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ON THE SUBSTRUCTURES ∆ AND ∇

TRUONG CONG QUYNH AND M. TAMER KOŞAN

ABSTRACT. In this paper, we discuss the question of
when the substructures, the singular sub-bimodule ∆[M,N ]
and the cosingular bi-submodule ∇[M,N ] of Hom (M,N),
are equal to zero. Some well-known results of regular rings
are obtained. Moreover, the substructures ∆[M,N ] and
∇[M,N ] with M and N that are direct sums of submodules
are studied.

1. Introduction. In this paper, R will represent an associative ring
with identity, and all modules over R are unitary right modules. We
write MR to indicate that M is a right R-module. Throughout this
paper, homomorphisms of modules are written on the left of their
arguments. Let M and N be modules. For convenience of the reader,
we follow the notation used in [8, 13], let EM := EndR(M) and
[M,N ] := HomR(M,N). Then [M,N ] is an (EN , EM )-bimodule. We
also denote J(R) and Rad (M) for the Jacobson radical of R and
module M , respectively. For a submodule N of M , we use N ≤ M
(N < M) and N ≤⊕ M to mean that N is a submodule of M
(respectively, proper submodule), N is a direct summand of M , and
we write N ≤e M and N ≪ M to indicate that N is an essential,
respectively small, submodule of M . For a subset X of R, let r(X)
denote the right annihilator of X in R.

The concept of the regularity of [M,N ] was introduced by Kasch
and Mader in [4] to extend the notion of the regularity of a ring to
[M,N ]. Recall that α ∈ [M,N ] is called regular if α = αβα for some
β ∈ [N,M ]. They showed that α ∈ [M,N ] is regular if and only if
Ker (α) is a direct summand of M and Im (α) is a direct summand of
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N ([4, Corollary II.1.3]). The module [M,N ] is said to be regular if
each α ∈ [M,N ] is regular. An important line of research in module
classes is to investigate relationships of regularity to substructures such
as Jacobson radical J [M,N ] of [M,N ], to the singular ∆[M,N ] and
cosingular ∇[M,N ] sub-bimodules of [M,N ], and to the notion of lying
over or under a direct summand. Beidar and Kasch [2] defined and
studied the singular sub-bimodule ∆[M,N ] and the co-singular sub-
bimodule ∇[M,N ] such as:

∆[M,N ] = {f ∈ [M,N ] : Ker (f) ≤e M}
∇[M,N ] = {f ∈ [M,N ] : Im (f) ≪ N}.

The other substructure, Jacobson radical J [M,N ], of [M,N ], was
introduced and studied by Kasch and Mader [4] and Nicholson and
Zhou [8]. If M = ⊕s

i=1Mi and N = ⊕t
j=1Nj are left R-modules, then

(using canonical injections and projections) [M,N ] has a natural matrix
representation as follows:

[M,N ] =


[M1, N1] [M1, N2] · · · [M1, Nt]
[M2, N1] [M2, N2] · · · [M2, Nt]

· · · · · · · · ·
[Ms, N1] [Ms, N2] · · · [Ms, Nt]

 = ([Mi, Nj ])

where the elements of M and N are written as rows, and the matrix
([Mi, Nj ]) acts by right matrix multiplication. In [8, Theorem 10], it
is shown that if M = ⊕s

i=1Mi and N = ⊕t
j=1Nj are modules, then

J [M,N ] = (J [Mi, Nj ]). In Theorem 2.3, we prove that ∆[M,N ] =
(∆[Mi, Nj ]) and ∇[M,N ] = (∇[Mi, Nj ]).

Furthermore, we are going to characterize when ∆ or ∇ is zero. We
show that if M = ⊕i∈IMi and N = ⊕j∈JNj , then ∆[M,N ] = 0 if and
only if ∆[Mi, Nj ] = 0 for all i ∈ I, j ∈ J , and ∇[M,N ] = 0 if and
only if ∇[Mi, Nj ] = 0 for all i ∈ I, j ∈ J (see Theorem 2.2). In [8,
Theorem 33], Nicholson and Zhou proved that [M,N ] is semiregular
and ∆[M,N ] = J [M,N ] ([M,N ] is called semiregular if, for every
α ∈ [M,N ], there exists a β ∈ [N,M ] such that β = βαβ and
α−αβα ∈ J [M,N ]) if and only if Ker (α) lies under a direct summand
of M for any α ∈ [M,N ]. According to Nicholson and Zhou [8], M is
called a direct N -injective module if K ∼= P ≤⊕ M with K ≤ N implies
that K ≤⊕ N . Recently, in [10, Theorem 3.4], Quynh, Koşan and
Thuyet proved that if the moduleM is both generalized continuous and
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direct N -injective, then [M,N ] is semiregular and ∆[M,N ] = J [M,N ].
In Theorem 2.5, we show that, if M is direct N -injective, then [M,N ]
is regular if and only if ∆[M,N ] = 0 and Ker (α) lies under a direct
summand of M for any α ∈ [M,N ].

A module M is called a direct projective if, whenever a factor module
M/K is isomorphic to a summand of M , then K is a summand of
M (see [7]). According to Nicholson and Zhou [8], N is direct M -
projective if M/K ∼= P ≤⊕ N implies that K ≤⊕ M . As a dual version
of [8, Theorem 33], Nicholson and Zhou showed that, if the direct
projective module M is direct N -projective, then [M,N ] is semiregular
and ∇[M,N ] = J [M,N ] if and only if α(M) lies over a direct summand
of M for any α ∈ [M,N ] (see [8, Theorem 35]). Recently, in [10,
Theorem 3.6], Quynh, Koşan and Thuyet proved that, if the module
N is both generalized discrete and direct M -projective, then [M,N ]
is semiregular and ∇[M,N ] = J [M,N ]. In Theorem 2.8, we show
that if N is direct M -projective, then [M,N ] is regular if and only
if ∇[M,N ] = 0 and Im (α) lies over a direct summand of M for any
α ∈ [M,N ].

2. Some properties of modules with ∆ = 0 or ∇ = 0. In this
section, we are going to characterize when ∆ or∇ is zero. The following
key result will be needed.

Lemma 2.1. Let M and N be modules and A a direct summand of
M .

(i) If ∆[M,N ] = 0, then ∆[A,N ] = 0.
(ii) If ∇[M,N ] = 0, then ∇[A,N ] = 0.

Proof. Assume that M = A⊕A′ for some A′ of M .

(i) Let φ ∈ ∆[A,N ]. Then Ker (φ) ≤e A. Let ϕ = φπA : M → N
with the canonical projection πA : M → A. It follows that Ker (ϕ) =
Ker (φ)⊕A′ ≤e M . Therefore, ϕ = 0 by assumption. Thus, φ = 0.

(ii) Let φ ∈ ∇[A,N ]. Then Im (φ) ≪ N . We consider the
homomorphism φ⊕ 0 : A⊕A′ → N defined by (φ⊕ 0)(a+ a′) = φ(a).
Then Im (φ⊕0) = Im (φ) ≪ N . It follows that φ⊕0 = 0 or φ = 0. �
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Theorem 2.2. Let M = ⊕i∈IMi and N = ⊕j∈JNj be R-modules,
where I,J are arbitrary non-empty sets. Then

(i) ∆[M,N ] = 0 if and only if ∆[Mi, Nj ] = 0 for all i ∈ I, j ∈ J .
(ii) ∇[M,N ] = 0 if and only if ∇[Mi, Nj ] = 0 for all i ∈ I, j ∈ J .

Proof. (i) Assume that ∆[Mi, Nj ] = 0 for all i ∈ I, j ∈ J . Let
f ∈ ∆[Mi, N ]. We consider the canonical projection πj : N → Nj .
Then Ker (πjf) ≤e Mi for all j ∈ J , because Ker (f) ≤e Mi. By the
hypothesis, we can obtain that πjf = 0 for all j ∈ J . It follows that
f = 0. Now, let ϕ ∈ ∆[M,N ]. Then Ker (ϕ) ≤e M . For each i ∈ I, we
consider the restriction homomorphism ϕi := ϕ|Mi : Mi → N . Then
Ker (ϕi) = Ker (ϕ)∩Mi, and so Ker (ϕi) ≤e Mi. By the hypothesis, we
can obtain that ϕi = 0. Hence, ϕ = 0.

The converse is clear by Lemma 2.1.

(ii) Assume that ∇[Mi, Nj ] = 0 for all i ∈ I, j ∈ J . Let
f ∈ ∇[M,Nj ]. We consider the inclusion ιi : Mi → M . Then
Im (fιi) ≪ Nj for all i ∈ I, because Im (f) ≪ Nj . By the hypothesis,
we can obtain that fιi = 0 for all i ∈ I. It follows that f = 0. Now,
let φ ∈ ∇[M,N ]. Then Im (φ) ≪ N . For each i ∈ I, we consider the
projection πj : N → Nj . Let φi := πjφ : M → Nj for each j ∈ J .
Then Im (φi) ≪ Nj . By the hypothesis, we can obtain that φi = 0.
Hence, φ = 0.

The converse is clear by Lemma 2.1. �

Let M = ⊕s
i=1Mi and N = ⊕t

j=1Nj be left R-modules. We recall
the natural matrix representation of [M,N ] as we mentioned in the
introduction:

[M,N ] =


[M1, N1] [M1, N2] · · · [M1, Nt]
[M2, N1] [M2, N2] · · · [M2, Nt]

· · · · · · · · ·
[Ms, N1] [Ms, N2] · · · [Ms, Nt]

 = ([Mi, Nj ]),

and, for every 
φ11 φ12 · · · φ1t

φ21 φ22 · · · φ2t

· · · · · · · · ·
φs1 φs2 · · · φst

 ∈ (∆[Mi, Nj ])
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and (m1 m2 · · ·ms) ∈ M ,

(m1 m2 · · ·ms)


φ11 φ12 · · · φ1t

φ21 φ22 · · · φ2t

· · · · · · · · ·
φs1 φs2 · · · φst


=

( s∑
i=1

(mi)φi1

s∑
i=1

(mi)φi2 · · ·
s∑

i=1

(mi)φit

)
.

Theorem 2.3. If M = ⊕s
i=1Mi and N = ⊕t

j=1Nj are left R-modules,
then

(i) ∆[M,N ] = (∆[Mi, Nj ]).
(ii) ∇[M,N ] = (∇[Mi, Nj ]).

Proof. (i) Let φ ∈ △[M,N ]. Then Ker (φ) ≤e M . We consider
the homomorphism φij := ιiφπj , where πj : N → Nj is the canonical
projection and ιi : Mi ↩→ M is the inclusion for every i ∈ I and j ∈ J .
Then Ker (φij) = Mi ∩ Ker (φπj). We have that Ker (φ) ⊆ Ker (φπj),
Ker (φ) ≤e M and obtain that Ker (φπj) ≤e M . Hence, Ker (φπj) ≤e

Mi, i.e., φij ∈ ∆[Mi, Nj ] for every i ∈ {1, 2, . . . , s} and j ∈ {1, 2, . . . , t}.
It follows that φ ∈ (∆[Mi, Nj ]).

Conversely, assume that
φ11 φ12 · · · φ1t

φ21 φ22 · · · φ2t

· · · · · · · · ·
φs1 φs2 · · · φst

 ∈ (∆[Mi, Nj ]),

where φij ∈ ∆[Mi, Nj ] for every i ∈ {1, 2, . . . , s} and j ∈ {1, 2, . . . , t}.
For every j ∈ {1, 2, . . . , t}, let φj =

∑s
i=1(piφij) ∈ [M,N ] and

φ =

t∑
j=1

φj =

t∑
j=1

s∑
i=1

(piφij) ∈ [M,N ],

where pi : M → Mi is the canonical projection. Now it is easy to see
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that

φ =


φ11 φ12 · · · φ1t

φ21 φ22 · · · φ2t

· · · · · · · · ·
φs1 φs2 · · · φst


and

Ker (φ) =
t∩

j=1

Ker (φj).

Now, we claim that Ker (φj) ≤e M . For j ∈ {1, 2, . . . , t}, we can obtain
that φj =

∑s
i=1(piφij) and

Ker (piφij) = Ker (φij)⊕ (⊕k ̸=iMk) ≤e M

for all i. Since
∩

Ker (piφij) ⊆ Ker (φj), we have Ker (φj) ≤e M .
Thus, Ker (φ) ≤e M , i.e., φ ∈ ∆[M,N ].

(ii) Let φ ∈ ∇[M,N ]. Then Im (φ) ≪ N . We consider the
homomorphism φij := ιiφπj , where πj : N → Nj is the canonical
projection and ιi : Mi ↩→ M is the inclusion for every i ∈ I and
j ∈ J . We have that Im (φ) ≪ N and obtain that Im (φπj) ≪ Nj

for all j ∈ {1, 2, . . . , t}. But Im (φij) = Im (ιiφπj) ≤ Im (φπj). So
Im (φij) ≪ Nj , i.e., φij ∈ [M,N ] for all i, j.

Conversely, assume that

φ :=
∑
i,j

πjφijιi ∈ (∇[Mi, Nj ]),

where φij ∈ ∇[Mi, Nj ], πi : M → Mi is the canonical projection and
ιi : Ni ↩→ N is the inclusion for every i ∈ I and j ∈ J . Then

Im (φ) =
∑
i,j

Im (πjφijιi) =
∑
i,j

Im (φijιi).

We have that Im (φij) ≪ Nj and obtain that Im (φijιi) ≪ N . Hence,
Im (φ) ≪ N , i.e., φ ∈ ∇[M,N ]. �

We denote E(M) for the injective hull of R module M .

Proposition 2.4. Let M and N be modules. Then:

(i) If ∆[E(M), E(N)] = 0, then ∆[M,N ] = 0.
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(ii) If ∇[E(M), E(N)] = 0, then ∇[M,N ] = 0.

Proof. (i) Assume that f ∈ ∆[M,N ]. Then Ker (f) ≤e M , and
there exists f ∈ [E(M), E(N)] such that f |M = f . Since M ≤e E(M),
we can obtain that Ker (f) ≤e E(M). By hypothesis, f = 0 or f = 0.

(ii) Assume that f ∈ ∆[M,N ]. Then Im (f) ≪ N , and there exists
f ∈ [E(M), E(N)] such that f |M = f . Since Im (f) ≪ N , we can
obtain that Im (f) ≪ E(N). It follows that Im (f) ≪ E(N). By
hypothesis, f = 0 or f = 0. �

A submodule A of a module M is said to lie under a summand of
M if there exists a direct decomposition M = P ⊕Q with A ≤ P and
A ≤e P .

Theorem 2.5. Let M and N be R-modules. If M is direct N -injective,
then the following conditions are equivalent :

(i) [M,N ] is regular.
(ii) ∆[M,N ] = 0 and Ker (α) lies under a direct summand of M for

any α ∈ [M,N ].

Proof. (i) ⇒ (ii). Let α ∈ [M,N ]. Then Ker (α) ≤⊕ M (because α
is regular). Moreover, if α ∈ ∆[M,N ], then Ker (α) = M or α = 0.

(ii) ⇒ (i). Let α ∈ [M,N ]. By (ii), there exists β2 = β ∈ [M,M ]
such that Ker (α) ≤e β(M) = Ker (1M − β). We also notice that
α|(1M−β)(M) : (1M−β)(M) → N is a monomorphism. SinceM is direct
N -injective and (1M − β)(M) is a direct summand of M , α|(1M−β)(M)

is a split monomorphism. There exists a homomorphism γ : N → M
such that γα|(1M−β)(M) = 1(1M−β)(M) or γα(1M − β) = 1M − β. Let
ξ = (1M − β)γ. Then Ker (α− αξα) = Ker (α)⊕ (1M − β)(M) ≤e M .
It follows that α − αξα ∈ ∆[M,N ] = 0. Thus α = αβα, and (i)
follows. �

Corollary 2.6. Assume that M is N -injective. The following are
equivalent for modules M and N :

(i) [M,N ] is regular.
(ii) ∆[M,N ] = 0.
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Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (i). Let α ∈ [M,N ] and α ̸= 0. Then Ker (α) is not essential
in M . Let L be a complement of Kerα in M . We consider the map
ϕ : α(L) → M , defined by ϕ(α(x)) = x for all x ∈ L. Then ϕ is
a homomorphism. Since M is N -injective, there exists a θ ∈ [N,M ]
extension of ϕ. It follows that Ker (α) + L ≤ Ker (αθα − α), and we
know that Ker (α)⊕ L ≤e M . Consequently, αθα− α ∈ ∆[M,N ] = 0.
Thus, α = αθα. �

Letting M = R, the next result extends Chen and Nicholson [3,
Theorem 4.2].

Corollary 2.7. Let R be a right self-injective ring. The following
conditions are equivalent for a module N :

(i) N is regular.
(ii) N is nonsingular.

Dually, a submodule A of a module M is said to lie over a summand
of M if there exists a direct decomposition M = P ⊕ Q with P ≤ A
and Q ∩A ≪ M .

Theorem 2.8. Assume that N is direct M -projective. The following
are equivalent for modules M and N :

(i) [M,N ] is regular.
(ii) ∇[M,N ] = 0 and Im (α) lies over a direct summand of N for any

α ∈ [M,N ].

Proof. (i) ⇒ (ii). Let α ∈ [M,N ]. Then Im (α) ≤⊕ N (because α is
regular). Moreover, if α ∈ ∇[M,N ], then Im (α) = 0 or α = 0.

(ii) ⇒ (i). Let α ∈ [M,N ]. By (ii), the module N has a decom-
position N = P ⊕ K such that P ≤ α(M) and α(M) ∩K ≪ K. Let
π : N → N be the homomorphism such that π2 = π, π(N) = P and
(1N − π)(N) = K. Then πα : M → P is an epimorphism. Since N is
a direct module M -projective and P is a direct summand of N , πα is
a split epimorphism. There exists a homomorphism θ : P → M such
that (πα)θ = 1P . Let γ = θπ : N → M and παγ = π. Let β = γπ. We
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have βαβ = β and

(α− αβα)(M) = (1N − αβ)α(M)

= α(M) ∩ (1N − αβ)(N)

= α(M) ∩K ≪ N.

Thus, α− αβα ∈ ∇[M,N ] = 0, and hence α = αβα. �

We recall the following definitions (see [7, 12]).

(1) A submodule V of an R-module M is called a supplement of U in
M if V is a minimal element in the set of submodules L of M with
U +L = M . V is a supplement of U if and only if U +V = M and
U ∩ V is small in V .

(2) An R-module M is supplemented if every submodule of M has a
supplement in M .

Theorem 2.9. Assume that N is M -projective. If N is a supple-
mented module or N satisfies DCC on non-small submodules, then the
following are equivalent for modules M and N :

(i) [M,N ] is regular.
(ii) ∇[M,N ] = 0.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (i). Assume that N is a supplemented module and ∇[M,N ] =
0. Let α ∈ [M,N ] and α ̸= 0. Then Im (α) ̸≪ N . Since N
is supplemented, there exists a submodule L of N such that N =
Im (α) +L and Im (α)∩L ≪ N . We consider the canonical projection
π : N → N/L. Then πα : M → N/L is an epimorphism. On the
other hand, since N is M -projective, there exists a homomorphism γ ∈
[N,M ] such that παγ = π. It follows that Im (α− αγα) ≤ Im (α) ∩ L,
and so α− αγα ∈ ∇[M,N ] = 0. Thus, α = αγα.

Assume thatN satisfies DCC on non-small submodules and∇[M,N ]
= 0. Let α ∈ [M,N ] and α ̸= 0. Then Im (α) ̸≪ N . Without loss of
generality, we can assume that Im (α) ̸= N . Hence, there exists an
L ≤ N such that L ̸= N and Im (α) + L = N . We consider the
set of non-small submodules of N : ℑ = {L < N |Im (α) + L = N}.
Since Im (α) ̸= N , we can obtain that L is not a small submodule of
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N . It follows that ℑ is a non-empty set. Since N satisfies DCC on
non-small submodules, the set ℑ has a minimal element, say L. Then
L ̸= N and Im (α) + L = N . Now we claim that Im (α) ∩ L ≪ N . Let
Im (α) ∩ L +H = N with H ≤ N . Then Im (α) + (L ∩H) = N . By
minimality of L, we can obtain that L = L ∩ H, and so L ≤ H. It
follows that H = N . Thus, Im (α)∩L ≪ N . We consider the canonical
projection π : N → N/L. Then πα : M → N/L is an epimorphism.
Since N is M -projective, there exists a homomorphism γ ∈ [N,M ] such
that παγ = π. It is easy to see that Im (α−αγα) ≤ Im (α)∩L. Hence,
α− αγα ∈ ∇[M,N ] = 0. �

The following is the dual of Corollary 2.7.

Corollary 2.10. Assume that N is a semiperfect module. The follow-
ing are equivalent for modules N :

(i) N is regular.
(ii) Rad (N) = 0.
(iii) N is semisimple.

A module M is said to be retractable (respectively, coretractable) if
Hom (M,K) ̸= 0 for all 0 ̸= K ≤ M (respectively, Hom (M/K,M) ̸= 0
for all K ≤ M and K ̸= M).

Proposition 2.11. Let M and N be modules.

(i) If M is retractable and ∆[M,N ] = 0, then [M,N ] is a nonsingular
right EM -module.

(ii) Assume that N is coretractable, M -projective and ∇[M,N ] = 0.
If φ ∈ [M,N ] such that φ[N,M ]EN ≪ EN , then φ = 0.

Proof. (i) Suppose that ∆[M,N ] = 0. Let φ ∈ [M,N ] with
rEM

(φ) ≤e EM . Assume that Ker (φ) is not essential in M . Then there
exists 0 ̸= C ≤ M such that Ker (φ) ⊕ C ≤e M . By retractability, we
can obtain that there exists 0 ̸= f ∈ EM such that f(M) ≤ C. We
have Ker (φ) ∩ f(M) ≤ Ker (φ) ∩ C = 0, and so fEM ∩ rEM (φ) = 0.
Since rEM

(φ) ≤e EM , fEM = 0, a contradiction. Thus, Ker (φ) ≤e M
or φ ∈ ∆[M,N ], φ = 0.
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(ii) Suppose that ∇[M,N ] = 0. Let φ ∈ [M,N ] be such that
φ[N,M ]EN ≪ EN . Assume that Im (φ) is not small in N . Then there
exist C ≤ M and C ̸= N such that Im (φ)+C = N . By coretractability,
we can obtain that there exists f ∈ EN , f ̸= 0, such that f(C) = 0.
Hence, f(N) = fφ(M). Since N is M -projective, there exists an
h ∈ [N,M ] such that f = fφh. Therefore, EN = rEN (f)+φ[N,M ]EN .
It follows that EN = rEN

(f) or f = 0, a contradiction. Thus, φ = 0
by the hypothesis. �

We will use the following notation, where M and N are R-modules:

ZM (N) =
∑

φ∈∆[M,N ]

φ(M)

ZM (N) =
∩

φ∈∇[M,N ]

Ker (φ).

In [11], Talebi and Vanaja defined Z(M) as follows:

Z(M) = Re (M,S) =
∩

{Ker (g) | g ∈ Hom(M,L), L ∈ S},

where S denotes the class of all small modules. We called M a
cosingular (noncosingular) module if Z(M) = 0 (Z(M) = M).

A submoduleN ofM is said to be fully invariant if f(N) is contained
in N for every f ∈ End (MR). Clearly, 0 and M are fully invariant
submodules of M .

Theorem 2.12. Let M and N be modules. Then

(i) Z(M) is a submodule of ZM (N).
(ii) ZM (N) is a fully invariant submodule of N . Moreover, ZM (N) ≤

Z(N).
(iii) ∆[M,N ] = 0 if and only if ZM (N) = 0.
(iv) ZM (N) is a fully invariant submodule of M .
(v) ∇[M,N ] = 0 if and only if M/ZM (N) = 0.

Proof. (i) Clear.

(ii) Let φ ∈ ∆[M,N ]. Then Ker (φ) ≤e M and so, for all f ∈ EN ,
we can obtain that Ker (φ) ≤ Ker (fφ). Therefore, fφ ∈ ∆[M,N ].
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For every n ∈ ZM (N) and n ̸= 0, we have n = n1 + n2 + · · ·nk

for some ni ∈ Im (φi) and φi ∈ ∆[M,N ], i = 1, 2, . . . , k. Assume that
ni ̸= 0 for all i = 1, 2, . . . , k. For each ni, there exist 0 ̸= mi ∈ M
and Ii ≤e RR such that ni = φ(mi) and miIi ≤ Ker(φi). Then

φi(miIi) = niIi = 0 for all i = 1, 2, . . . , k. Let I =
∩k

i=1 Ii. Clearly,
I ≤e RR and nI = 0, which implies that n ∈ Z(N).

(iii) ZM (N) = 0 ⇔ φ = 0 for all φ ∈ [M,N ] with Ker (φ) ≤e M .

(iv) Let φ ∈ ∇[M,N ]. Then Im (φ) ≪ N and so, for all f ∈ EM ,
we can obtain that Im (φf) ≤ Im (φ) and so φf ∈ ∇[M,N ]. Therefore,
ZM (N) is a fully invariant submodule of M .

(v) M/ZM (N) = 0 if and only if M = ZM (N) ⇔ φ = 0 for all
φ ∈ [M,N ] with Im (φ) ≪ N . �

We finish this study with the following result.

Theorem 2.13. Let M = ⊕i∈IMi and N = ⊕j∈JNj be modules.
Then

(i) ZM (N) = ⊕j∈JZM (Nj).
(ii) ZM (N) = ⊕i∈IZMi(N).

Proof. (i) By Theorem 2.12, ZM (N) is a fully invariant submodule
of N . Then, by [9, Lemma 2.1], we have

ZM (N) = ⊕j∈J [Nj ∩ ZM (N)].

For a fixed j ∈ J , let x ∈ ZM (Nj). Then x = α1(m1) + · · ·+ α1(mn)
for some n, where αk ∈ [M,Nj ], mk ∈ M and Ker (αk) ≤e M , for all
1 ≤ k ≤ n. Let βk = ιjαk for all 1 ≤ k ≤ n with ιj : Nj → N the
inclusion maps. Then x = β1(m1) + · · · + β1(mn) and βk ∈ ∆[M,N ]
for all 1 ≤ k ≤ n. It follows that x ∈ Nj ∩ ZM (N).

The inclusion ZM (N) ⊆ ⊕j∈JZM (Nj) is obvious.

(ii) Since ZM (N) is a fully invariant submodule of M by Theo-
rem 2.12, we can obtain that

ZM (N) = ⊕i∈I [Mi ∩ ZM (N)].

For a fixed i ∈ I, let m ∈ ZMi(N). Then φ(m) = 0 for all
φ ∈ ∇[Mi, N ]. Let ιi : Mi → M be the inclusion maps. For
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any α ∈ ∇[M,N ], we can obtain that Im (αιi) ≤ Im(α) ≪ N
which implies that Im (αιi) ≪ N or αιi ∈ ∇[Mi, N ]. It follows that
α(m) = αιi(m) = 0, i.e., m ∈ Mi ∩ ZM (N).

The inclusion ZM (N) ≤ ⊕i∈IZMi
(N) is obvious. �
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