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G-FRAMES WITH BOUNDED LINEAR OPERATORS

XIANG-CHUN XIAO, YU-CAN ZHU, ZHI-BIAO SHU AND MING-LING DING

ABSTRACT. In this paper, we introduce the more gen-
eral g-frame which is called a K-g-frame by combining a
g-frame with a bounded linear operator K in a Hilbert space.
We give several equivalent characterizations for K-g-frames
and discuss the stability of perturbation for K-g-frames. We
also investigate the relationship between a K-g-frame and
the range of the bounded linear operator K. In the end,
we give two sufficient conditions for the remainder of a K-
g-frame after an erasure to still be a K-g-frame. It turns
out that although K-g-frames share some properties similar
to g-frames, a large part of K-g-frames behaves completely
different from g-frames.

1. Introduction. Ordinary frames for Hilbert spaces were first in-
troduced by Duffin and Schaeffer [9] in 1952 for studying some deep
problems in nonharmonic Fourier series. Recall that a sequence {fi}i∈I

in a Hilbert space H is called an ordinary frame for H, if there exist
two constants A,B > 0 such that

A∥f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2, for all f ∈ H.

Due to the fundamental work [5] done by Daubechies, Grossmann
and Meyer in 1986, ordinary frames were reintroduced, developed,
and popularized from then on. Now the theory of ordinary frames
plays an important role in theoretics and applications; it has been
applied extensively in signal and image processing [2], sampling theory
[10, 21], filter bank theory [1], system modeling [8], coding and
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communications [13], etc. For more details on ordinary frames readers
can consult [3, 4].

One of the main properties of a frame which is different from an
orthonormal basis is that the frames provide reconstruction formulas
where the coefficients are not necessarily unique. In order to study the
atomic system with an operator (actually a kind of reconstruction),
Gavruta [12] recently introduced a frame with respect to a bounded
linear operator K in a Hilbert space H; for convenience, we call it a
K-frame, to reconstruct the elements in the range of K. Recall that
{fi}i∈I ⊂ H is called a K-frame for H, if there exist two constants
A,B > 0 such that

A∥K∗f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2, for all f ∈ H.

In fact, a K-frame is a more general version of the ordinary frame; the
K-frame is equivalent to the ordinary frame only when K = IH . Due to
the bounded linear operator K, there are so many differences between
a K-frame and an ordinary frame. {fi}i∈I is an ordinary frame if and
only if the corresponding synthesis operator is bounded and surjective,
but for the K-frame, it is very different. K-frame {fi}i∈I ⊂ H equals
that the corresponding synthesis operator T is bounded and the range
of K belongs to the range of T ([12, Theorem 4]). We also discover
that the positions of the two sequences related to a K-frame dual ([12,
Theorem 3 (iii)]) are not interchanged in general in [25]. Just because
the properties of K-frames are so different from the ordinary frames’,
this inspires us to combine the bounded linear operator K with the
more complicated g-frame, which we call the K-g-frame. Compared
with [12, 25], we will first discuss the excess of K-g-frames in this
paper.

The g-frame in a Hilbert space was first proposed by Sun [19] using
a sequence of bounded linear operators to deal with all the existing
frames as a united object. In fact, the g-frame is an extension of
ordinary frames, bounded invertible linear operators, as well as many
new appeared generalizations of frames, e.g., bounded quasi-projectors
and fusion frames, etc. Recall that a sequence {Λj : j ∈ J} is called a
g-frame for U with respect to {Vj : j ∈ J}, if there exist two positive
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constants A,B such that

A∥f∥2 ≤
∑
j∈J

∥Λjf∥2 ≤ B∥f∥2, for all f ∈ U ,

where U ,Vj are Hilbert spaces and Λj , j ∈ J , are bounded linear
operators from U into Vj . From [16, 17, 19, 20], we know that,
though g-frames share many nice properties of the previous frames,
not all the results of the previous frames can be generalized to g-
frames, e.g., in Hilbert spaces exact g-frames are not the g-Riesz bases
[19], a g-Riesz frame does not contain a g-Riesz basis [17], etc. Even
though some properties of the frames can be generalized to g-frames,
the techniques are more complicated. We refer the reader to the papers
[14, 15, 22, 23, 24, 26, 27, 28] for more information about g-frames
and their generalizations.

In the rest of this section we introduce the organization of this paper
and some basic notation.

This paper is organized as follows. In Section 2, we review some basic
contents of a K-g-frame. In Section 3, we use the induced sequence
{uj,k : j ∈ J, k ∈ Kj}, the synthesis operator and atomic systems,
respectively, to equivalently characterize the K-g-frames. In Section 4,
we mainly discuss the stability of perturbations for a K-g-frame, we
give two kinds of versions of the stability of perturbations for a K-g-
frame. In Section 5, we discuss the relationship among two K-g-frames
and the range inclusion of the related two operators. In Section 6, we
study the excess of K-g-frames.

Throughout this paper, we adopt such notation: U and V are Hilbert
spaces, with inner product ⟨·, ·⟩, and norm ∥ · ∥; L(U ,V) is denoted
by the collection of all the linear bounded operators from U to V;
if U = V, then L(U ,V) is abbreviated as L(U); 0 ̸= K ∈ L(U); if
Q ∈ L(U ,V), R(Q) and N(Q) are denoted by the range and null space
of Q, respectively; {Vj}j∈J is a sequence of closed subspaces of V, where
J is a subset of the integer set Z.

2. Preliminaries of K-g-frames. In this section, we first intro-
duce a more general version of the g-frame with respect to a linear
bounded operator K in H, and we call it the K-g-frame. The gen-
erality for the K-g-frame is mainly in that only part of the elements
in H (in fact, the elements in R(K)) play a role in the lower frame
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bound; the other elements in R(K)⊥ ⊂ H are turned into zeros by the
bounded linear operator K∗.

Definition 2.1. A sequence {Λj ∈ L(U ,Vj) : j ∈ J} is called a K-g-
frame for U with respect to (w.r.t.) {Vj : j ∈ J}, if there exist A,B > 0
such that

(2.1) A∥K∗f∥2 ≤
∑
j∈J

∥Λjf∥2 ≤ B∥f∥2, for all f ∈ U .

We call A,B the lower frame bound and upper frame bound for the
K-g-frame {Λj : j ∈ J}, respectively. We call {Λj : j ∈ J} a g-Bessel
sequence if only the right-hand of (2.1) holds.

If A∥K∗f∥2 =
∑

j∈J ∥Λjf∥2, for all f ∈ U , we call {Λj : j ∈ J} a

tight K-g-frame; moreover, if A = 1, {Λj : j ∈ J} is called a Parseval
K-g-frame.

Example 2.2. Suppose that {en}∞n=1 is an orthonormal basis for U .
Let

Vj = span {e(j−1)m+k : 1 ≤ k ≤ m}, j = 1, 2, 3, . . . ,

where m ≥ 3 is a fixed positive integer. Now define the linear bounded
operators K : U → U and Λj : U → Vj as follows:

Ke1 = e1, Ke2 = e2, Kej = 0, j > 2.

Λ1f =

m∑
k=1

⟨f, ek⟩ek; Λjf = 0, j ≥ 2.

It is easy to calculate K∗e1 = e1, K
∗e2 = e2, K

∗ej = 0, j > 2. Next
we show that {Λj}∞j=1 is a K-g-frame. In fact, for any f ∈ U , we have

∥K∗f∥2 =

∥∥∥∥ ∞∑
j=1

⟨f, ej⟩K∗ej

∥∥∥∥2 = |⟨f, e1⟩|2 + |⟨f, e2⟩|2,

∞∑
j=1

∥Λjf∥2 = ∥Λ1f∥2 =

∥∥∥∥ m∑
k=1

⟨f, ek⟩ek
∥∥∥∥2 =

m∑
k=1

|⟨f, ek⟩|2 ≥ ∥K∗f∥2.
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So we have, for any f ∈ U ,

∥K∗f∥2 ≤
∞∑
j=1

∥Λjf∥2 ≤ ∥f∥2.

Next we can show that {Λj}∞j=1 is not a g-frame. In fact, if we take

f = em+1, then ∥f∥2 = 1, but
∑∞

j=1 ∥Λjf∥2 = ∥Λ1em+1∥2 = 0. �

To proceed with this section we need to define a basic space
l2({Vj}j∈J) as follows:

l2({Vj}j∈J) =
{
{gj}j∈J : gj ∈ Vj , j ∈ J and

∑
j∈J

∥gj∥2 < +∞
}
,

with the inner product

⟨{fj}j∈J , {gj}j∈J⟩ =
∑
j∈J

⟨fj , gj⟩.

It is trivial to show that l2({Vj}j∈J ) is a Hilbert space.

Suppose that {ẽjk}k∈Kj is an orthonormal basis for Vj , where
Kj is a subset of Z. For any j ∈ J , k ∈ Kj , eik is defined by
eik = {δij ẽjk}j∈J , where δik is the Kronecker delta. It is easy to check
that {eik : i ∈ J, k ∈ Kj} is an orthonormal basis for l2({Vj}j∈J).

We are ready to introduce a sequence induced by a K-g-frame and
the analysis operator, synthesis operator and frame operator for a K-
g-frame.

Suppose that {Λj ∈ L(U ,Vj) : j ∈ J} is a K-g-frame for U
w.r.t. {Vj : j ∈ J}. A sequence {uj,k : j ∈ J, k ∈ Kj} induced
by a K-g-frame {Λj : j ∈ J} with respect to the orthonormal basis
{eik : i ∈ J, k ∈ Kj} for l2({Vj}j∈J ) is defined as follows

uj,k = Λ∗
jej,k : j ∈ J, k ∈ Kj .

Assume that {Λj ∈ L(U ,Vj) : j ∈ J} is a g-Bessel sequence. The
analysis operator U , synthesis operator T and frame operator S of
{Λj : j ∈ J} are defined as follow:

U : U → l2({Vj}j∈J), Uf = {Λjf}j∈J ,(2.2)
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T : l2({Vj}j∈J ) −→ U , T ({gj}j∈J ) =
∑
j∈J

Λ∗
jgj ,(2.3)

S : U −→ U , Sf =
∑
j∈J

Λ∗
jΛjf,(2.4)

It is trivial to check that T ∗ = U, S = TU .

3. Equivalent characterizations for K-g-frames. In this sec-
tion, we will give the equivalent characterizations for K-g-frames by
using the induced sequence {uj,k : j ∈ J, k ∈ Kj}, the synthesis op-
erator and atomic systems, respectively. To do this, we first need to
introduce the concept of an atomic system for a linear bounded oper-
ator and cite two lemmas.

Definition 3.1. A sequence {Λj ∈ L(U ,Vj) : j ∈ J} is called an
atomic system for K, if the following statements hold:

(i) {Λj ∈ L(U ,Vj) : j ∈ J} is a g-Bessel sequence;
(ii) for any f ∈ U , there exists {gj}j∈J ∈ l2({Vj}j∈J) such that

Kf =
∑

j∈J Λ∗
jgj , where ∥{gj}j∈J∥l2 ≤ C∥f∥, and C is a positive

constant.

Lemma 3.2 ([7]). Assume that T1 ∈ L(H1,H), T2 ∈ L(H2,H), where
H1,H2,H are Hilbert spaces. Then the following statements hold :

(i) R(T1) ⊂ R(T2);
(ii) T1T

∗
1 ≤ αT2T

∗
2 , where α ≥ 0 is a constant ;

(iii) there exists a linear bounded operator Q ∈ L(H1,H2) such that
T1 = T2Q.

Remark 3.3. If T1 ̸= 0, then α > 0.

Lemma 3.4 ([22]). A sequence {Λj ∈ L(U ,Vj) : j ∈ J} is a g-Bessel
sequence with upper bound B, if and only if the operator T defined by
(2.3) is well defined and bounded, and ∥T∥ ≤

√
B.

In the following, we give an equivalent characterization for the K-
g-frame by using the synthesis operator, which is completely different
from the corresponding part of g-frames (see [28, Theorem 2.4]).
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Theorem 3.5. A sequence {Λj ∈ L(U ,Vj) : j ∈ J} is a K-g-frame for
U with respect to {Vj : j ∈ J}, if and only if the operator T defined by
(2.3) is well defined and bounded, and R(K) ⊂ R(T ).

Proof. Suppose that {Λj ∈ L(U ,Vj) : j ∈ J} is a K-g-frame for U
w.r.t. {Vj : j ∈ J} with frame bounds A,B. Obviously, {Λj : j ∈ J} is
a g-Bessel sequence for U with respect to {Vj : j ∈ J}, so we can define
the operator T as in (2.3), and we have

(3.1) A∥K∗f∥2 ≤ ∥T ∗f∥2 ≤ B∥f∥2, for all f ∈ U .

It follows that T is bounded, and ∥T∥ ≤
√
B. From (3.1), we also have

(3.2) ⟨AKK∗f, f⟩ = A∥K∗f∥2 ≤ ∥T ∗f∥2 = ⟨TT ∗f, f⟩

for any f ∈ U , that is, AKK∗ ≤ TT ∗, so we conclude that R(K) ⊂
R(T ) by Lemma 3.2.

On the converse, if the operator T as in (2.3) is well defined and
bounded, we know that {Λj ∈ L(U ,Vj) : j ∈ J} is a g-Bessel
sequence for U with respect to {Vj : j ∈ J} by Lemma 3.4. And,
since R(K) ⊂ R(T ), from Lemma 3.2 and Remark 3.3, we have
AKK∗ ≤ TT ∗. Combining this with (3.2), we obtain

A∥K∗f∥2 ≤ ∥T ∗f∥2 =
∑
j∈J

∥Λjf∥2,

which implies that {Λj : j ∈ J} is a K-g-frame for U with respect to
{Vj : j ∈ J}. �

Next we use the induced sequence {uj,k : j ∈ J, k ∈ Kj} to
characterize K-g-frame equivalently.

Theorem 3.6. A sequence {Λj ∈ L(U ,Vj) : j ∈ J} is a (tight) K-
g-frame, if and only if {uj,k = Λ∗

jej,k : j ∈ J, k ∈ Kj} is a (tight)
K-frame for U .

Proof. Suppose that {ẽjk}k∈Kj is an orthonormal basis for Vj , j ∈ J .
Then, for any f ∈ U and j ∈ J , we have
(3.3)

Λjf =
∑
k∈Kj

⟨Λjf, ẽjk⟩ẽjk =
∑
k∈Kj

⟨f,Λ∗
j ẽjk⟩ẽjk =

∑
k∈Kj

⟨f, uj,k⟩ẽjk.
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So, for any f ∈ U , from (3.3), we have∑
j∈J

∥Λjf∥2 =
∑
j∈J

∥∥∥∥ ∑
k∈Kj

⟨f, uj,k⟩ẽjk
∥∥∥∥2 =

∑
j∈J

∑
k∈Kj

|⟨f, uj,k⟩|2.

It follows that {Λj : j ∈ J} is a (tight) K-g-frame, if and only if
{uj,k : j ∈ J, k ∈ Kj} is a (tight) K-frame for U . �

Remark 3.7. From the proof of Theorem 3.6, we know that the frame
operators of {Λj : j ∈ J} and {uj,k : j ∈ J, k ∈ Kj} are equal.

In the rest of this section we give equivalent characterizations for a
K-g-frame by using atomic systems.

Theorem 3.8. Suppose that {Λj ∈ L(U ,Vj) : j ∈ J} is a g-Bessel
sequence. Then the following statements are equivalent :

(i) {Λj : j ∈ J} is an atomic system for K;
(ii) {ΛjQ ∈ L(U ,Vj) : j ∈ J} is an atomic system for linear bounded

operator Q∗K, where Q is surjective on U ;
(iii) {Λj ∈ L(U ,Vj) : j ∈ J} is a K-g-frame;
(iv) there exists another g-Bessel sequence {Γj ∈ L(U ,Vj) : j ∈ J}

such that

(3.4) Kf =
∑
j∈J

Λ∗
jΓjf, for all f ∈ U ;

(v) there exists another g-Bessel sequence {Γj ∈ L(U ,Vj) : j ∈ J}
such that K∗f =

∑
j∈J Γ∗

jΛjf , for all f ∈ U ;
(vi) for all f, g ∈ U , there is ⟨Kf, g⟩ =

∑
j∈J ⟨Γjf,Λjg⟩, where

{Γj ∈ L(U ,Vj) : j ∈ J} is another g-Bessel sequence.

Proof. (i) ⇒ (ii). Assume that (i) holds. So, for any f ∈ U , there
exist {gj}j∈J ∈ l2({Vj}j∈J) and C > 0 such that

(3.5) Kf =
∑
j∈J

Λ∗
jgj , ∥{gj}j∈J∥ ≤ C∥f∥.

Since Q is surjective on U and Kf ∈ U , we have

(3.6) Q∗Kf =
∑
j∈J

Q∗Λ∗
jgj =

∑
j∈J

(ΛjQ)∗gj .
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Combining this with (3.5), we obtain that {ΛjQ ∈ L(U ,Vj) : j ∈ J} is
an atomic system for linear bounded operator Q∗K.

(ii) ⇒ (i). Assume that (ii) holds. So, for any f ∈ U , there exist
{gj}j∈J ∈ l2({Vj}j∈J ) such that (3.6) holds, and ∥{gj}j∈J∥ ≤ C∥f∥,
where C is a positive constant. From (3.6), we obtain that

Q∗
(
Kf −

∑
j∈J

Λ∗
jgj

)
= 0, for all f ∈ U .

And, since Q is surjective on U , so Q∗ is injective on U ; hence, we have

Kf −
∑
j∈J

Λ∗
jgj = 0, for all f ∈ U ,

it follows that {Λj : j ∈ J} is an atomic system for K.

(i) ⇒ (iii). Assume that (i) holds. So, for any h ∈ U , there exist
{gj}j∈J ∈ l2({Vj}j∈J) and C > 0 such that (3.5) holds. So we have

∥K∗f∥ = sup
h∈U,∥h∥=1

|⟨K∗f, h⟩| = sup
h∈U,∥h∥=1

|⟨f,Kh⟩|

= sup
h∈U,∥h∥=1

∣∣∣∣⟨f,∑
j∈J

Λ∗
jgj⟩

∣∣∣∣ = sup
h∈U,∥h∥=1

∣∣∣∣∑
j∈J

⟨Λjf, gj⟩
∣∣∣∣

≤ sup
h∈U,∥h∥=1

(∑
j∈J

∥Λjf∥2
)1/2

·
(∑

j∈J

∥gj∥2
)1/2

≤ sup
h∈U,∥h∥=1

(∑
j∈J

∥Λjf∥2
)1/2

· C∥h∥ = C

(∑
j∈J

∥Λjf∥2
)1/2

.

That is, for any f ∈ U , we have

1

C2
∥K∗f∥2 ≤

∑
j∈J

∥Λjf∥2,

which implies that {Λj ∈ L(U ,Vj) : j ∈ J} is a K-g-frame.

(iii) ⇒ (iv). Assume that (iii) holds. So we can define the operator
T as in (2.3). Moreover, we know that (3.1) holds, and it follows
that AKK∗ ≤ TT ∗. By Lemma 3.2, there exists a linear bounded
operator Γ : U → l2({Vj}j∈J) such that K = TΓ. Define Γj : U → Vj ,
Γjf = (Γf)j . It is easy to show that Γj ∈ L(U ,Vj), j ∈ J , and {Γj}j∈J
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is a g-Bessel sequence. In fact, for any f ∈ U , j ∈ J , we have

∥Γjf∥ ≤ ∥{Γjf}j∈J∥ = ∥Γf∥ ≤ ∥Γ∥ · ∥f∥,

and ∑
j∈J

∥Γjf∥2 = ∥Γf∥2 ≤ ∥Γ∥2 · ∥f∥2.

Moreover, we have

Kf = TΓf =
∑
j∈J

Λ∗
j (Γf)j =

∑
j∈J

Λ∗
jΓjf for all f ∈ U .

It is trivial to prove (iv) ⇔ (v), (iv) ⇔ (vi) and (iv) ⇒ (i). �

4. The stability of perturbations of K-g-frames. In this sec-
tion, we give two kinds of versions of the stability of perturbations for
a K-g-frame. Note that, in Theorem 4.2, we need R(K) to be closed.

Theorem 4.1. Let {Λj ∈ L(U ,Vj) : j ∈ J} be a K-g-frame for
U w.r.t. {Vj : j ∈ J}, with frame bounds A,B. Let {cj}j∈J be
a sequence of positive numbers such that

∑
j∈J c2j < ∞. Suppose

that Γj ∈ L(U ,Vj), j ∈ J . If there exist α, β ∈ (−1, 1) such that

(1− α)
√
A > (

∑
j∈J c2j )

1/2 and, for any f ∈ U , j ∈ J ,

(4.1) ∥Λjf − Γjf∥ ≤ α∥Λjf∥+ β∥Γjf∥+ cj∥K∗f∥,

then {Γj ∈ L(U ,Vj) : j ∈ J} is a K-g-frame for U w.r.t. {Vj : j ∈ J},
with frame bounds

(
(1− α)

√
A−

(∑
j∈J c2j

)1/2
1 + β

)2

,

(
(1 + α)

√
B + ∥K∥

(∑
j∈J c2j

)1/2
1− β

)2

.

Proof. For any f ∈ U , j ∈ J , from (4.1) we obtain

∥Γjf∥ − ∥Λjf∥ ≤ ∥Λjf − Γjf∥ ≤ α∥Λjf∥+ β∥Γjf∥+ cj∥K∗f∥,

so we have

∥Γjf∥ ≤ 1 + α

1− β
∥Λjf∥+

cj∥K∥
1− β

∥f∥.
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Hence, for any f ∈ U , we get(∑
j∈J

∥Γjf∥2
)1/2

≤
(∑

j∈J

(
1 + α

1− β
∥Λjf∥+

cj∥K∥
1− β

∥f∥
)2)1/2

=

∥∥∥∥{1 + α

1− β
∥Λjf∥

}
j∈J

+

{
∥K∥
1− β

∥f∥cj
}

j∈J

∥∥∥∥
l2(J)

≤
∥∥∥∥{1 + α

1− β
∥Λjf∥

}
j∈J

∥∥∥∥
l2(J)

+

∥∥∥∥{ ∥K∥
1− β

∥f∥cj
}

j∈J

∥∥∥∥
l2(J)

=
1 + α

1− β

(∑
j∈J

∥Λjf∥2
)1/2

+
∥K∥
1− β

(∑
j∈J

c2j

)1/2

∥f∥

≤
(1 + α)

√
B + ∥K∥

(∑
j∈J c2j

)1/2
1− β

∥f∥,

which implies that {Γj ∈ L(U ,Vj) : j ∈ J} is a g-Bessel sequence for U
w.r.t. {Vj : j ∈ J}.

Next we show that {Γj ∈ L(U ,Vj) : j ∈ J} has the lower frame
bound. In fact, for any f ∈ U , j ∈ J , from (4.1) we also have

∥Λjf∥ ≤ 1 + β

1− α
∥Γjf∥+

cj
1− α

∥K∗f∥.

Similarly, we can obtain(∑
j∈J

∥Λjf∥2
)1/2

≤ 1 + β

1− α

(∑
j∈J

∥Γjf∥2
)1/2

+
1

1− α

(∑
j∈J

c2j

)1/2
∥K∗f∥,

it follows that(∑
j∈J

∥Γjf∥2
)1/2

≥ 1− α

1 + β

(∑
j∈J

∥Λjf∥2
)1/2

− 1

1 + β

(∑
j∈J

c2j

)1/2
∥K∗f∥

≥
(1− α)

√
A−

(∑
j∈J c2j

)1/2

1 + β
∥K∗f∥. �
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The next perturbation result in Theorem 4.2 is an extension of
Theorem 3.13 in [25] from K-frame to K-g-frame.

Theorem 4.2. Assume that R(K) is closed. Suppose that {Λj ∈
L(U ,Vj) : j ∈ J} is a K-g-frame with frame bounds A,B, and

Γj ∈ L(U ,Vj), j ∈ J . If there exist α, β, γ satisfying α+γ
√
A−1∥K+∥ ∈

(−1, 1) and β ∈ (−1, 1), such that∥∥∥∥ ∑
j∈J1

(Λ∗
j − Γ∗

j )gj

∥∥∥∥ ≤ α

∥∥∥∥ ∑
j∈J1

Λ∗
jgj

∥∥∥∥+ β

∥∥∥∥ ∑
j∈J1

Γ∗
jgj

∥∥∥∥(4.2)

+ γ

(∑
j∈J1

∥gj∥2
)1/2

,

where J1 ⊂ J is an any finite subset, gj ∈ Vj, j ∈ J1, then {Γj ∈
L(U ,Vj) : j ∈ J} is a PQ(R(K))K-g-frame for U w.r.t. {Vj : j ∈ J},
with frame bounds

[
√
A∥K+∥−1(1− α)− γ]2

(1 + β)2∥K∥2
,

[
√
B(1 + α) + γ]2

(1− β)2
,

where PQ(R(K)) is a bounded projection from U onto Q(R(K)), and
Q = T1T

∗, T, T1 are the synthesis operators for {Λj : j ∈ J} and
{Γj : j ∈ J}, respectively.

Proof. The reader can check [20] for the proof of showing that
{Γj ∈ L(U ,Vj) : j ∈ J} is a g-Bessel sequence for U w.r.t. {Vj}j∈J .
As for the proof of {Γj}j∈J satisfying the lower frame condition, the
reader can check it in light of the proof for Theorem 3.13 in [25], step
by step. �

5. Relationship between K-g-frames and the range of K.
Let K1 and K2 be two bounded linear operators in U , and let {Λj ∈
L(U ,Vj) : j ∈ J} be a g-Bessel sequence on U w.r.t. {Vj : j ∈ J}.
Next we investigate the relationship between {Λj : j ∈ J} and the
range inclusion R(K1) ⊂ R(K2). For this, we first need to introduce
some notation. Denote FK({Λj}j∈J ), F

T
K({Λj}j∈J) and FP

K ({Λj}j∈J )
as the set of all K-g-frames, tight K-g-frames and Parseval K-g-frames,
respectively, for U w.r.t. {Vj : j ∈ J}.
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Theorem 5.1. Assume that K2 ̸= 0. If R(K2) ⊂ R(K1), then
FK1

({Λj}j∈J) ⊂ FK2
({Λj}j∈J).

Proof. Assume that K2 ̸= 0. Since R(K2) ⊂ R(K1), from
Lemma 3.2 and Remark 3.3, we have

(5.1) ∥K∗
2f∥2 ≤ α2∥K∗

1f∥2, for all f ∈ U ,

where α > 0. And, since {Λj : j ∈ J} is a K1-g-frame for U
w.r.t. {Vj : j ∈ J}, we then have

(5.2) A∥K∗
1f∥2 ≤

∑
j∈J

∥Λjf∥2 ≤ B∥f∥2, for all f ∈ U .

Combining this with (5.1) and (5.2), we obtain that, for any f ∈ U ,

(5.3)
A

α2
∥K∗

2f∥2 ≤
∑
j∈J

∥Λjf∥2 ≤ B∥f∥2,

which implies that {Λj ∈ L(U ,Vj) : j ∈ J} is a K2-g-frame for U
w.r.t. {Vj : j ∈ J}, with frame bounds A/α2, B. �

For now, we do not know whether the converse of Theorem 5.1 holds
for any fusion frames, but if we restrict the K1-g-frame {Λj : j ∈ J} to
be tight, we can derive that the converse of Theorem 5.1 still holds.

Theorem 5.2. If FT
K1

({Λj}j∈J ) ⊂ FK2({Λj}j∈J ), then R(K2) ⊂
R(K1).

Proof. Suppose that {Λj : j ∈ J} is a tight K1-g-frame for U
w.r.t. {Vj : j ∈ J}, with frame bound A > 0. So we have

(5.4) A∥K∗
1f∥2 =

∑
j∈J

∥Λjf∥2, for all f ∈ U .

And, since FT
K1

({Λj}j∈J) ⊂ FK2({Λj}j∈J), it follows that

(5.5) C∥K∗
2f∥2 ≤

∑
j∈J

∥Λjf∥2 ≤ D∥f∥2, for all f ∈ U ,

where C,D > 0 are the frame bounds. Combining with (5.4) and (5.5)
we have

∥K∗
2f∥2 ≤ A

C
∥K∗

1f∥2, for all f ∈ U ,
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it follows that R(K2) ⊂ R(K1) by Lemma 3.2. �

6. Excess of K-g-frames. In this section, we will study the excess
of K-g-frames. We will give two sufficient conditions for the remainder
of a K-g-frame after an erasure of some elements to be still a K-g-
frame; at the same time, we also provide a sufficient condition for the
remainder not to be a K-g-frame. It turns out that the excess of K-g-
frames behaves completely different from g-frames.

Lemma 6.1 ([4]). Suppose that Q ∈ L(U ,V) and R(Q) is closed.
Then, there exists a unique pseudo-inverse Q+ : V → U of Q that
satisfies

N(Q+) = R(Q)⊥, R(Q+) = N(Q)⊥, QQ+f = f, for all f ∈ R(Q).

If Q ∈ L(U ,V) is invertible, then Q+ = Q−1.

Theorem 6.2. Let {Λj ∈ L(U ,Vj) : j ∈ J} be a K-g-frame with
frame bounds A,B. Let I ⊂ J and R(K) be closed. Then the following
statements hold :

(i) If

(6.1) WJ\I ,
{ ∑

j∈J\I

Λ∗
jgj : for any j ∈ J\I, gj ∈ Vj

}
⊂ R(K)

and

WI ,
{∑

j∈I

Λ∗
jgj : for any j ∈ I, gj ∈ Vj

}
⊂ R(K)⊥,

then {Λj ∈ L(U ,Vj) : j ∈ J\I} is a K-g-frame with frame bounds
A,B.

(ii) If (6.1) holds and A − ∥K+∥2
∑

j∈I ∥Λj∥2 > 0, then {Λj ∈
L(U ,Vj) : j ∈ J\I} is a K-g-frame with frame bounds A −
∥K+∥2

∑
j∈I ∥Λj∥2, B, where K+ is the pseudo-inverse of K.

(iii) If {0} ≠ WI ⊂ R(K) and WJ\I ⊥ WI , then {Λj ∈ L(U ,Vj) : j ∈
J\I} is not a K-g-frame.
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Proof. (i) Since WI ⊂ R(K)⊥, Λjf ∈ Vj for any j ∈ J , f ∈ U , we
then have

0 =

⟨∑
j∈I

Λ∗
jΛjg, g

⟩
=
∑
j∈I

⟨Λjg,Λjg⟩ =
∑
j∈I

∥Λjg∥2,

where g ∈ R(K) ⊂ U , it follows that

(6.2) Λjg = 0, for all j ∈ I, g ∈ R(K).

Similarly, by the condition WJ\I ⊂ R(K), we can obtain

(6.3) Λjh = 0, for all j ∈ J\I, h ∈ R(K)⊥.

From (6.2), we have∑
j∈J

∥Λjg∥2 =
∑

j∈J\I

∥Λjg∥2 +
∑
j∈I

∥Λjg∥2(6.4)

=
∑

j∈J\I

∥Λjg∥2, for all g ∈ R(K) ⊂ U .

For any g ∈ R(K) ⊂ U , since {Λj ∈ L(U ,Vj) : j ∈ J} is a K-g-frame
with frame bounds A,B, we have

(6.5) A∥K∗g∥2 ≤
∑
j∈J

∥Λjg∥2 ≤ B∥g∥2.

Combining (6.4) and (6.5), we obtain

(6.6) A∥K∗g∥2 ≤
∑

j∈J\I

∥Λjg∥2, for all g ∈ R(K) ⊂ U .

On the other hand, for any h ∈ R(K)⊥ ⊂ U , since ⟨K∗h, f⟩ = ⟨h,
Kf⟩ = 0, for all f ∈ U , it follows that

(6.7) K∗h = 0, for all h ∈ R(K)⊥.

Since R(K) ⊂ U is closed, we have U = R(K)
⊕

R(K)⊥. So, for
any f ∈ U , there is f = f1 + f2, where f1 ∈ R(K), f2 ∈ R(K)⊥. From
(6.3), (6.6) and (6.7), we get

A∥K∗f∥2 = A∥K∗(f1 + f2)∥2 = A∥K∗f1∥2
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≤
∑

j∈J\I

∥Λjf1∥2 =
∑

j∈J\I

∥Λj(f1 + f2)∥2

=
∑

j∈J\I

∥Λjf∥2.

It is trivial to show that the upper frame condition holds.

(ii) Since R(K) is closed, by Lemma 6.1 there exists a pseudo-inverse
K+ such that KK+f = f , for all f ∈ R(K), namely, KK+|R(K) =

IR(K), so we have I∗R(K) = (K+|R(K))
∗K∗. Then, for any f ∈ R(K),

we get

∥f∥ = ∥(K+|R(K))
∗K∗f∥(6.8)

≤ ∥(K+|R(K))
∗∥ · ∥K∗f∥

≤ ∥K+∥ · ∥K∗f∥.

By the condition that R(K) ⊂ U is closed, we can also get that, for
any f ∈ U , there exist f1 ∈ R(K), f2 ∈ R(K)⊥ such that f = f1 + f2.
From (6.3), (6.7) and (6.8), we obtain∑

j∈J\I

∥Λjf∥2 =
∑

j∈J\I

∥Λjf1∥2 =
∑
j∈J

∥Λjf1∥2 −
∑
j∈I

∥Λjf1∥2

≥
∑
j∈J

∥Λjf1∥2 −
∑
j∈I

∥Λj∥2 · ∥f1∥2

≥
∑
j∈J

∥Λjf1∥2 −
∑
j∈I

∥Λj∥2 · ∥K+∥2 · ∥K∗f1∥2

≥ A∥K∗f1∥2 − ∥K∗f1∥2∥K+∥2
∑
j∈I

∥Λj∥2

=

(
A− ∥K+∥2

∑
j∈I

∥Λj∥2
)
∥K∗f1∥2

=

(
A− ∥K+∥2

∑
j∈I

∥Λj∥2
)
∥K∗f∥2.

Obviously, the upper bound of {Λj : j ∈ J\I} is B.

(iii) Since {0} ̸= WI ⊂ R(K), then for any 0 ̸= f ∈ WI , we have
K∗f ̸= 0. In fact, since 0 ̸= f ∈ WI ⊂ R(K), there exists g ∈ U such
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that f = Kg, it follows that

⟨K∗f, g⟩ = ⟨K∗Kg, g⟩ = ∥Kg∥2 = ∥f∥2 > 0.

Hence, we have ∥K∗f∥2 > 0, 0 ̸= f ∈ WI ⊂ R(K).

On the other hand, for 0 ̸= f ∈ WI ⊂ R(K), since WJ\I ⊥ WI , we
have

0 =

⟨ ∑
j∈J\I

Λ∗
jΛjf, f

⟩
=
∑

j∈J\I

∥Λjf∥2.

Hence, (2.1) does not hold, and {Λj ∈ L(U ,Vj) : j ∈ J\I} is not a
K-g-frame. �

From Theorem 6.2, we can easily have the following corollary for
I = {j0}.

Corollary 6.3. Let {Λj ∈ L(U ,Vj) : j ∈ J} be a K-g-frame with
frame bounds A,B. Let j0 ∈ J and R(K) be closed. Then the following
statements hold :

(i) If
(6.9)

WJ\{j0} ,
{ ∑

j∈J\{j0}

Λ∗
jgj : for any j ∈ J\{j0}, gj ∈ Vj

}
⊂ R(K),

Wj0 , {Λ∗
j0
g : g ∈ Vj0} ⊂ R(K)⊥,

then {Λj ∈ L(U ,Vj) : j ∈ J\{j0}} is a K-g-frame with frame
bounds A,B.

(ii) If (6.9) holds and A−∥K+∥2∥Λj0∥2 > 0, then {Λj ∈ L(U ,Vj) : j ∈
J\{j0}} is a K-g-frame with frame bounds A− ∥K+∥2∥Λj0∥2, B,
where K+ is the pseudo-inverse of K.

(iii) If {0} ̸= Wj0 ⊂ R(K) and WJ\{j0} ⊥ Wj0 , then {Λj ∈ L(U ,Vj) :
j ∈ J\{j0}} is not a K-g-frame.
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