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AUTOMORPHISMS OF SURFACES IN A CLASS OF
WEHLER K3 SURFACES WITH PICARD NUMBER 4

ARTHUR BARAGAR

ABSTRACT. In this paper, we find the group of auto-
morphisms (up to finite index) for K3 surfaces in a class
of Wehler K3 surfaces with Picard number 4. In doing so,
we demonstrate a variety of techniques, both general and ad
hoc, that can be used to find the group of automorphisms of
a K3 surface, particularly those with small Picard number.

Introduction. Given an algebraic K3 surface X defined over a
number field k, what is its group of automorphisms A = Aut(X/k)? In
this paper, we offer some ideas of how to answer this natural question,
and demonstrate these ideas by applying them to a particular example.
This paper grew out of a talk given at the Banff International Research
Station in December 2008.

There are three main general tools. (1) Every automorphism σ
induces a linear action on the Picard lattice Pic(X ) that preserves the
intersection pairing; (2) the intersection pairing on the Picard lattice is
a Lorentz product, so induces a hyperbolic structure on H = L+/R+,
where L+ is the light cone; and (3) a fundamental result due to

Pjateckĭi-S̆apiro and S̆afarevic̆, which establishes a correspondence
betweenA and a particular subgroup of the lattice preserving isometries
of H.

We apply these results, together with some ad hoc results, to a class
of K3 surfaces, and come up with a group of finite index in A. Though
not complete, we consider this answer to be sufficient; completing the
problem likely depends on the arithmetic and not the geometry, i.e., it
depends on X and not just on Pic(X ).
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It is clear to the author that these techniques are applicable to many
classes of K3 surfaces, particularly those with small Picard number.
The hyperbolic space H of a surface with Picard number n is n − 1
dimensional, hence the difficulty of dealing with surfaces with large
Picard number includes our difficulty imagining hyperbolic spaces of
large dimension.

1. Background. Let X/k be a K3 surface defined over a number
field k. Let n be the dimension of the Picard lattice Pic(X ), and let
{D1, . . . , Dn} be a basis over Z, so

Pic(X ) = D1Z⊕ · · · ⊕DnZ.

Let J = [Di · Dj ] be the intersection matrix for the basis D. By the
Hodge index theorem, J has signature (1, n−1), i.e., it has one positive
eigenvalue and n−1 negative eigenvalues. It therefore defines a Lorentz
product, so Pic(X )⊗ R is a Lorentz space. Let D be an ample divisor
in Pic(X ). We define the light cone to be the set

L+ = {x ∈ Pic(X )⊗ R : x · x > 0, x ·D > 0}.

The space H = L+/R+, together with the distance |AB| defined by

∥A∥∥B∥ cosh |AB| = A ·B,

is an n−1 dimensional hyperbolic geometry. (By ||x||, we mean
√
x · x.)

An automorphism σ ∈ A = Aut(X/k) acts linearly on the Picard
lattice via the pull back map σ∗. We are therefore interested in the
linear automorphisms of the Picard lattice, the group

O = {T ∈ Mn×n(Z) : T tJT = J}.

In this group is the subgroup of index two that preserves the light cone,

O+ = {T ∈ O : TL+ = L+},

which is a discrete group of isometries on H. It is an arithmetic group,
and its fundamental domain has finite volume.

A divisor E is called effective if we can write

E =
k∑

i=1

aiCi,
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where ai ≥ 0 and the Ci’s are divisors represented by curves on X . A
divisor D ∈ Pic(X ) ⊗ R is called ample if D · E > 0 for all effective
divisors E. The ample cone K ⊂ L+ is the set of all ample divisors in
Pic(X )⊗ R.

Within O+, the reflections through −2 divisors play a special role.
Let C be a divisor such that C · C = −2. The map RC defined by

RC(x) = x+ (C · x)C,

which is a reflection through the hyperplane C · x = 0, is an isometry
in O+. Let O′ be the group generated by all such divisors. Note that,
for T ∈ O+,

RTC = T−1RCT,

so
O′ ▹O+.

If σ ∈ A and E is effective, then σ∗E = (σ−1)∗E is effective. Thus,
σ∗D · E = D · σ∗E > 0 for all effective E and ample D, so σ∗D is
ample. We therefore define

O′′ = {T ∈ O+ : TK = K},

since the pullback map sends A into O′′. Pjateckĭi-S̆apiro and S̆afarevic̆
prove that the pullback map of A to O′′ has finite kernel and cokernel
[6], and that O′′ ∼= O+/O′.

The interplay of A and the groups O+, O′′ and O′ is quite pretty, as
we will see in our example. We note that, given an arbitrary J , finding
O+ is a non-trivial problem.

Remark 1.1. Let n · x = 0 be a hyperplane through the origin in
Pic(X )⊗ R. Reflection through this hyperplane is given by

Rn(x) = x− 2projnx = x− 2
(x · n)n
n · n

.

Thus, if n ∈ Pic(X ) (so has integer entries) and n ·n = ±1 or ±2, then
Rn ∈ O. Since the intersection pairings for K3 surfaces are always even
(see the adjunction formula), we only ever have n·n = ±2. If n·n = −2,
then the plane intersects H, and we get a reflection through a hyperline
in H. These are the reflections through −2 curves mentioned above. If
n ∈ Pic(X ) and n · n = 2, then the hyperplane does not intersect H
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and −Rn(x) ∈ O+. This is inversion through n, which, when n = 3, is
just rotation by π about n. This can be used to find elements of O+.

2. A specific example. Let X be a surface described by a smooth
(2, 2, 2) form in P1 × P1 × P1. Such surfaces are sometimes known as
Wehler K3 surfaces, so named since Wehler showed that they are K3
surfaces [8]. Such a surface can be expressed as the zero locus of

F (X,Y, Z) = X2
0F0(Y,Z) +X0X1F1(Y, Z) +X2

1F2(Y, Z),

where X = (X0, X1) ∈ P1, and Fi(Y,Z) is a (2, 2) form in P1 × P1 for
all i. Since a smooth (2, 2) form in P1 × P1 is an elliptic curve, X is
fibered by elliptic curves in each of the three directions.

Let

p1 : P1 × P1 × P1 −→ P1

(X,Y, Z) 7−→ X

be the projection onto the first component, and similarly define p2 and
p3. Let Di = p−1

i H be the pullback of a point H ∈ P1 for i = 1, 2 and
3.

A generic surface X in this class has Picard lattice D1Z⊕D2Z⊕D3Z
and intersection matrix

J =

0 2 2
2 0 2
2 2 0

 .

The generic Wehler K3 surfaces have been studied by Wang [7], Billard
[4], and the author [1]. They contain no −2 curves, and their group of
automorphisms is well understood [8]. Explicit examples are given in
[3].

We will study the class of Wehler K3 surfaces with Picard number
4 and such that F2(Y, Z) factors into linear terms, i.e., F2(Y, Z) =
L1(Y, Z)L2(Y, Z) where Li(Y, Z) is a (1, 1) form in P1 × P1. Then
X contains the curve ((0, 1), Y, Z) such that L1(Y,Z) = 0, which is
rational and hence a −2 curve on X . Let D4 be the divisor class for
this curve. The surface X also contains the −2 curve ((0, 1), Y, Z)
such that L2(Y, Z) = 0, and its divisor is D1 − D4. It is clear that
D1 ·D4 = 0, and D2 ·D4 = D3 ·D4 = 1, so D = {D1, D2, D3, D4} is a
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basis of Pic(X )⊗ R (since X has Picard number 4), and in this basis,

J =


0 2 2 0
2 0 2 1
2 2 0 1
0 1 1 −2

 .

Since the elements of the basis D are in Pic(X ), the lattice D1Z ⊕
D2Z⊕D3Z⊕D4Z is a sublattice of Pic(X ).

Lemma 2.1. The basis D of Pic(X )⊗ R is a basis of Pic(X ) over Z.

Proof. Suppose that there exists an element C ∈ Pic(X ) such that
C is not in the lattice generated by D. Then there exists a C ′ ∈ Pic(X )
such that C ′ is in the polytope generated by the elements of D, i.e.,

C ′ = c1D1 + c2D2 + c3D3 + c4D4

with 0 ≤ ci < 1. Let ai = C ′ · Di ∈ Z and a = [a1, a2, a3, a4]. Then
a = Jc (where c = [c1, c2, c3, c4]), so 0 ≤ a1 < 4, 0 ≤ a2 < 5, 0 ≤ a3 < 5
and −2 < a4 < 2. Thus, there are only a finite number of cases to
check, which is easily done via computer. We find that the only other
possibility for Pic(X ) is the lattice spanned by {D1/2, D2, D3, D4}.
Since D1 represents an elliptic curve, it cannot be decomposed into
elliptic curves, so D is a basis for Pic(X ) over Z. �

Remark 2.2. In the above proof, we appealed to the geometry of
the K3 surface. This could not be avoided since, by a result due to
Morrison [5], there exists a K3 surface with Picard lattice isomorphic
to the lattice spanned by {D1/2, D2, D3, D4}.

3. The automorphisms. Because of its quadratic nature, X has
several obvious automorphisms. Let us fix Y and Z, so that F (X,Y, Z)
is a quadratic in X with two roots X and (say) X ′. Then the map

σ1 : (X,Y, Z) 7−→ (X ′, Y, Z)

is an automorphism of X . The pull back σ∗
1 has several obvious

relations: σ∗
1D2 = D2 and σ∗

1D3 = D3 which, together with σ2
1 = Id,
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lead to some obvious intersections, such as:

σ∗
1D1 ·D2 = D1 · σ1∗D2 = D1 · σ∗

1D2 = D1 ·D2 = 2.

The only difficult intersections are σ∗
1D1 ·D1 = 8, σ∗

1D1 ·D4 = 4 and
σ∗
1D4 ·D4. Let us fix a curve C in the divisor class D1. The image σ1C

intersects C wherever F (X,Y, Z) = 0 has a double root, as well as at
values of X where both F = 0 and ∂XF = 0. This is the intersection
of two (2, 2) forms, so σ∗

1D1 ·D1 = 8.

Let us now consider the curve C in D1 given by X = (0, 1). As D4

is a component of C, the image σ1C intersects D4 wherever X = (0, 1)
is a double root, as well as where ∂XF = 0 and L1 = 0, which is the
intersection of a (2, 2) form and a (1, 1) form. Thus, σ∗

1D1 · D4 = 4.
The last intersection is more difficult still, so let us assign it a variable:
σ∗
1D4 ·D4 = a. Then,

Jσ∗
1 =


8 2 2 4
2 0 2 1
2 2 0 1
4 1 1 a

 .

Using σ∗2
1 = Id, we get a = 0 or 4, so σ∗

1 = T1 or S1T1, where

T1 =


−1 0 0 −1
2 1 0 1
2 0 1 1
0 0 0 1

 and S1 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Since S1 is the isometry that sends D4 to D1 − D4, it is clearly a
symmetry of the ample cone K. Thus, both T1 and S1T1 are in O′′,
and there is no need to resolve the ambiguity for a.

In a similar fashion, we can define σ2(X,Y, Z) = (X,Y ′, Z) and
σ3(X,Y, Z) = (X,Y, Z ′), and their pullbacks σ∗

2 and σ∗
3 . We note

that σ∗
2D1 = D1 and σ∗

2D3 = D3. As before, the intersection
σ∗
2D2 · D2 = 8. Looking at the action of σ2 on the curve X = (0, 1),

which includes D4, we see σ∗
2D4 = D1 − D4, from which we get

σ∗
2D2 ·D4 = D2 · (D1 −D4) = 1 and σ∗

2D4 ·D4 = (D1 −D4) ·D4 = 2.
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Thus,

Jσ∗
2 =


0 2 2 0
2 8 2 1
2 2 0 1
0 1 1 2

 , so σ∗
2 =


1 2 0 1
0 −1 0 0
0 2 1 0
0 0 0 −1

 .

By symmetry, σ∗
3 = S2σ

∗
2S2 where

S2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

To see whether we have the full group of automorphisms of X , we
turn our attention to the action of O′′ on H. We can send H to the
Poincaré ball model in the following way. There exists an orthonormal
basis with change of basis matrix Q that diagonalizes J . Let us write
J = QtAtJ0AQ, where J0 has (−1,−1,−1, 1) along the diagonal, A has
(a1, a2, a3, a4) along the diagonal, and −a21, −a22, −a23 and a24 are the
eigenvalues of J . Then, for a point P ∈ L+, the point P ′ = AQP/||P ||
is a point on the surface x2

1 + x2
2 + x2

3 − x2
4 = −1. Let π(P ) be the

stereographic projection of P ′ onto the plane x4 = 0 through the point
(0, 0, 0,−1) (see Figure 1). Then π is a map from H to the Poincaré
ball model of hyperbolic geometry.

The Poincaré ball can, in turn, be unfolded into the Poincaré upper
half space, using D2 as the point at infinity. Note that D2 ·D2 = 0, so
it is on ∂H, the boundary of H. Let G = ⟨T1, S1, S2, σ

∗
3 , RD4

⟩ ≤ O+.
The eigenspace for S1 and the eigenvalue 1 is spanned by {D1, D2, D3},
so S1 is a reflection in this plane. The map T1 is a reflection in a plane
that includes D1 and D2 and is perpendicular to the plane through
which S1 reflects. That plane includes the point D2+D4. The map S2

is reflection in a plane that includes D1, and it sends D2 to D3. The
plane through which it reflects is therefore represented by a hemisphere
whose boundary is a circle through D1 that is centered at D3. The map
RD4 is a reflection, it sends D2 to D2 +D4, and it fixes D1, so it is a
reflection through the hemisphere with boundary a circle centered at
D2 + D4 and through D1. This is enough information to sketch the
fundamental domain for G, which is shown in Figure 2. Though our
sketch does not need to be too precise, we note that the angle between
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Figure 1. The projection of H to the Poincaré ball.

the circle that represents RD4 and the line that represents T1 is π/4.
To see this, note that the normal n1 to the plane through which T1

reflects is n1 = −D1 + D2 + D3 (the eigenvector of T1 associated to
−1), and that

D4 · n1

∥D4∥∥n1∥
=

√
2

2
= cos(π/4).

As can be seen, the fundamental domain has infinite volume. Since the
fundamental domain of O+ has finite volume, we know we are missing
something.

To find another automorphism, we look at the second column of J ,
which is [D2 ·Di] = [2, 0, 2, 1]. Recall that D2 is the divisor class given
by the fibers over fixed Y , which are generically elliptic curves. Note
that D2 · D4 = 1, so the rational curve represented by D4 intersects
each of these elliptic curves exactly once, i.e., we have a fibration of
elliptic curves with section. Let E be an elliptic curve in D2, and let
OE = E ∩D4 be its zero element.

We define a map σ4 on X in the following way: For P ∈ X , let E be
the unique elliptic curve in D2 that contains P . Define σ4(P ) = −P ,
using the group law on E with zero element OE . Then σ4 is an
automorphism of X . Since σ4(E) = E, we know σ∗

2D2 = D2 and,
since σ4(OE) = OE , we get σ∗

4D4 = D4. We also note that σ2
4 is the
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D1

D3

D2+D4

RD4

S2

S1σ3
∗

T1

S1

T4

Figure 2. The upper half-space representation of isometries in O+. Each
line or circle represents the plane or hemisphere above it and is labeled
with the isometry that is a reflection through that (hyperbolic) plane. A
fundamental domain for G is the region above the two hemispheres and
bounded by the planes represented by the solid lines. This region has infinite
volume. The fundamental domain for G+ is the region above the hemispheres
and bounded by the four planes represented by the three solid lines and the
dotted line. This region has finite volume.

identity. Thus, σ∗
4 is either the identity, rotation by π about the line

with endpoints D2 and D2 + D4, or reflection through a plane that
includes that line.

Though there are infinitely many reflections that include a given
line, there are significant limitations on what they can be. Let Rn be a
reflection through the plane n · x = 0. Then n is an eigenvector of Rn

associated to the eigenvalue −1. Since Rn has integer entries, we may
choose n to have integer entries. Now suppose Rm is another reflection
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in O+. Then the angle θ between the two planes (if they intersect) is
given by

cos θ =
±n ·m
∥n∥∥m∥

.

Thus,
cos 2θ + 1

2
= cos2 θ =

(n ·m)2

(n · n)(m ·m)
∈ Q.

The composition of Rn and Rm is a rotation by 2θ (if the planes
intersect), and sinceO+ is an arithmetic group, we know 2θ is a rational
multiple of π. Since deg(cos 2π/n) = 1

2ϕ(n), the only possibilities for

cos 2θ are 0,±1
2 ,±1.

If σ∗
4 is a reflection with normal vector n, then we can solve for n

by noting n ·D2 = 0, n ·D4 = 0, and using the above argument with
the reflection S1. We get n = D1 +D2 −D3 or n = D1 − 4D2 − 2D4,
which gives us S1σ

∗
3 and

T4 =


−1 0 −2 0
8 1 8 0
0 0 1 0
4 0 4 1

 .

The rotation by π about the line with endpoints D2 and D2 + D4 is
the map S1σ

∗
3T4.

If σ∗
4 = Id or S1σ

∗
3 , then it would appear that the discovery

of σ4 has given us nothing new. However, it did lead us to the
discovery of T4, which is an element of O+. Furthermore, the group
G+ = ⟨T1, S1, S2, σ

∗
3 , RD4 , T4⟩ has a fundamental domain with finite

volume (see Figure 2), soG+ has finite index inO+. (In fact, G+ = O+,
since this fundamental domain has no symmetries. We leave the proof
to the reader, as the result is not a necessary component of the paper.
First we show that such an isometry cannot interchange the cusps D1

andD2 and then we analyze where the other vertices of the fundamental
domain can go.)

If σ∗
4 = T4 or S1σ

∗
3T4, then T4 ∈ O′′. It turns out the converse is

also true.

Lemma 3.1. Suppose T4 ∈ O′′. Then σ∗
4 = T4 or S1σ

∗
3T4.
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Proof. Select any five divisors Ci = (S1T4)
iD4 from the infinite orbit

of D4 under the action of ⟨S1T4⟩. It is easy to see that this orbit is
infinite since S1T4 is a translation on the boundary of the upper half-
space. Since S1T4 fixes D2, we get

Ci ·D2 = (S1T4)
iD4 ·D2 = D4 · (T4S1)

iD2 = D4 ·D2 = 1.

Note that S1σ
∗
3 commutes with both S1 and T4 (they are reflections

that are perpendicular to each other), so

S1σ
∗
3Ci = S1σ

∗
3(S1T4)

iD4 = (S1T4)
i(S1σ

∗
3)D4 = (S1T4)

iD4 = Ci.

And, of course, the image of Ci under the identity is also Ci.

Finally, since T4 ∈ O′′, each of the divisors Ci are nodal, i.e., they
each represent a rational curve. Let E be an elliptic curve in D2 that
does not include any of the finite number of intersections given by the
five Ci’s taken in pairs, and let Pi = Ci∩E, where we are now using Ci

to represent both a divisor class and (in this usage) the unique curve
in that divisor class. Then, of course, σ4(Pi) = −Pi. On the other
hand, σ4(Pi) = σ4(Ci ∩ E), so is in σ∗

4Ci ∩ E. But σ∗
4Ci = Ci, and

since Ci · D2 = 1, there is only one point in this image, namely, Pi,
i.e., −Pi = σ4(Pi) = Pi so 2Pi = 0. But E has at most four points P
such that 2P = 0, giving us a contradiction. Thus, σ∗

4 cannot be the
identity or S1σ

∗
3 , so it must be either T4 or S1σ

∗
3T4. �

We, therefore, have an incentive to prove T4 is in O′′.

The groups O′ and O′′ intersect at just the identity. Thus, an
element T ∈ O+ is in O′′ if and only if TD is ample for any (and
all) ample D. This gives us an incentive to find more ample divisors.

Lemma 3.2. Suppose D ∈ Pic(X ) and C0 is a nodal curve. Let Q be
the perpendicular projection (with respect to the intersection pairing) of
D onto the hyperplane C0 · x = 0. If D is ample, then every point on
the open line segment from D to Q is ample. If D is on the boundary
of the ample cone, C0 ·D ̸= 0, and the line DQ is not in a hyperplane
C · x = 0 for any nodal curve C, then every point on the open line
segment from D to Q is ample.

Proof. The ample cone is a polyhedral region bounded by the hy-
perplanes C · x = 0 where C ranges over all nodal curves. If two
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bounding hyperplanes C1 · x = 0 and C2 · x = 0 intersect, then the
angle θ of intersection, as measured inside the ample cone, is given by
2 cos θ = C1 · C2. Thus, θ = π/2 or π/3 (corresponding to C1 · C2 = 0
or 1). If not all points between D and Q are ample, then the segment
must cross the boundary of the ample cone, i.e., there must be a point
P on the line segment such that P is on the hyperplane C · x = 0 for
some nodal curve C. To arrive at a contradiction, we will construct a
triangle whose angle sum is greater than π.

Let U be the subspace spanned by D, C0, and C, so the intersection
of U with H is a hyperbolic plane. Since Q is in the space spanned
by D and C, Q is in U . Note that the hyperplanes C · x = 0 and
C0 · x = 0 must intersect, for if they do not, then C0 · x = 0 cannot
bound the ample cone anywhere since the ample cone is on the other
side of the hyperplane C · x = 0. This contradicts C0 being nodal.
Let R be the point of intersection of C0 · x = 0, C · x = 0, U , and
H. Consider ∆PQR. Note that ∠PQR = π/2, and ∠QRP is the
supplement of the angle θ described above, since P is outside the ample
cone. Hence, ∠QRP ≥ π/2, and the angle sum in ∆PQR is greater
than π, a contradiction, so P could not exist.

If D is on the boundary of the ample cone and C0 · D ̸= 0, then
C0 ·D > 0. If D+ ϵQ /∈ K for sufficiently small ϵ > 0, then there exists
a nodal C such that C · (D+ ϵQ) ≤ 0 for all ϵ > 0 sufficiently small. If
the line segment DQ is not on C · x = 0, then the inequality is strict.
In particular, since D ∈ ∂K, we have C · D = 0. If the hyperplanes
C · x = 0 and C0 · x = 0 do not intersect, then C · x < 0 for all x such
that C0 · x = 0, i.e., the hyperplane C0 · x = 0 is not a bounding plane
of K, which cannot be the case. Thus, they must intersect and we can
construct R as before. If R ̸= Q, then we arrive at a contradiction as
before using the triangle ∆DQR. If R = Q, then the line segment DQ
lies on C ′ · x = 0.

Thus, D + ϵQ ∈ K for sufficiently small ϵ > 0, and hence the open
line segment joining D + ϵQ and Q lies in the ample cone. Since ϵ > 0
is arbitrary, the open line segment DQ lies in the ample cone. �

Since D2 represents elliptic curves, it is on the boundary of the
ample cone. Since RD4D2 = D2 + D4, the projection of D2 onto
the plane D4 · x = 0 has the form Q = D2 + aD4. Solving for a
in D4 · (D2 + aD4) = 0, we get a = 1/2. Thus, D2 + cD4 is ample
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Figure 3. The Poincaré ball and upper half-space models of K/R+. Each
circle represents a hyperbolic plane that bounds the region. The region is
also a fundamental domain for O′.

for c ∈ (0, 1/2). In particular, D2 + D4/4 ∈ K, and since it is in the
eigenspace of T4 with eigenvalue 1, we get T4 ∈ O′′. Hence, σ∗

4 = T4 or
S1σ

∗
3T4.

We therefore conclude ⟨σ∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4⟩ has finite index (of 1 or 2) in

O′′ = ⟨T1, σ
∗
2 , σ

∗
3 , σ

∗
4 , S2⟩ = ⟨T1, σ

∗
2 , σ

∗
4 , S1, S2⟩, and that ⟨σ1, σ2, σ3, σ4⟩

has finite index in Aut(X ). We also get

O′ = ⟨RTD4 : T ∈ O′′⟩.

4. The ample cone. The ample cone is the conal region bounded
by the planes C · x = 0 where C ranges over all nodal curves, i.e., over
the O′′ orbit of D4. Modulo R+, the ample cone K lies in H, and is
depicted in Figure 3 in the Poincaré ball and upper half-space models.
The region K/R+ is also a fundamental domain for O′.

Associated to the ample cone is a fractal. Consider the sphere that
represents the boundary of H at infinity in the Poincaré ball model.
Every plane that bounds the ample cone K slices this sphere in two
pieces. Remove the piece that represents the half space that does not
include K. After doing this for all bounding planes of K, what is left
is a fractal. The fractal is also known as the limit set of O′′ and can
be thought of as the set of all points x ∈ ∂H such that, for any plane
in H that does not have x on its boundary, and any P ∈ H, there
exists T ∈ O′′ such that T (P ) and x are on the same side of the
plane. Experimental calculations suggest the dimension of that fractal
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is 1.415±0.003. For a more detailed description of how the calculation
is done, see [2].

5. Descent. One often uses a method of descent to navigate through
a lattice. Setting up an appropriate height and algorithm for descent
is sometimes difficult to accomplish and verify if viewed strictly alge-
braically. Geometrically, for a group G = ⟨Rn1 , . . . , Rnk

⟩ consisting of
reflections, the set up is trivially accomplished. Pick any ample divisor
D in the interior of the fundamental domain, and for each reflection
Rni , verify that D · ni > 0, replacing ni with its negative, if necessary.
Define h(P ) = D · P . For any P not in the closure of the fundamen-
tal domain, there exists an ni such that ni · P < 0. We descend by
replacing P with Rni(P ), since clearly h(Rni(P )) < h(P ). Descent
ends when no such ni exists, which means P is in the closure of the
fundamental domain.
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