) There exists one special vertex Vspec whose partition P (Vspec)
is a subpartition of I | J and whose valence is (

∑
k∈E(V ) ak)+

4.
(b) Let mI be the number of sets in P (Vspec) contained in I. Then

mI + 1 = (
∑

k∈E(V )∩I ak) + 3 (together with (a), the analogue

mJ + 1 = (
∑

k∈E(V )∩J ak) + 3 follows). In particular, mI ,
mJ > 1.

(c) The valence of all other vertices V equals (
∑
k∈E(V ) ak) + 3.

Furthermore, the facets of ϕI|J ·ψa11 · . . . ·ψann ·Mn with negative weight
fulfill the same properties (a) and (c) and the property:

(b′) Let mI (respectively, mJ) be the number of sets in P (Vspec)
contained in I (respectively, J). Then mI = 1 or mJ = 1,
i.e., I ∈ P (Vspec) or J ∈ P (Vspec).

Proof. We know howX := ψa11 ·. . .·ψann ·Mn looks by Theorem 2.14.
In the combinatorial type of a facet of X the valence of each vertex
is (
∑

k∈E(V ) ak) + 3; in the combinatorial type of a ridge, there is one

special vertex Vspec with valence (
∑

k∈E(V ) ak) + 4. The balancing

condition of a ridge is given by the equation:∑
I′|J′

ωI′|J′VI′|J′ =
∑
I′|J′

I′∈P (Vspec)

λI′|J′VI′|J′ ,

where the left hand sum runs through all superpartitions I ′ | J ′ of
P (Vspec) not appearing in the right hand sum, ωI′|J′ denotes the weight
of the facet obtained by inserting an edge I ′ | J ′ and λI′|J′ is some
(rational) coefficient. Therefore, the weight ω that this ridge obtains
when intersecting X with ϕI|J is given by:

ω =

⎧⎪⎨⎪⎩
0 if I | J is not a superpartition of P (Vspec),

λI|J if I ∈ P (Vspec) or J ∈ P (Vspec),

ωI|J otherwise.
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This already shows two implications. As all weights ωI′|J′ are at least
non-negative, a ridge can only obtain a negative weight if it fulfills
conditions (a), (b′) and (c). On the other hand, if a ridge of X satisfies
properties (a), (b) and (c), then ωI|J , and hence the ridge, obtains a
positive weight. It remains to show the converse, which can be done
by proving that all λI′|J′ are non-negative. To see this, we consider

the balancing equation in R(
r
2) and compare some coordinate entries.

Let K be an arbitrary element of P (Vspec); we want to show that
λK := λK|Kc is non-negative. We choose two more arbitrary elements
L1 and L2 in P (Vspec) and fix some leaves k ∈ K, li ∈ Li. Now the
k, li-entry of the right hand side equals λK + λLi and analogously the
l1, l2-entry equals λL1 +λL2 . Therefore, by adding the two k, li-entries
and subtracting the l1, l2-entry, we get 2λK . Meanwhile, on the left
hand side, we get

2λK =
∑
I′|J′

k∈I′
l1∈J′

ωI′|J′ +
∑
I′|J′

k∈I′
l2∈J′

ωI′|J′ −
∑
I′|J′

l1∈I′
l2∈J′

ωI′|J′ =
∑
I′|J′

αI′|J′ωI′|J′ ,

where

αI′|J′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if k ∈ I ′, l1, l2 ∈ J ′,
0 if k, l1 ∈ I ′, l2 ∈ J ′,
0 if k, l2 ∈ I ′, l1 ∈ J ′,
0 if k, l1, l2 ∈ I ′.

But, as all the weights ωI′|J′ are non-negative, it follows that λK is
non-negative. �

Proposition 4.4. The map,

ρI|J :

(∏
k∈I

ψakk · MI∪{x}

)
×
(∏
k∈J

ψakk · MJ∪{y}

)
−→ (ϕI|J · ψa11 · . . . · ψann · Mn)

+,

is a well-defined isomorphism of polyhedral complexes.

Proof. We need to check the conditions of Definition 4.2. Using
the lengths of the bounded edges as local coordinates on the cones,
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this follows directly from the description of the target complex in
Lemma 4.3. The inverse map is given by splitting a given curve at
its special vertex Vspec. �

4.2. The case of parametrized curves.

Definition 4.5. Let I | J be a reducible partition, and let ΔI ,ΔJ

be the corresponding splitting of the tropical degree Δ. Let Z =
max(x1, y1) · . . . ·max(xr, yr) ·Rr×Rr denote the diagonal in Rr×Rr,
and consider the map:

evx× evy : Mlab
I∪{x}(R

r,ΔI)×Mlab
J∪{y}(R

r,ΔJ) −→ Rr × Rr.

We define
ZI|J := (evx× evy)

∗(Z).

We furthermore define πI|J : ZI|J → Mlab
n (Rr,Δ) by

MI∪{x} × Rr ×MJ∪{y} × Rr −→ M[n]∪Δ × Rr(
(pI , P ), (pJ , Q)

) 
−→ (ρ(pI , pJ), P ),

where we choose the same anchor leaf for Mlab
I∪{x}(R

r,ΔI) and

Mlab
n (Rr,Δ), and ρ is the glueing map for abstract curves from the

previous subsection.

Proposition 4.6. The map

πI|J : ψa11 · . . . · ψann · ZI|J −→ (ϕI|J · ψa11 · . . . · ψann · Mlab
n (Rr,Δ))+

is a well-defined isomorphism of polyhedral complexes.

Proof. This follows from Proposition 4.4 and from evx |ZI|J =

evy |ZI|J (which follows from both Proposition 1.11 (Z is described

by convex functions) as well as from Proposition 1.12 (evx× evy can
be considered as a projection)). �

Remark 4.7. Restricting to curves from ZI|J makes sure that the
positions of the marked leaves are preserved under πI|J , i.e., (by abuse
of notation) for all i ∈ I, but also j ∈ J , we have evi ◦πI|J = evi,
respectively, evj ◦πI|J = evj .
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Lemma 4.8. Let E = (ϕI|J · τa1(C1) · . . . · τan(Cn))Δ be a zero-
dimensional cycle. Then all points of E lie in (ϕI|J · ψa11 · . . . · ψann ·
Mlab

n (Rr,Δ))+.

Proof. By Proposition 1.1, we can compute the weight of a point p ∈
E locally around p in X := ϕI|J ·ψa11 ·. . .·ψann ·Mlab

n (Rr,Δ), namely, we

can focus on StarX(p). Assume p /∈ (ϕI|J ·ψa11 ·. . .·ψann ·Mlab
n (Rr,Δ))+.

Then curves corresponding to points in StarX(p) contain a bounded
edge corresponding to the partition I | J (see equation (4.3)). But,
as I | J is chosen to be reducible, this edge is a contracted bounded
edge whose length does not change the positions of the marked leaves
in Rr. Therefore, if we denote by ev = ev1 × . . . × evn the product
of all evaluation maps, the image of StarX(p) under ev has smaller
dimension, which implies ev∗(StarX(p)) = 0. Hence, by projection
formula, the weight of p in E must be zero. �

The following statement combines Proposition 1.15, in particular
item (iii), and the preceding result.

Corollary 4.9. Let E = (ϕI|J · τa1(C1) · . . . · τan(Cn))Δ be a zero-
dimensional cycle. If we substitute the cycles Ci by general transla-
tions, we can assume that all points of E lie in the interior of a facet
of (ϕI|J ·ψa11 · . . . ·ψann ·Mlab

n (Rr,Δ))+. This operation does not change
the degree of E by Remark 1.13.

As a provisional result of this discussion, we can formulate the
following:

Proposition 4.10. Let E = (ϕI|J · τa1(C1) · . . . · τan(Cn))Δ be a zero-
dimensional cycle. Then the equation,

〈ϕI|J · τa1(C1) · . . . · τan(Cn)〉Δ = 〈τa1(C1) · . . . · τan(Cn) · ZI|J〉ΔI ,ΔJ ,

holds.

Proof. We denote X := ψa11 · . . . · ψann · ZI|J and Y := ϕI|J ·
ψa11 · . . . · ψann · Mlab

n (Rr,Δ) and assume that the conditions Ci are
general. Then Corollary 4.9 implies that, for each point p ∈ E, we
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have an isomorphism of cycles πI|J : StarX(π−1
I|J(p)) → StarY (p). By

Proposition 1.1, this suffices to show that the weights of p and π−1
I|J (p)

in their respective intersection products coincide. �

4.3. Splitting the diagonal. To this point, we have seen that inter-
secting with a “boundary” function ϕI|J leads to intersection products

in two smaller moduli spaces, Mlab
I∪{x}(R

r,ΔI) and Mlab
J∪{y}(R

r,ΔJ ).

However, the factor (evx× evy)
∗(Z) still connects these two smaller

spaces. In order to obtain independent intersection products on the
smaller spaces, we must split the diagonal contribution. In the algebro-
geometric case, this can easily be done as the class of the diagonal Z,
e.g., Pr × Pr can be written as the sum of products of classes in the
factors

[Z] = [L0 × Lr] + [L1 × Lr−1] + · · ·+ [Lr × L0],

where Li denotes an i-dimensional linear space in Pr. But this can
not be copied directly in our setting (see below). In some sense, for
the first time, we meet a disadvantage due to the non-compactness of
our spaces. Our notion of rational equivalence is “too strong” for this
application, as it is inspired by the idea that two rationally equivalent
objects should be rationally equivalent in any toric compactification.
However, we will discuss here how far the conventional plan can be
carried out anyway.

The general plan is the following. Set

XI :=
(
τ0(R

r) ·
∏
k∈I

τak(Ck)
)
ΔI

in Mlab
I∪{x}(R

r,ΔI)

and

XJ :=
(
τ0(R

r) ·
∏
k∈J

τak(Ck)
)
ΔJ

in Mlab
J∪{y}(R

r,ΔJ ).

We want to compute the degree of

(τa1(C1) · . . . · τan(Cn) · ZI|J)ΔI ,ΔJ = (evx× evy)
∗(Z) · (XI ×XJ),

or, by the projection formula,

deg(Z · (evx(XI)× evy(XJ))).
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Now we would like to replace the diagonal Z by something like

S :=
∑
α

(Mα ×Nα),

where Mα and Nα are cycles in Rr such that S intersects evx(XI) ×
evy(XJ) like Z. But note that S cannot be rationally equivalent to Z
(in the sense of [2]), as this would imply that both cycles must have the
same recession fan, i.e., the same directions towards infinity. To come
out of this, we need more information about what the push-forwards
evx(XI) and evy(XJ) look like; in particular, we would like to know
how their degrees/recession fans can look. Let us formalize this first.

Let Θ be a complete simplicial fan in Rr, and let Zk(Θ) be the group
of k-dimensional cycles X whose support lies in the k-dimensional
skeleton of Θ, i.e., |X | ⊆ |Θ(k)|. Fix a basis of Z∗(Θ) := ⊕rk=0Zk(Θ)
denoted by B0, . . . , Bm (where we may assume B0 = {0} and Bm =
Rr). If the degree δ(X) of an arbitrary cycle is contained in Z∗(Θ), we
say X is Θ-directional. For such a cycle, there exist integer coefficients
λe such that X ∼ δ(X) =

∑m
e=1 λeBe. For each ray ρ ∈ Θ(1) with

primitive vector vρ, let ϕρ be the rational function on Θ uniquely
defined by

ϕρ(vρ′ ) =

{
1 if ρ′ = ρ,

0 otherwise.

Lemma 4.11. The linear map

Z∗(Θ) −→ Zm+1,

X 
−→ (deg(B0 ·X), . . . , deg(Bm ·X)),

(where deg(·) is set to be zero if the dimension of the argument is
non-zero) is injective.

Proof. Let X ∈ Zk(Θ) be an element of the kernel, which implies
that deg(X · Y ) = 0 for all Y ∈ Zr−k(Θ). Now, in fact, the remainder
is identical to the proof of [2, Lemma 6]. Assume that X is non-zero
and therefore there exists a cone σ ∈ Θ(k) such that ωX(σ) �= 0. As
Θ is simplicial, this cone is generated by k rays, ρ1, . . . , ρk. Let us
consider ϕρk · X and, in particular, the weight of τ := 〈ρ1, . . . , ρk−1〉
in this intersection product. As primitive vector vσ/τ , we can use
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1/|Λσ/(Λτ + Λρk)|vρk (it might not be an integer vector, but modulo
Vτ , it is a primitive generator of σ). Analogously, we can get any
primitive vector around τ as a multiple of an appropriate vρ. But, as
ϕρk is zero on all of these vectors except vρk , we get

ωϕρk
·X(τ) =

ωX(σ)

|Λσ/(Λτ + Λρk)|
�= 0.

Now, induction shows

deg(ϕρ1 · · ·ϕρk ·X) = ωϕρ1 ···ϕρk
·X({0})

=
ωX(σ)

|Λσ/(Λρ1 + · · ·+ Λρk)|
�= 0.

This means we have found a Θ-directional cycle Y := ϕρ1 · · ·ϕρk ·Rr ∈
Zr−k(Θ) with deg(X · Y ) �= 0, which contradicts the assumption that
X is an element of the kernel. �

With respect to the basis B0, . . . , Bm, the map defined in the
previous lemma has the matrix representation α := (deg(Be · Bf ))ef .
Obviously, α is a symmetric matrix. The lemma implies that this
matrix is invertible over Q, and we denote the inverse by (βef )ef . The
coefficients of this matrix can be used to replace the diagonal Z of
Rr × Rr by a sum of products of cycles in the two factors (namely∑

e,f βef (Be ×Bf )), at least with respect to Θ-directional cycles.

Lemma 4.12. Let X ∼ ∑
e λeBe and Y ∼ ∑

f μeBe be two Θ-
directional cycles in Rr with complementary dimension. Then

deg(Z · (X × Y )) = deg(X · Y )

=
∑
e,f

deg(X ·Be)βef deg(Y · Bf ).

Proof. Denote λ := (λ1, . . . , λm), μ := (μ1, . . . , μm). We get∑
e,f

deg(X ·Be)βef deg(Y · Bf )

= (α · λ)T · β · (α · μ) = λT · αT · β · α · μ = λT · α · β · α · μ
= λT · α · μ = deg(X · Y ). �
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Using this, our original goal of deriving a tropical splitting lemma
can be formulated as follows.

Theorem 4.13 (Splitting lemma). Let E = (ϕI|J ·∏n
k=1 τak(Ck))

R
r

Δ

be a zero-dimensional cycle, where I | J is a reducible partition.
Moreover, let us assume that Θ is a complete simplicial fan such that
(with the notation from above) evx(XI) and evy(XJ) are Θ-directional.
Let B0, . . . , Bm be a basis of Z∗(Θ), and let (βef )ef be the inverse
matrix (over Q) of (deg(Be·Bf ))ef . Then the following equation holds :

〈
ϕI|J ·

n∏
k=1

τak(Ck)
〉
Δ

=
∑
e,f

〈∏
k∈I

τak(Ck) · τ0(Be)
〉

ΔI

βef

〈
τ0(Bf ) ·

∏
k∈J

τak(Ck)
〉
ΔJ

.

Proof. The proof follows from the general plan above and Proposi-
tion 4.10. �

Remark 4.14. Of course, in toric geometry language, the basis
B0, . . . , Bm corresponds to a basis γ0, . . . , γm of the cohomology groups
of X(Θ) (the toric variety associated to Θ). As the cup-product and
the intersection product of cycles are equivalent (cf., Theorem 1.9), the
corresponding matrix (deg(γe ∪γf ))ef is equal to α. This implies that
the coefficients βef appearing in the tropical splitting lemma really are
the same as in the associated algebro-geometric version.

4.4. The directions of families of curves. The above splitting
lemma is only useful if, at least for a certain class of invariants,
the fan of directions Θ is fixed and well known. This is one of the
main problems when transferring the algebro-geometric theory to the
tropical set-up. However, in this subsection, we will show that in some
cases the problem can be solved.

Remark 4.15. In the easiest case, namely if r = 1, the situa-
tion is trivial. There is one unique complete simplicial fan Θ =
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{R≤0, {0},R≥0}, and any subcycle is Θ-directional. Also, with B0 =
{0}, B1 = R, the statement of Lemma 4.12 is obvious here.

Let us now consider curves in the plane, i.e., r = 2. Let

F =
(
τ0(R

2) ·
n∏
k=1

τak(Ck)
)R2

Δ

be a one-dimensional family of plane curves (with unrestricted leaf
x0). We define Θ(F ) to be the complete fan in R2 which contains the
following rays: all directions appearing in Δ and, furthermore, all rays
in δ(Ck) if dim(Ck) = 1 and ak > 0.

Proposition 4.16. Let F = (τ0(R
2) · ∏n

k=1 τak(Ck))
R

2

Δ be a one-
dimensional family of plane curves (with unrestricted leaf x0). Let
us furthermore assume that ak ≤ 1 if dim(Ck) = 2 (i.e., if a leaf
is not restricted by ev-conditions, only one Ψ-condition is allowed).
Then ev0∗(F ) is Θ(F )-directional.

Proof. As before, we replace each factor ψakk by ft∗0(ψk)
ak +

ft∗0(ψk)
ak−1 · ϕ0,k and multiply out. Consider the term without ϕ-

factors. It is the fibre of (
∏n
k=1 τak(Ck))Δ (which is finite) under

ft0 (see family property (3.8)) and, moreover, the push-forward of
the fibre along ev0 is just the sum/union of the images in Rr of the
parametrized curves corresponding to the points in (

∏n
k=1 τak(Ck))Δ.

But these curves have degree Δ; thus, by definition, their images are
Θ(F )-directional.

So let us consider the term with the factor ϕ0,k. Here, ev0 and
evk coincide (see Lemma 3.14), so we can in fact compute the push-
forward along evk. As evk = evk ◦ ft0 (by abuse of notation), we can
first push-forward along ft0 and get the term (τak−1(Ck)·

∏
l �=k τal(Cl)).

Now, if dim(Ck) = 2, by our assumptions ak − 1 = 0, in which case
we can use induction to prove the statement, or this term does not
appear at all.

On the other hand, if dim(Ck) = 0, 1, we can use the fact that the
push-forward is certainly contained in Ck; therefore, dim(Ck) = 0 is
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trivial and dim(Ck) = 1 works as we added the directions of Ck to
Θ(F ) if ak > 0.

This finishes the proof, as all terms with more ϕ-factors vanish. �

Remark 4.17. A weaker version of this lemma can be obtained by
assuming general conditions and directly studying the behavior of ev0
on an unbounded ray in F (see [17, Lemma 3.7]).

Remark 4.18. Consider the family F = (τ0(R
2)τ0(P )τ2(R

2))R
2

1 =
ev∗1(P ) · ψ2

2 · Mlab
3 (R2, 1) of curves of projective degree 1. It consists

of the following types of curves.

0

P P

P P

ev0 ev0 ev0

P

P P
+ + =

ev0∗(F )

0 2
1

2 0 1 12

Its push-forward along ev0 also contains the inverted standard direc-
tions (1, 0), (0, 1) and (−1,−1). Therefore, this family is a counterex-
ample to our statement if we drop the condition on the number of
Ψ-conditions allowed at leaves not restricted by incidence conditions.

Remark 4.19. For higher dimensions (r > 2), only a few cases are
explored. If we restrict to projective degree d and banish all Ψ-
conditions, i.e., for a family F = (τ0(R

r) ·∏n
k=1 τ0(Ck))d of arbitrary

dimension, it is proven in [10] that ev0∗(F ) is Θ-directional, where Θ
is the complete simplicial fan in Rr consisting of all cones generated
by at most r of the vectors −e0,−e1, . . . ,−er. We conjecture that a
similar proof also works for Ψ-conditions at point-conditions.
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5. WDVV equations and topological recursion. We are now
ready to prove the tropical analogues of the WDVV and topological
recursion equations under certain assumptions. With the help of these
equations, we show that certain tropical gravitational descendants co-
incide with their classical counterparts. This reduces the computation
of the classical invariants to a counting problem for tropical curves
with certain valence and incidence conditions (cf., Remark 3.10).

5.1. WDVV equations. Let xi, xj , xk and xl be pairwise different
marked leaves, and consider the forgetful map ft : Mlab

n (Rr,Δ) →
M{i,j,k,l}.

Lemma 5.1. The equation,

ft∗(ϕ{i,j}|{k,l}) =
∑
I|J
i,j∈I
k,l∈J

ϕI|J ,

holds, where the sum on the right side runs through all (also non-
reducible) partitions with i, j ∈ I and k, l ∈ J .

Proof. Note that

ft(VI|J) = VI∩{i,j,k,l}|J∩{i,j,k,l}.

Therefore, ϕ(ft(VI|J)) = 1 if i, j ∈ I, k, l ∈ J and 0 otherwise. �

Now we face the crucial difference to the conventional setting.
The right sum also runs over non-reducible partitions, which do not
correspond to anything in the algebro-geometric case. Let us add up
only those ϕI|J with I | J non-reducible and denote the sum by φ, i.e.,

φi,j|k,l :=
∑

I|J non-red
i,j∈I
k,l∈J

ϕI|J .

We would like to show that φi,j|k,l is bounded, as then it does not
change the degree of an intersection product and we can derive the
same formulas as in the conventional case. So let us investigate what
this function measures.



INTERSECTIONS ON TROPICAL MODULI SPACES 641

Let F = (
∏n
k=1 τak(Ck))Δ be a one-dimensional family of curves

with general conditions. Consider a facet σ of F representing curves
with contracted bounded edge E (called reducible curves). Then we
can change the length of E while keeping all other lengths and our
curve will still match the incidence conditions. As our conditions
are general, the set of curves fulfilling the incidence conditions set-
theoretically is also one-dimensional. Hence, all curves in σ just differ
by the length of E, whereas all other lengths are fixed. But this means
that φi,j|k,l is constant on σ.

Now, let σ be a facet of F representing curves without contracted
bounded edgeE (called non-reducible curves). This means, for all non-
reducible partitions I | J , the respective function ϕI|J is identically
zero on σ. Therefore, on σ, φi,j|k,l coincides with ft∗(ϕ{i,j}|{k,l}).

Lemma 5.2. Let

F =

( n∏
k=1

τak(Ck)

)
Δ

be a one-dimensional family of curves with general conditions. Let σ
be a facet of F . Then

φi,j|k,l|σ =

{
ϕ{i,j}|{k,l} ◦ ft if interior curves of σ are non-reducible,

const otherwise.

In other words, proving that φi,j|k,l is bounded on a one-dimensional
family F is the same as proving that curves in F with large Mi,j,k,l-
coordinate must contain a contracted bounded edge. This is the manner
of speaking in existing literature (e.g., [9, Proposition 5.1], [14,
Proposition 6.1], [17, Section 4]). We will address this problem in
its own subsection and first state the desired results here.

Lemma 5.3. Let F = (
∏n
k=1 τak(Ck))Δ be a one-dimensional family

of curves. Furthermore, assume that φi,j|k,l is bounded. Then the
equation
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〈
ft∗(ϕ{i,j}|{k,l})·

n∏
k=1

τak(Ck)
〉
Δ
=

∑
I|J reducible i,j∈I

k,l∈J

〈
ϕI|J ·

n∏
k=1

τak(Ck)
〉
Δ

holds.

Proof. This follows from Lemma 5.1 and the fact that the degree of
a bounded function intersected with a one-dimensional cycle is zero.
Therefore, if φi,j|k,l is bounded, the degree of

〈
φi,j|k,l ·

n∏
k=1

τak(Ck)
〉
Δ

is zero, and hence this term can be omitted. �

Finally, we can state the following version of WDVV equations. A
more restrictive version was proven in [17, Theorem 8.1]. Let us em-
phasize again the difference of the two approaches. In [17], similar to
previous works such as [9], the proof of certain WDVV equations was
based on two steps. First, under generic conditions, it is shown explic-
itly that the curves under consideration split into two parts. Second,
it is shown that the multiplicity of the big curve factors as a product
of the two smaller parts. This is done by an involved computation in
terms of a suitable matrix representation of ev1 × · · · evn× ft (cf., [17,
Lemma 6.6]). In the present approach, these ad hoc computations
are replaced by intersection-theoretic arguments (e.g., the splitting
lemma).

As before, we fix a complete simplicial fan Θ and a basis B0, . . . , Bm
of Z∗(Θ). Furthermore, let (βef )ef be the inverse matrix (over Q) of
the matrix (deg(Be · Bf ))ef .

Theorem 5.4 (WDVV equations). Let F = (
∏n
k=1 τak(Ck))Δ be

a one-dimensional family of curves, and fix four pairwise different
marked leaves xi, xj , xk, xl. Moreover, we assume that the following
conditions hold.
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(i) For any reducible partition I | J with i, j ∈ I; k, l ∈ J or i, k ∈ I;
j, l ∈ J the push-forwards evx(XI) and evy(XJ) are Θ-directional
(with notations from Section 4).

(ii) The functions φi,j|k,l and φi,k|j,l are bounded on F .

Then the WDVV equation∑
I|J reducible

i,j∈I
k,l∈J

∑
e,f

〈∏
k∈I

τak(Ck) · τ0(Be)
〉
ΔI

βef

〈
τ0(Bf ) ·

∏
k∈J

τak(Ck)
〉
ΔJ

=
∑

I|J reducible
i,k∈I
j,l∈J

∑
e,f

〈∏
k∈I

τak(Ck)·τ0(Be)
〉
ΔI

βef

〈
τ0(Bf )·

∏
k∈J

τak(Ck)
〉
ΔJ

holds, where the sums run through reducible partitions only.

Proof. The statement follows from Lemma 5.3 and the fact that
on M{i,j,k,l} the functions ϕ{i,j}|{k,l} and ϕ{i,k}|{j,l} are rationally
equivalent. In fact, they only differ by a linear function and therefore
have the same divisor, namely, the single vertex in M{i,j,k,l}. �

Remark 5.5. In the algebro-geometric version of these equations (cf.,
[6, equations (54), (55)]) the big sum(s) usually run like

∑
β1,β2

∑
A,B,

where β1, β2 are cohomology classes such that β1 + β2 = β and
A ·∪B = [n] is a partition of the marks. We can proceed accordingly
and let our sum run through unlabeled instead of labeled degrees, as
unlabeled degrees correspond via Minkowski weights to cohomology
classes. If we collect all reducible partitions I ·∪ J = Δ ·∪ [n], such
that the unlabeled degrees δ(ΔI), δ(ΔJ ) coincide, we obtain a class
of Δ!/ΔI ! ·ΔJ ! elements. On the other hand, as mentioned at the
beginning of Section 3, counting curves with labeled non-contracted
leaves leads to an overcounting by the factor Δ!, i.e., if δ := δ(Δ) is
an unlabeled degree, we should define〈 n∏

k=1

τak(Ck)
〉
δ
:=

1

Δ!

〈 n∏
k=1

τak(Ck)
〉
Δ
.
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So, by switching to “unlabeled” invariants, the above factor Δ!/ΔI ! ·ΔJ !
cancels, and we obtain∑

δI ,δJ
δI+δJ=δ

∑
A ·∪ B=[n]

i,j∈A
k,l∈B

∑
e,f

〈 ∏
k∈A

τak(Ck) · τ0(Be)
〉
δI
βef

〈
τ0(Bf ) ·

∏
k∈B

τak(Ck)
〉
δJ

=
∑
δI ,δJ

δI+δJ=δ

∑
A ·∪ B=[n]

i,k∈A
j,l∈B

∑
e,f

〈 ∏
k∈A

τak(Ck) · τ0(Be)
〉
δI
βef

〈
τ0(Bf ) ·

∏
k∈B

τak(Ck)
〉
δJ
,

which is now combinatorially identical to the algebro-geometric ver-
sion.

5.2. Topological recursion. In the same flavor as in the previous
subsection, we will also formulate a tropical version of the equations
known as “topological recursion.”

Let xi, xk and xl be pairwise different marked leaves. We know
from Lemma 2.24 that we can express the Ψ-divisor ψi in terms of
“boundary” divisors, namely,

div(ψi) =
∑
I|J
i∈I
k,l∈J

div(ϕI|J ).

Now, again, we give a name to the term that has no algebro-geometric
counterpart:

φi|k,l =
∑

I|J non-red
i∈I
k,l∈J

ϕI|J .

As in the previous subsection, we can describe this function as follows.
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Lemma 5.6. Let F = (
∏n
k=1 τak(Ck))Δ be a one-dimensional family

of curves with general conditions. Let σ be a facet of F . Then the
restriction φi|k,l|σ

“equals the sum of the lengths of the edges that sep-
arate i from k, l if interior curves of σ are non-
reducible, and is constant otherwise.”

Again, we fix a complete simplicial fan Θ and a basis B0, . . . , Bm
of Z∗(Θ). Furthermore, let (βef )ef be the inverse matrix (over Q) of
the matrix (deg(Be · Bf ))ef .

Theorem 5.7 (Topological recursion). Let

F =

( n∏
k=1

τak(Ck)

)
Δ

be a one-dimensional family of curves, and fix three pairwise different
marked leaves xi, xk and xl. Moreover, we assume that the following
conditions hold :

(i) For any reducible partition I | J with i ∈ I, k, l ∈ J , the push-
forwards evx(XI) and evy(XJ ) are Θ-directional (with notation
from Section 4).

(ii) The function φi|k,l is bounded on F .

Then the topological recursion

〈
ψi ·

n∏
k=1

τak(Ck)
〉
Δ

=
∑

I|J reducible
i∈I
k,l∈J

∑
e,f

〈∏
k∈I

τak(Ck)·τ0(Be)
〉
ΔI

βef

〈
τ0(Bf )·

∏
k∈J

τak(Ck)
〉
ΔJ

holds, where the sum runs through reducible partitions only.
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Remark 5.8. In the same way as in Remark 5.5, we obtain the
“unlabeled” version〈

ψi ·
n∏
k=1

τak(Ck)
〉
δ
=

∑
δI ,δJ

δI+δJ=δ

∑
A ·∪ B=[n]

i∈A
k,l∈B∑

e,f

〈 ∏
k∈A

τak(Ck) · τ0(Be)
〉
δI
βef

〈
τ0(Bf ) ·

∏
k∈B

τak(Ck)
〉
δJ
,

which coincides combinatorially with the algebro-geometric version of
this equation.

5.3. Contracted bounded edges. As preparation for the more
difficult case of plane curves, we first assume r = 1.

Proposition 5.9. Let P1, . . . , Pn be points in the general position in
R1, and let

F =

( n∏
k=1

τak(Pk)

)R
1

d

be a one-dimensional family in Mlab
n (R1, d). Then, for any choice of

marked leaves xi, xj, xk and xl, the functions φi,j|k,l and φi|k,l are
bounded on F .

Proof. For general conditions, F set-theoretically coincides with the
set of curves satisfying the given incidence and valence conditions.
Consider a general curve C ∈ F . Then C is also a general curve
in the Ψ-product X :=

∏n
k=1 ψ

ak
k . As we cut down X by n point

conditions and dim(F ) = 1, the dimension of X must be n+1; hence,
C contains n bounded edges. This implies that C, as a rational curve,
has n + 1 vertices. Therefore, there exists a vertex V not adjacent
to a marked leaf xk, k ∈ [n]. Now one of the three adjacent edges
might be a contracted bounded edge. Then, the deformation of C in
F is given by changing the length of this edge, but this does not affect
φi,j|k,l or φi|k,l by definition. Otherwise, if all of the adjacent edges



INTERSECTIONS ON TROPICAL MODULI SPACES 647

v1 v

v2

are non-contracted, the deformation of C in F is given by moving V
(and changing the lengths accordingly).

Note that the edge v cannot be unbounded as its direction “vector”
is not primitive. Therefore, if this deformation is supposed to be
unbounded, v1 and v2 must be unbounded. But, in this case, only the
length of v grows infinitely. But as v does not separate any marked
leaves, this does not change φi,j|k,l and φi|k,l. �

Now let us consider the case of plane curves, i.e., r = 2. The whole
subsection should be compared with [17, Section 4], where we dealt
with the special case Δ = d. We fix the following notation. Let

F =

( n∏
k=1

τak(Ck)

)R
2

Δ

be a one-dimensional family of plane curves with general conditions,
and let L ·∪M ·∪N = [n] be the partition of the labels such that

codim(Ck) =

⎧⎪⎨⎪⎩
0 if k ∈ L,

1 if k ∈M,

2 if k ∈ N.

First, we study how the deformation of a general curve C in F can
look like.

Lemma 5.10. (Variation of [17, subsection 4.4]). Let us assume:

(i) ak = 0 for all k ∈ L ∪M , i.e., Ψ-conditions are only allowed
together with point conditions.

Then the following holds. Let σ be a facet of F , and let C ∈ σ be a
general curve. Then the deformation of C inside σ is described by one
of the following cases :
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(I) C contains a contracted bounded edge. Then the deformation
inside σ is given by changing the length of this edge arbitrarily.

(II) C has a three-valent degenerated vertex V of one of the follow-
ing three types.
(a) One of the adjacent edges is a marked leaf, i ∈ L.
(b) One of the adjacent edges is a marked leaf, j ∈M , and the

linear spans of the corresponding line Cj at evj(C) and of
the other two edges adjacent to V coincide (i.e., the curves
C and the Cj do not intersect transversally at evj(C)).

(c) All edges adjacent to V are non-contracted, but their span
near V is still only one-dimensional ; without loss of gener-
ality, we denote the edge alone on one side of V by v and
the two edges on the other side by v1, v2.

(b) (c)(a)

v1 v1v2 v2

j

v

v2

v1

i

Cj

In all of these cases the deformation inside σ is given by moving
V .

(III) C contains a movable string S, i.e., a two-valent subgraph of C
homeomorphic to R such that all edges are non-contracted and
all vertices of S are three-valent in C and not degenerated in
the sense of case (II). Then the deformation of C is given by
moving S while all vertices not contained in S remain fixed (in
particular, only edges in or adjacent to S change their lengths).

Proof. Again, for general conditions, F set-theoretically coincides
with the set of curves satisfying the given incidence and valence
conditions. Thus, finding the deformation of C inside σ is the same as
finding a way of changing the position and the length of the bounded
edges of C such that the resulting curve still meets the incidence
conditions Ck.

It is obvious that in cases (I) and (II) changing the length of the
contracted bounded edge, respectively, moving the degenerated vertex
V leads to such deformations.

In case (III), the non-degeneracy of the vertices makes sure that
both ends of S consist of non-contracted ends and that a small
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movement of one of these ends leads to a well-defined movement of the
whole string (a more detailed description can be found in the proof of
[17, subsection 4.4]).

Finally, this list of cases is really complete, as C always contains a
string whose vertices are three-valent in C and whose ends are either
non-contracted leaves or marked leaves in L. This follows from the
same calculation as in [17, subsection 4.3], with the only difference
that we have to replace 3d by #Δ. �

We have now seen how a general curve C ∈ F can be deformed. In
the second step, we will now focus on unbounded deformations.

Definition 5.11. A complete fan Θ in R2 is called del Pezzo if the
associated toric surface is a smooth del Pezzo surface. Here is a
complete list, up to the action of SL(2,Z).

Θ
P2 Θ

P1×P1

ΘF1
ΘBl2(P2)

ΘBl3(P2)

It is easy to see that an alternative characterization of these fans is as
follows: Any two independent primitive vectors generating rays of Θ
form a basis of Z2. A degree Δ in R2 is called del Pezzo if Θ(Δ) is
del Pezzo and if all direction vectors appearing in Δ are primitive. This
ensures that, for every pair of independent vectors v1, v2 appearing in



650 JOHANNES RAU

Δ, the dual triangle to the fan spanned by v1, v2 and −(v1 + v2) does
not contain lattice points apart from its vertices.

Lemma 5.12. (Variation of [17, subsection 4.4]). We assume

(i) ak = 0 for all k ∈ L ∪M ,
(ii) Δ is del Pezzo.

Then the following holds. Let σ be an unbounded facet of F , and let
C ∈ σ be a general curve. Then the deformation of C in σ is described
by one of the following cases :

(I) C contains a contracted bounded edge whose length can be
changed arbitrarily.

(II) C has a three-valent degenerated vertex V of one the three types
described above. Furthermore, in cases (a) and (b) (of Lemma
5.10 (II)) one of the edges v1, v2 is bounded, the other one
unbounded, whereas in case (c), the edge v is bounded and v1,
v2 are unbounded.

(III) C contains a moveable string S with two non-contracted leaves
v1, v2 and only one adjacent bounded edge w. The deformation
of C is given by increasing the length of w.

xk

v2

w

Ck

v1

Furthermore, if xk, k ∈ M , is a marked leaf adjacent to S,
then h(xk) is a general point in an unbounded facet of Ck
whose outgoing direction vector v lies in the interior of the cone
spanned by v1, v2.

Proof. Nothing happens in cases (I), (II) (a), (b). In case (II) (c),
the edge v cannot be unbounded as v = −v1 − v2 is not primitive.
Therefore, the two edges on the other side of V must be unbounded.

In case (III), the proof of the first statement is fully contained in the
last part of the proof of [17, subsection 4.4]. We assume that we have
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a string S with two unique non-contracted ends and all of its vertices
are three-valent and not degenerated in the sense of case (II). The
deformation only moves the string S; the adjacent edges are shortened
or elongated and the other parts of the curve remain fixed. We want
to show that S has only one adjacent bounded edge.

If there are bounded edges adjacent to S to both sides of S as in
picture (a) below, then the movement of the string is bounded. (This
is true because, if we move the string to either side, we can only move
until the length of one of the adjacent bounded edges shrinks to 0.) So
we only have to consider the case when all adjacent bounded edges of S
are on the same side of S, say on the right side as in picture (b) below.
Label the edges of S (respectively, their direction vectors) by v1, . . . , vk
and the adjacent bounded edges of the curve by w1, . . . , wk−1 as in the
picture. As above, the movement of the string to the right is bounded.
If one of the directions wi+1 is obtained from wi by a left turn (as is
the case for i = 1 in the picture), then the edges wi and wi+1 meet
on the left of S. This restricts the movement of the string to the left,
too, since the corresponding edge vi+1 then shrinks to length 0.

(a) (b)

w3

v1

w2

w3

(c)

v4

v3

v2

v1
w1

v1

v4 w3

w2

w1

(d)

v1

v2

w1

(e)

v4

w1

w2v2

v3

S S

S

So we can assume that, for all i, the direction wi+1 is either the same
as wi or obtained from wi by a right turn as in picture (c). The
balancing condition then shows that, for all i, both the directions
vi+1 and −wi+1 lie in the angle between vi and −wi (shaded in the
picture above). Therefore, all directions vi and −wi lie within the
angle between v1 and −w1. In particular, the image of the string S
cannot have any self-intersections in R2. We can therefore pass to the
(local) dual picture (d) where the edges dual to wi correspond to a
concave side of the polygon whose other two edges are the ones dual
to v1 and vk.
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But, from our assumption that Δ is del Pezzo, we know that the
triangle dual to v1 and vk does not contain more integer points than
its vertices. We conclude that the concave side of the polygon in
picture (d) actually must coincide with the triangle dual to v1 and
vk and, therefore, the string consists of the two ends v1 and v2 that
are connected to the rest of the curve by exactly one bounded edge
w1 = w (as shown in picture (e)).

The second statement concerning adjacent marked leaves xk, k ∈M
is obvious as the deformation is supposed to be unbounded. �

Theorem 5.13. Let xi, xj, xk and xl be pairwise different marked
leaves, and let us assume:

(i) ak = 0 for all k ∈ L ∪M ,
(ii) Δ is del Pezzo,
(iii) if i, j ∈M (respectively, k, l ∈M), then for any pair of indepen-

dent direction vectors v1, v2 appearing in Δ, the interior of the
cone spanned by v1 and v2 does not intersect both degrees δ(Ci)
and δ(Cj) (respectively, δ(Ck) and δ(Cl)).

Then φi,j|k,l is bounded. If we additionally require

(iv) i ∈ N ,

then also φi|k,l is bounded.

Proof. As conditions (i) and (ii) hold, we can apply Lemma 5.12,
which describes the unbounded facets of F . We have to show that
φi,j|k,l (respectively, φi|k,l) is bounded on these facets. In case (I),
the only changing length is that of a contracted edge and therefore
not measured by both φi,j|k,l and φi|k,l. In case (II), the edge whose
length is growing infinitely cannot separate more then one marked leaf
xk, k ∈ L∪M from the others. Therefore, this length cannot contribute
to φi,j|k,l and, by condition iv), to φi|k,l. Finally, condition (iii) (and
also condition (iv)) is made such that φi,j|k,l and φi|k,l are also bounded
in case (III). �
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Remark 5.14. Conditions (i)–(iv) appearing in the above statements
are not only sufficient but, in most cases, also necessary for the
statements to hold.

(iv) If condition (iv) in Theorem 5.13 is not satisfied, we can get the
following things.

• If i ∈ L, then the degenerated vertex of type (a) leads to
an unbounded φi|k,l.

• If i ∈ M and ρ is a ray in Ci whose direction vector vρ
also appears in Δ, then in general we will find curves in F
with a degenerated vertex of type (b), whose unbounded
movement will make φi|k,l unbounded.

• If i ∈ M and ρ is a ray in Ci whose direction vector vρ
lies between two direction vectors v1, v2 appearing in Δ,
this will in general lead to curves in F with unbounded
deformations of case (III) such that the outward directions
are v1, v2 and such that xi is adjacent to the moved string.
So, again, φi|k,l is in general unbounded.

(iii) If condition (iii) is not satisfied, we will in general get un-
bounded deformations of the following type:

xj
v1

v2

Cj

xi Ci

In this case, we have i, j ∈ M , and the interior of the cone
spanned by v1, v2 contains direction vectors of both Ci and Cj .
As in general xk and xl will lie on the other side of the growing
edge w, φi,j|k,l will be unbounded.

(ii) If we drop condition (ii), i.e., if we allow non-del Pezzo degrees
Δ, two things can happen. If we allow non-primitive direc-
tion vectors, then we get deformations of type (II) (c) with
unbounded edge v. Therefore, the lengths of v1 and v2, which
can in general separate arbitrary marked leaves, grow infinitely.
If Θ(Δ) is not supposed to be del Pezzo, then the description of
unbounded deformations of case (III) in Lemma 5.12 becomes
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incorrect, as more complicated strings will appear with more
adjacent bounded edges than just one. The example of F2 is
analyzed in detail in [4] and [5, e.g., 2.10].

(i) If we drop condition (i), i.e., if we allow Ψ-conditions also
at marked leaves which are not fixed by points, we end up
with more complicated kinds of deformations of general curves
in F . The picture below shows an example of an unbounded
deformation in a one-dimensional family of plane curves of
projective degree 2. Here, C has to meet all four tropical
lines C1, . . . , C4 with one Ψ-condition. Note that the indicated
deformation of C is indeed unbounded and that the length of the
(1,−1)-edge e grows infinitely. This example can be extended
in the following way. One can glue arbitrary (fixed) curves
to the non-contracted leaves of C in direction (1, 1), obtaining
more families admitting such a deformation. In particular, the
edge e can separate arbitrary kinds of points, showing that, in
general, φi,j|k,l and φi|k,l can be unbounded for any choice of
i, j, k, l.

e

C2

C3

C4

C ∈ F = (τ1(C1)τ1(C2)τ1(C3)τ1(C4))
R

2

2

C1

In higher dimensions (r ≥ 3), until now only the following case has
been studied.

Theorem 5.15 ([22] 4.86). Let

F =

( n∏
k=1

τ0(Vk)

)R
r

d
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be a one-dimensional family of curves of projective degree d in Rr

which does not satisfy the Ψ-conditions, but incidence conditions given
by conventional linear spaces Vk ⊆ Rr. Then, for any choice of
{i, j, k, l} ∈ [n], the function φi,j|k,l is bounded on F .

5.4. Comparison to the algebro-geometric invariants. In the
special case of an empty degree, denoted by Δ = 0, the situation is
analogous to the algebro-geometric one.

Proposition 5.16. Let Z = (
∏n
k=1 τak(Ck))0 be a zero-dimensional

intersection product in Mlab
n (Rr, 0). Then deg(Z) is non-zero if and

only if
∑n

k=1 codim(Ck) = r (or equivalently
∑n

k=1 ak = n − 3). In
this case,

deg(Z) =

(
n− 3

a1, . . . , an

)
deg(C1 · · ·Ck)

holds.

Proof. By definition, Mlab
n (Rr, 0) is isomorphic to Mn×Rr. More-

over, as Δ = 0, all evaluation maps evi coincide with the projection
onto the second factor, which we therefore denote by ev. Now, let

X :=
n∏
k=1

ψakk =

( n∏
k=1

(ψabstr
k )ak

)
× Rr

be the intersection of all Ψ-divisors. Then the projection formula
applied to ev yields

deg(Z) = deg(C1 · · ·Cn · ev∗(X)).

But ev∗(X) is non-zero if and only if
∑n
k=1 ak = n − 3. If so, by

Remark 2.22, we know ev∗(X) =
(

n−3
a1,...,an

) · Rr, which proves the

statement. �

Remark 5.17. The goal of the following theorem is to show that
certain tropical and classical gravitational descendants coincide. The
idea is to show that, under the restrictions which we accumulated in
the preceding sections, both sets of numbers satisfy the same WDVV
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and topological recursion equations, which are sufficient for determin-
ing the numbers from some initial values. However, there is one fur-
ther problem concerning this plan, which we already mentioned in
Remark 5.5. The classical WDVV and topological recursion equa-
tions run through splittings of the given cohomology class β into sums
β = β1 + β2. As M0,n(X, β) is empty if β is not effective, we can
restrict to effective classes β, β1, β2.

Now, for P2 and P1×P1, affectivity is equivalent to the fact that the
associated one-dimensional tropical fans are positive (as P2 and P1×P1

do not contain curves with negative self-intersection). So a splitting
β = β1 + β2 of effective cohomology classes corresponds bijectively to
a sum of unlabeled tropical degrees δ = δ1 + δ2, and therefore the
tropical and classical equations are really equivalent in this case.

However, for the blow ups of P2 in up to three torus-fixed points
(i.e., for F2, Bl2(P2) and Bl3(P2), cf., Definition 5.11), the same
argument fails as the exceptional divisors induce tropical fans with
negative weights. The following picture shows an example of the
tropical fan associated to the exceptional divisor V (�) of F1.

��

ΘF1

−1

1

1

[V (�)]

In these cases, i.e., when classical curves can split into reducible curves
with a rigid component in the toric boundary, we cannot expect that
our purely non-compact approach will yield the same results. It should
be possible to deal with this by (partially) compactifying our spaces
and/or adding suitable correction terms (as in [5]). This needs to be
addressed in further work. For now, we just restrict ourselves to P2

and P1 × P1.

Now we are finally ready to compare the tropical invariants for
plane tropical curves to the algebro-geometric ones, for some cases,
using the equations proven in the previous subsections. The theorem
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is an extension of [17, Theorem 8.4], which proves the statement for
the case P2.

Theorem 5.18. Let

• Θ be ΘP2 or ΘP1×P1 , and set X := X(Θ) (i.e., X = P2 or
X = P1 × P1),

• C1, . . . , Cn be Θ-directional tropical cycles, and let γ1, . . . , γn ∈
A∗(X) be the associated cohomology classes of X,

• Δ be a labeled degree with primitive direction vectors whose
unlabeled degree δ(Δ) is Θ-directional, and let β ∈ Ar−1(X)
be the corresponding cohomology class,

• a1, . . . , an be non-negative integers such that ak = 0 if dim(Ck)
> 0.

Then the tropical and algebro-geometric gravitational descendants are
equal, i.e.,

1

Δ!
〈τa1(C1) · · · τan(Cn)〉R

2

Δ = 〈τa1(γ1) · · · τan(γn)〉Xβ .

Proof. First we choose a basis B0, . . . , Bm of Z∗(Θ). This also
determines a basis η0, . . . , ηm of A∗(X), and we know from comparison
to the fan displacement rule (cf., Theorem 1.9) that

deg(Be ·Bf ) = deg(ηe · ηf )
holds. This implies that, if we use WDVV equations or topological
recursion with respect to these bases, then the diagonal coefficients
βef appearing in the tropical and in the algebro-geometric setting
coincide. Thus, using the results of the previous sections, we know that
the numbers 1/Δ!〈τa1(C1) · · · τan(Cn)〉Δ = 〈τa1(C1) · · · τan(Cn)〉δ(Δ)

and 〈τa1(γ1) · · · τan(γn)〉Xβ satisfy a certain set of identical equations,

namely, the WDVV and topological recursion equations (where on
the tropical side we have to be slightly more careful about i, j, k, l
satisfying conditions (iii) and (iv) of Theorem 5.13) as well as the
string and divisor equation. Therefore, we can finish the proof by
showing that the numbers can be computed recursively, using these
equations, from some initial numbers and proving that these initial
numbers coincide.
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We separate the labels of the marked leaves into the sets L ·∪M ·∪N
= [n] according to the dimension of Ck as in subsection 5.3. First,
we use topological recursion to reduce the number of Ψ-conditions.
We pick a marked leaf xi with ai > 0 (and therefore i ∈ N) and
an arbitrary pair of marked leaves xk, xl satisfying condition (iii) of
Theorem 5.13. If such xk, xl do not exist, we can add them using the
divisor equation backwards with appropriate rational functions hk, hl.
Namely, if X = P1 × P1, we can use hk = hl = max{0, x, y, x + y};
otherwise, we can use hk = hl = max{0, x, y}. Note also that this
choice ensures that hk ·Δ = hl ·Δ is non-zero for every possible degree,
so we do not divide by zero.

After eliminating all Ψ-conditions in this way, we can assume ak = 0
for all k ∈ [n], i.e., we are back in the case of usual (primary) Gromov-
Witten invariants. After applying the string and divisor equation we
can assume that L =M = ∅, and it remains to compute invariants of
the form 〈∏n

k=1 τ0(Pk)〉Δ for points P1, . . . , Pn ∈ R2. Comparison of
dimensions shows #Δ = n+ 1.

Let us first consider the general case n ≥ 3. Here we consider

the one-dimensional family F = (τ0(Ci)τ0(Cj)
∏n−1
k=1 τ0(Pk))Δ with

arbitrary Θ-directional curves Ci and Cj such that Ci · Cj is non-
zero and such that condition (iii) of Theorem 5.13 is satisfied (e.g.,
we can choose the divisors of the functions chosen above). We
let xi, xj be the first two marked leaves as indicated, and choose
k, l ∈ [n − 1] arbitrarily. In the corresponding WDVV equation only
one extremal partition I | J with ΔI = 0 and ΔJ = Δ does not
vanish. This follows from Lemma 5.16 and the fact that the three sums
codim(Pk)+codim(Pl), codim(Ci)+codim(Pk), codim(Cj)+codim(Pl)
are greater than 2. Moreover, the only remaining extremal partition
I = {i, j}, J = Δ ·∪ [n− 1] provides the term

〈τ0(Ci)τ0(Cj)τ0(R2)〉0 ·
〈
τ0(P )

n−1∏
k=1

τ0(Pk)
〉
Δ

= deg(Ci · Cj) ·
〈 n∏
k=1

τ0(Pk)
〉
Δ
.
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Hence, we can reduce the computation of 〈∏n
k=1 τ0(Pk)〉Δ to invari-

ants of smaller degree. We can repeat this until we arrive at the initial
invariants with n = 1 or n = 2. In these cases, #Δ = 2 or #Δ = 3, and
therefore the only possible degrees (up to identification via linear iso-
morphisms of Z2) are Δ = {−e1, e1} and Δ = {−e1,−e2, e1 + e2}. In
both cases, it is easy to show by direct computation that 〈τ0(P1)〉Δ = 1
and 〈τ0(P1)τ0(P2)〉Δ = 1 hold (given a point in R2, there is exactly
one horizontal line through it; given two points, there is exactly one
tropical line connecting them). But now, as discussed above, the same
recursion for the classical numbers proves the claim. �

Remark 5.19 (Multiplicities of tropical curves). The above theorem
reduces the computation of the classical gravitational descendants to
the count of certain tropical curves C with multiplicities mult(C) (cf.,
Remark 3.10). In the above case of plane curves, an easy formula for
this multiplicity exists (cf., [17, Lemma 9.3]). Namely, if we assume
the general position, the multiplicity of a curve in the count is obtained
as the product

mult(C) =
∏
V

mult(V ),

where the product runs through all vertices to which no marked
leaf is adjacent and mult(V ) of these necessarily 3-valent vertices is
the well-known vertex multiplicity introduced by Mikhalkin (cf., [18,
Definition 2.16]). This is correct for labeled curves C, but we can as

well count unlabeled curves C̃ (as the incidence and valence conditions
do not depend on the labeling) by setting

mult(C̃) =
1

#Aut(C̃)
mult(C).

Here #Aut (C̃) denotes the number of automorphisms of C̃.

Moreover, as well as for the usual Gromov-Witten invariants consid-
ered in [18], there exists a so-called lattice path algorithm to compute
these counts easily (cf., [17, section 9]).

Remark 5.20. Similarly we can deal with the case r = 1, i.e., we can
prove
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1

d!2

〈
τ0(R

1)l
n∏
k=1

τak(Pk)
〉R1

d
=
〈
τ0([P

1])l
n∏
k=1

τak([pt])
〉P1

d
,

where the left hand side is a tropical, the right hand side a conventional
invariant and [pt] denotes the class of a point pt ∈ P1. In fact, after
applying the string equation, we are left with the case where l = 0.
Now we use Proposition 5.9 and topological recursion to reduce the
number of Ψ-conditions (where, if n < 3, we first add more marked
leaves using the divisor equation). Finally, when ak = 0 for all k ∈ [n],

it follows that d = 1, and we can directly compute 〈τ0(P )〉R1

1 = 1.

This fits with the previously known result for rational Hurwitz

numbers H0
d := 〈τ1([pt])2d−2〉P1

d (cf., [3, Lemma 9.7]).

Remark 5.21. The discussion in Remark 5.14 and the factor n +
#Δ − 2 appearing in the tropical dilaton equation (3.12), instead of
n − 2 in the algebro-geometric version, show that for more difficult
degrees Δ (if r = 2) and for Ψ-conditions at marked leaves xk with
dim(Ck) > 0, the corresponding tropical and conventional invariants
are in general different. For example, if we add a marked leaf that
has to satisfy only a Ψ-condition, the different factors in the dilaton
equations immediately lead to different invariants.

Remark 5.22. Of course, the machinery developed here is ready to
use in higher dimensions as well. For example, by Remark 4.19 and
Theorem 5.15, the same approach can be used to show that tropical
and classical Gromov-Witten invariants (without Ψ-classes) of Pr, r
arbitrary, coincide.
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