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PURE SIMPLICIAL COMPLEXES AND
WELL-COVERED GRAPHS

RASHID ZAARE-NAHANDI

ABSTRACT. In this paper, we provide some necessary
and sufficient conditions to check when a (semi-)perfect
graph is well-covered. We show that the checking process
of these conditions can be achieved in a polynomial time.
Since the comparability graph of a simplicial complex is a
perfect graph, our result carries over to simplicial complexes.

1. Introduction. A graph G is said to be well-covered (or unmixed)
if every maximal independent set of vertices has the same cardinal-
ity. These graphs were introduced by Plummer [9] in 1970. Although
the recognition problem of well-covered graphs in general is Co-NP-
complete ([14]), certain classes of well-covered graphs have been char-
acterized. For instance, claw-free well-covered graphs [12], well-covered
graphs which have girth at least 5 [2], (4-cycle, 5-cycle)-free [3] or
chordal graphs [11], are all recognizable in a polynomial time. Excel-
lent surveys of results on well-covered graphs are given in Plummer [10]
and Hartnell [5].

Let G be a graph without loop or multiple edge. Denote the set of
vertices of G by V (G) and the set of edges by E(G). A subset A of
V (G) is called an independent set if there is no edge between any two
vertices of A. Denote the cardinality of the largest independent set in
G by α(G). A subset C of V (G) is called a clique if any two vertices
in C are adjacent.

Let A and B be subsets of V (G). We say A dominates B if, for
any vertex v in B, either v is in A or there is at least one vertex in A
adjacent to v. A set A is called a vertex cover of G if any edge of G has
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at least one vertex in A. A vertex cover is called minimal if no proper
subset of it is a vertex cover.

A subset M of E(G) is called a matching in G if no two edges in M
have a common vertex. A matching is called a perfect matching if it
covers all vertices of G.

Let [n] = {1, 2, . . . , n}. A (finite) simplicial complex ∆ on n vertices,
is a collection of subsets of [n] such that the following conditions hold:

a) {i} ∈ ∆ for every i ∈ [n],

b) if E ∈ ∆ and F ⊆ E, then F ∈ ∆.
An element of ∆ is called a face, and a maximal face with respect to
inclusion is called a facet. The set of all facets of ∆ is denoted by F(∆).
The dimension of a face F ∈ ∆ is defined to be |F | − 1, and dimension
of ∆ is the maximum of dimensions of its faces. A simplicial complex
is called pure if all of its facets have the same dimension. For more
details on simplicial complexes, we refer to [15].

Let G be a graph. The set of all independent sets of vertices of G is
a simplicial complex, because any single vertex is independent and any
subset of an independent set is again independent. We assume that the
empty set is also an independent set. This simplicial complex is called
the independence complex of G, and it is denoted by ∆G. With the
above definitions, a graph G is well-covered if and only if the complex
∆G is pure.

Let ∆ be a simplicial complex on the vertex set [n]. The comparabil-
ity graph of ∆ is the graph G(∆) whose vertices are the nonempty faces
of ∆, with two vertices adjacent if their corresponding faces are compa-
rable with the inclusion order. It is known that a simplicial complex ∆
is pure if and only if the complement of the graph G(∆) is well-covered
[7].

2. Well-covered semi-perfect graphs. A graph G is called per-
fect if the chromatic number of every induced subgraph equals the size
of the largest clique of that subgraph. It is known that a graph is
perfect if and only if its complement graph is perfect [8]. Therefore,
to define a perfect graph, we may say that, in every induced subgraph
H, there are k = α(H) disjoint cliques in H covering all its vertices.
The class of perfect graphs includes many important families of graphs
such as bipartite, chordal and comparability graphs. In this class, the
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graph coloring problem, maximum clique problem, and maximum in-
dependent set problem can all be solved in polynomial time.

A graph G is called semi-perfect if there are k = α(G) disjoint cliques
covering all vertices. It is clear that the class of semi-perfect graphs
includes strictly the class of perfect graphs. Let G be a semi-perfect
graph with k = α(G), and let Q1, . . . , Qk be disjoint cliques such that
V (Q1) ∪ · · · ∪ V (Qk) = V (G). We call such a set of cliques, a basic
clique cover of the graph G.

Now, we give some criteria equivalent to the well-covered property
of semi-perfect graphs.

Theorem 2.1. Let G be a semi-perfect graph with a basic clique cover
Q1, . . . , Qk. Then G is well-covered if and only if, for each i, 1 ≤ i ≤ k,
the following holds: If A ⊆ V (G) \Qi dominates Qi, then A is not an
independent set.

Proof. Assume thatG is well-covered. Let i, 1 ≤ i ≤ k, be given, and
let A ⊆ V (G)\Qi be a dominating set of Qi. If A is independent, then
there is a maximal independent set B containing A. But, B ∩Qi = ∅
because any vertex of Qi is adjacent to some vertices in A ⊆ B. On
the other hand, B has at most one element in common with each Qj ,
j ̸= i. Therefore, |B| < k, which is a contradiction to well-coveredness
of G.

Conversely, let A be a maximal independent set. Then |A∩Qi| ≤ 1
for every i, 1 ≤ i ≤ k and |A| ≤ k. The claim follows if one shows
|A| = k. Assume that |A∩Qi| = ∅ for some i, then by the assumption
A does not dominate Qi. Therefore, there exists v ∈ Qi which is not
adjacent to any vertex of A. By maximality of A, v ∈ A and hence
|A∩Qi| = 1, which is a contradiction. Therefore, |A∩Qi| = 1 and the
claim follows. �

Proposition 2.2. Let G be an s-partite well-covered graph such that all
maximal cliques are of size s. Then all parts have the same cardinality
and there is a perfect matching between any two parts.

Proof. Let V1, . . . , Vs be the given partition of V . Let v ∈ Vi for
some 1 ≤ i ≤ s. Every vertex of G belongs to some maximal clique,
and every maximal clique intersects every part Vj in exactly one vertex.
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Therefore, v is adjacent to some vertex in each Vj , 1 ≤ j ≤ s, j ̸= i.
Then, Vi is a maximal independent set because for every vertex w
outside Vi, there is an edge connecting w to some vertex in Vi. But G
is well-covered; therefore, the cardinality of all parts are equal.

Let 1 ≤ i < j ≤ s be two given integers. Let A ⊆ Vi be a nonempty
set, and let Nj(A) be the set of all vertices in Vj adjacent to some
vertex in A. Suppose that |Nj(A)| < |A|. There is no edge joining a
vertex of A with a vertex in Vj \ Nj(A). Therefore, A ∪ (Vj \ Nj(A))
is an independent set, and its size is strictly greater than the size
of Vj . This is a contradiction to well-coveredness of G. Therefore,
|Nj(A)| ≥ |A| for every nonempty subset A of Vi. Therefore, by the
theorem of Hall [4], there is a set of distinct representatives (SDR) for
the set {Nj({v}) : v ∈ Vi} which is a perfect matching between Vi and
Vj . �

It is not true in general that, in a well-covered s-partite graph G,
there is a basic clique cover. For instance, the following graph is 3-
partite, well-covered with maximal independent sets of size 2. But,
there are no two maximal cliques covering V (G).
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Stating many examples motivates the following conjecture.

Conjecture. Let G be an s-partite well-covered graph with all maximal
cliques of size s. Then, G is semi-perfect.

We now restate a result of Ravindra [13] on well-covered bipartite
graphs, with a slightly different proof.

Corollary 2.3. Let G be a bipartite graph with no isolated vertex.
Then, G is well-covered if and only if there is a perfect matching such
that for every edge {x, y} in this matching, the induced subgraph on
N [{x, y}] is a complete bipartite graph.
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Proof. Let G be well-covered. By Proposition 2.2, the cardinality of
both parts are equal and there is a perfect matching in G. Moreover,
the set of all edges in the matching forms a basic clique cover of G.
Let {x, y} be an edge in the matching. By Theorem 2.1, G is well-
covered if and only if every dominating set of {x, y} is dependent.
The last statement is equivalent to saying that every vertex in N({x})
is adjacent to every vertex in N({y}), i.e., the induced subgraph on
N [{x, y}] is a complete bipartite graph. �

3. An algebraic interpretation. In this section, we state an al-
gebraic interpretation of well-coveredness of semi-perfect graphs. First
we recall some definitions from commutative algebra.

Let G be a graph with vertex set {v1, . . . , vn}, and let K be a field.
Let I(G) be the ideal in the polynomial ring K[x1, . . . , xn] generated
by all monomials xixj provided that vi and vj are adjacent in G. The
ideal I(G) is called the edge ideal of the graph G, and the quotient
ring R(G) = K[x1, . . . , xn]/I(G) is said to be the edge ring of G. The
edge ideal of a graph was introduced by Villarreal [16] and has been
extensively studied.

Let ≼ be a monomial order on monomials in K[x1, . . . , xn], and
let I be an ideal of this ring. We denote by f the element f + I in
the quotient ring K[x1, . . . , xn]/I. It is well known that the set of all
elements m in K[x1, . . . , xn]/I such that m is a monomial which is
not divisible by the initial monomial of any element of I, is a K-basis
for the vector space K[x1, . . . , xn]/I. By the initial monomial of a
polynomial f , we mean the largest monomial in the support of f with
respect to a given monomial order. Therefore, a given monomial order
on monomials in K[x1, . . . , xn] can be carried to (nonzero) monomials
in K[x1, . . . , xn]/I. For more details on monomial ideals and orders,
see [6].

Lemma 3.1. Let K be a field, and let I ⊆ K[x1, . . . , xn] be an
ideal generated by square-free monomials. Let f be a nonzero linear
polynomial in R = K[x1, . . . , xn]/I. Then, f is zero-divisor in R if
and only if there is a nonzero square-free monomial m ∈ R such that
mf = 0.



700 RASHID ZAARE-NAHANDI

Proof. One direction of the statement is trivial. For the other
direction, first note that, if I is an ideal generated by some square-
free monomials, then a polynomial f belongs to I if and only if the
square-free part of any monomial of f belongs to I.

Let f be a zero-divisor linear form in R, then, there is a nonzero
polynomial g in R such that fg = 0, that is, fg ∈ I. We may re-index
the variables such that f = x1+a2x2+ · · ·+asxs, aj ∈ K. Let ≺ be the
lexicographic order on monomials in K[x1, . . . , xn] with respect to the
order on variables x1 ≻ x2 ≻ · · · ≻ xn. Let g = b1m1+b2m2+· · ·+btmt

be the decomposition of g to nonzero monomials such that m1 ≻ m2 ≻
· · · ≻ mt and bi ∈ K. Then, in fg, the monomial x1m1 is strictly
greater than all other monomials. Therefore, x1m1 must be zero in R.
The ideal I is square-free and x1m1 ∈ I; therefore, we may assume
that x1 - m1. Otherwise, if x1 | m1 then m1 ∈ I and m1 = 0 which
is a contradiction. The order is lexicographic and hence x1 - mi for
all 1 ≤ i ≤ t. On the other hand, fg − b1x1m1 ∈ I, and its greatest
monomial is x1m2 and then x1m2 ∈ I. Continuing this process, we
have x1mi ∈ I for all 1 ≤ i ≤ t and therefore, x1g ∈ I. The polynomial
(f − x1)g belongs to the ideal I, and its greatest monomial is x2m1

which must be in I. Similarly, x2mi ∈ I for all 1 ≤ i ≤ t. Finally,
we get ximj ∈ I for each 1 ≤ i ≤ s and 1 ≤ j ≤ t. This means that
mif ∈ I for each 1 ≤ i ≤ t. Specially m1f ∈ I, and because I is
square-free and f is linear, we may take m1 to be square-free. �

Note that, in the above lemma, the assumption that I is square-free
is essential. For example, let I = ⟨x3

1, x
3
2⟩ ⊂ K[x1, x2]. Then, (x1 −

x2)(x
2
1+x1x2+x2

2) ∈ I, that is, x1−x2 is a zero-divisor in K[x1, x2]/I.
But, there is no nonzero square-free monomial annihilating x1 − x2.

Now, we state the main theorem of this section.

Theorem 3.2. Let G be a semi-perfect graph, and let Q1, . . . , Qk be a
basic clique cover of G, where k = α(G). Consider

θi =
∑

vj∈Qi

xj , i = 1, . . . , k.

Then, G is well-covered if and only if for every i = 1, . . . , k, the linear
form θi is a non-zero-divisor in the ring R(G).
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Proof. Let θi be zero-divisor in R(G) for some 1 ≤ i ≤ k. Then,
by Lemma 3.1, there is a nonzero square-free monomial m in R(G)
such that mθi = 0, or equivalently, mθi ∈ I(G). The ideal I(G) is
a monomial ideal; thus, for each vj in Qi, we have mxj ∈ I(G). Let
m = xi1 · · ·xir and A = {vi1 , . . . , vir}. Then, mxj ∈ I(G) means
that there is a vertex vil in A such that vil is adjacent to vj , or
equivalently, the set A is a dominating set of Qi. On the other hand,
if vj is in A ∩ Qi, then xjθ = x2

j in R(G), and there is a vil in A

adjacent to vj . Therefore, m = 0 which is a contradiction. Therefore,
A ⊆ V (G) \ V (Qi). Note that A is independent if and only if m is not
zero in R(G). Now, Theorem 2.1 implies that if θi is a zero-divisor in
R(G) for some 1 ≤ i ≤ k, then G is not well-covered.

Conversely, ifG is not well-covered then, again by Theorem 2.1, there
is an independent set {vi1 , . . . , vir} ⊆ V (G) \ V (Qi) which dominates
Qi for some 1 ≤ i ≤ k. In this case, m = xi1 · · ·xir is a nonzero
monomial in R(G) such that mθi = 0, and hence θi is zero-divisor.
This completes the proof. �

Let G be a semi-perfect graph. Then, by Theorem 3.2, G is well-
covered if and only if every form θi is non-zero-divisor in the ring R(G).
On the other hand, the set of all zero-divisors of R(G) is the union of
all minimal primes of the ideal I(G). The minimal primes of I(G)
correspond to the minimal vertex covers of G. Therefore, checking
well-coveredness of the graph G is equivalent to checking that, for each
i, 1 ≤ i ≤ k, the set of vertices of Qi is part of a minimal vertex cover
of G. But, this is a simple task: it is enough to check that the set of
vertices of Qi is a minimal vertex cover of the subgraph of G induced
by N(Qi), which can be done in polynomial time. Summing up, we
have proved the following.

Corollary 3.3. The well-coveredness of a semi-perfect graph can be
checked in polynomial time.

By the argument at the end of the introduction, an arbitrary graph
G is well-covered if and only if the complement of the corresponding
graph G(∆G) is well-covered. The graph G(∆G) and its complement
are perfect and, therefore, well-coveredness of them can be checked in
polynomial time. But, this does not solve the hardness of the problem
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of checking well-coveredness of a graph, because passing from G to
G(∆G) cannot be performed in polynomial time. In fact, the graph
G(∆G) has a huge number of vertices compared to those of G.
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