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THE SU(2)-CHARACTER VARIETIES
OF TORUS KNOTS

JAVIER MARTÍNEZ-MARTÍNEZ AND VICENTE MUÑOZ

ABSTRACT. Let G be the fundamental group of the
complement of the torus knot of type (m,n). We study the
relationship between SU(2) and SL(2,C)-representations of
this group, looking at their characters. Using the description
of the character variety of G, X(G), we give a geometric
description of Y (G) ⊂ X(G), the set of characters arising
from SU(2)-representations.

1. Preliminaries and notation. Given a finitely presented group
G = ⟨x1 · · ·xk|r1, . . . , rs⟩, a SU(2)-representation is a homomorphism
ρ : G → SU(2). Every representation is completely determined by
the image of the generators, the k-tuple (A1, . . . , Ak) satisfying the
relations rj(A1, . . . , Ak) = Id. Since SU(2) is algebraic, it follows
from the definitions that the space of all representations, RSU(2)(G) =
Hom (G,SU(2)) is a real affine algebraic set.

It is natural to declare a certain equivalence relation between these
representations: we say that ρ and ρ′ are equivalent if there exists
P ∈ SU(2) such that ρ′(g) = P−1ρ(g)P for all g ∈ G.

We want to consider the moduli space of SU(2)-representations, the
GIT quotient

MSU(2) = Hom(G,SU(2))//SU(2).

There are also analogous definitions for SL(2,C): we can consider
SL(2,C)-representations of G, which form a set RSL(2,C)(G), consider
SL(2,C)-equivalence and construct the associated moduli space

MSL(2,C) = Hom(G,SL(2,C))//SL(2,C).
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Note that different conjugacy classes may correspond to the same
point when the GIT quotient is made. For example, taking G = Z, the
representation defined by

ρ(1) =

(
1 1
0 1

)
goes in the quotient to the same point as the trivial representation,
although they do not belong to the same conjugacy class. This happens
because we identify orbits whose closures intersect. Conjugating ρ by

H =
( µ 0

0 µ−1

)
, we get that

H−1ρH =

(
1 1/µ2

0 1

)
,

whose limit, when µ → ∞, is the trivial representation.

The natural inclusion SU(2) ↪→ SL(2,C) shows that we can regard
every SU(2)-representation as a SL(2,C)-representation. Moreover, if
two representations are SU(2)-equivalent, then they are also SL(2,C)-
equivalent. This leads to a map between moduli spaces

MSU(2)
i∗−→ MSL(2,C).

To every representation ρ ∈ RSL(2,C)(G) we can associate its character
χρ, defined as the map χρ : G → C, χρ(g) = tr(ρ(g)). This defines a
map χ : RSL(2,C)(G) → CG, where equivalent representations have the
same character. Its image XSL(2,C)(G) = χ(RSL(2,C)(G)) is called the
character variety of G.

There is an important relation between the SL(2,C)-character vari-
ety of G and the moduli space MSL(2,C). It is seen in [1] that:

• XSL(2,C)(G) can be endowed with the structure of algebraic
variety.

• The natural map that takes every representation to its char-
acter, MSL(2,C)(G) → XSL(2,C)(G), is bijective1. We spec-
ify the nature of this correspondence for the case of SU(2)-
representations in the next section.

We emphasize that XSL(2,C)(G), as a set, consists of characters of
SL(2,C)-representations. We can also take the set of characters of
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SU(2)-representations, and again we will have a map XSU(2)(G)
i∗→

XSL(2,C)(G).

We focus on the case when G is a torus knot group. Consider
the torus of revolution T 2 ⊂ S3. We identify it with R2/Z2, where
Z = ⟨(1, 0), (0, 1)⟩, via the map

F : R2/Z2 −→ T 2 ⊂ R3 ⊂ S3

(x, y) −→ ((2 + cos 2πx) cos 2πy, (2 + cos 2πx) sin 2πy, sin 2πx).

The image of the line y = (m/n)x defines the torus knot of type
(m,n), Km,n ⊂ S3 for coprime m,n. An important invariant of a
knot is the fundamental group of its complement in S3, here Gm,n =
π1(S

3 −Km,n). These groups admit the following presentation

(1.1) Gm,n = ⟨x, y | xm = yn⟩.

The SL(2,C)-character variety of these groups for the case (m, 2)
was treated in [6]. A complete description for (m,n) coprime was given
in [5], and the general case (m,n) was studied using combinatorial tools
in [4]. SU(2)-character varieties for knot groups were studied in [3].
For the case (m, 2), the relation between both character varieties has
been recently treated in [7].

2. SU(2)-character varieties. We recall that SU(2) ∼= S3, the
isomorphism is given by

S3 ⊂ C2 −→ SU(2)

(a, b) −→
(
a −b
b a

)
.

The correspondence is a ring homomorphism if we look at S3 as the
set of unit quaternions. First of all, we want to point out the following
fact, which was already true for SL(2,C).

Proposition 2.1. The correspondence

MSU(2)(G) −→ XSU(2)(G)

ρ −→ χρ

that takes a representation to its character is bijective.
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Proof. We follow the steps taken in [1], this time for SU(2). First
of all, every matrix A in SU(2) is normal, hence diagonalizable. Since
det(A) = 1, the eigenvalues of A are {λ, λ−1} for some λ ∈ C∗. In
particular, tr(A) completely determines the set of eigenvalues {λ, λ−1}.

Now, if ρ is a reducible SU(2)-representation, there is a common
eigenvector e1 for all ρ(g) and therefore they are all diagonal with
respect to the same basis. If ρ′ is a second reducible representation
such that χρ(g) = χρ′(g) for all g ∈ G, this means that they share the
same eigenvalues for every g ∈ G. After choosing another basis for ρ′

such that ρ′(g) is diagonal for all g ∈ G,

ρ(g) =

(
λ(g) 0
0 λ−1(g)

)
, ρ′(g) =

(
µ(g) 0
0 µ−1(g)

)
,

where either λ(g) = µ(g) or λ(g) = µ−1(g) for every g ∈ G. Inter-
changing the roles of λ and λ−1, if necessary, there is always g1 ∈ G
such that λ(g1) = µ(g1), so there is g1 ∈ G such that ρ(g1) = ρ′(g1).
We also notice that, if ρ(g) = ± Id, then ρ′(g) = ρ(g) = ± Id.

We claim that ρ(g2) = ρ′(g2) for all g2 ∈ G. If not, there exists
g2 ∈ G such that ρ(g2) = ρ′(g2)

−1 ̸= ± Id. So λ(g1) = µ(g1) and
λ(g2) = µ−1(g2). On the other hand, we know that tr(ρ′(g1g2)) =
tr(ρ(g1g2)), so

µ(g1)µ(g2) + µ−1(g1)µ
−1(g2) = λ(g1)λ(g2) + λ−1(g1)λ

−1(g2)

= µ(g1)µ
−1(g2) + µ−1(g1)µ(g2).

Rearranging the terms,

µ(g2)(µ(g1)− µ−1(g1)) = µ−1(g2)(µ(g1)− µ−1(g1)),

which implies that µ(g2) = ±1, so that ρ(g2) = ± Id, a contradiction.
Therefore, λ(g) = µ(g) for all g ∈ G. Hence, there exists P ∈ SU(2)
such that ρ(g) = P−1ρ(g)P for all g ∈ G, i.e., the representations are
equivalent.

For the irreducible case, we point out the following fact: if ρ
is a irreducible SU(2)-representation and ρ(g) ̸= ± Id for a given
g ∈ G, then there exists h ∈ G such that ρ restricted to the subgroup
H = ⟨g, h⟩ is again irreducible. To see it, since ρ(g) ̸= ± Id, ρ(g) has
two eigenspaces L1, L2 associated to the pair of different eigenvalues
µ1, µ2. Since the representation is irreducible, there are elements hi



CHARACTER VARIETIES OF TORUS KNOTS 587

such that Li is not invariant under ρ(hi). We can take h = h1 or
h = h2 unless L1 is invariant under ρ(h2), or L2 is invariant under
ρ(h1); in this case, we can choose h = h1h2.

For a group generated by two elements, H = ⟨g, h⟩, the reducibility
of a representation is completely determined by χρ([g, h]). It can be
seen in the following chain of equivalences:

ρ|H is reducible ⇐⇒ ρ(g), ρ(h) share a common eigenvector

⇐⇒ ρ(g), ρ(h) are simultaneously diagonalizable

⇐⇒ [ρ(g), ρ(h)] = Id

⇐⇒ tr[ρ(g), ρ(h)] = 2

⇐⇒ χρ([g, h]) = 2.

Let ρ, ρ′ be two SU(2)-representations such that χρ = χρ′ . By the
previous observation, there are g, h ∈ G such that ρ|⟨g,h⟩ is irreducible,
i.e., χρ([g, h]) ̸= 2. It follows that, since χρ = χρ′ , χρ′([g, h]) ̸= 2, so
ρ′|⟨g,h⟩ is irreducible too. Varying ρ, ρ′ in their equivalence classes, we
can assume that there are basis B,B′ such that

ρ(h) = ρ′(h) =

(
λ 0
0 λ−1

)
.

The matrices ρ(g), ρ′(g) will not be diagonal, by irreducibility, and
conjugating again by diagonal unitary matrices we can assume that

ρ(g) =

(
a −b
b a

)
, ρ′(g) =

(
a′ −b′

b′ a′

)
for a, a′ ∈ C, b, b′ ∈ R+. Notice that b, b′ ̸= 0 since ρ|⟨g,h⟩ is irreducible.
In general, for any α ∈ G

ρ(α) =

(
x −y
y x

)
, ρ′(α) =

(
x′ −y′

y′ x′

)
Now, the equations χρ(α) = χρ′(α), χρ(hα) = χρ′(hα) imply that

x+ x̄ = x′ + x′ :

λx+ λ−1x = λx′ + λ−1x′

and since λ ̸= ±1, we get that x = x′.
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Substituting α = g, we get that a = a′, and since det(ρ(g)) =
det(ρ′(g)) = 1, b = b′, so ρ(g) = ρ′(g).

Substituting again gα for α, we arrive at the equation ax − by =
ax − by′, which implies that y = y′ and finally that ρ(α) = ρ′(α): we
have proved that the representations ρ and ρ′, after SU(2)-conjugation,
are the same, i.e., they are equivalent. �

Remark 2.2. As a consequence of Proposition 2.1, the moduli space
is precisely the set of conjugacy classes of representations, i.e., there
are no extra identifications as in the SL(2,C)-case.

Corollary 2.3. We have a commutative diagram:

MSU(2)(G)
1:1 //

i∗

��

XSU(2)(G)

i∗

��
MSL(2,C)(G)

1:1 // XSL(2,C)(G)

The previous corollary shows that we can equivalently study the
relationship between SU(2) and SL(2,C)-representations of G from
the point of view of their characters or from the point of view of their
representations. Looking at the diagram, we also deduce that:

Corollary 2.4. The natural inclusion i∗ : MSU(2)(G) → MSL(2,C)(G)
is injective.

3. SU(2)-character varieties of torus knots. We focus now on
the specific case of the torus knot Gm,n of coprime type (m,n).
Henceforth, we will often denote XSL(2,C) = XSL(2,C)(G) and omit
the group in our notation. In this case

RSL(2,C)(G) = {(A,B) ∈ SL(2,C) | Am = Bn}

and
RSU(2)(G) = {(A,B) ∈ SU(2) | Am = Bn}.

We have a decomposition of XSL(2,C)

XSL(2,C) = Xred ∪Xirr
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where Xred is the subset of characters of reducible representations and
Xirr is the subset of characters of irreducible representations. Inside
XSL(2,C), we have i∗(XSU(2)), i.e., the set of characters of SU(2)-
representations. For simplicity, we will denote Y = i∗(XSU(2)). Again,
Y decomposes in Yred ∪ Yirr.

Reducible representations.

Proposition 3.1. There is an isomorphism Yred
∼= [−2, 2] ⊂ R.

Proof. We will use, from now on, the explicit description of XSL(2,C)
given in [5]. There is an isomorphism Xred

∼= C given by

A =

(
tn 0
0 t−n

)
, B =

(
tm 0
0 t−m

)
−→ s = t+ t−1 ∈ C.

This is because given a reducible SL(2,C)-representation ρ, we can
consider the associated split representation ρ = ρ′ + ρ′′, which in a
certain basis takes the form

A =

(
λ 0
0 λ−1

)
, B =

(
µ 0
0 µ−1

)
,

and the equality Am = Bn implies that λ = tn, µ = tm for a unique
t ∈ C (here we use that m,n are coprime). Now, since A,B ∈ SU(2),
t must satisfy that |t|2 = 1, i.e., t ∈ S1 ⊂ C. We also have to take
account of the change of order of the basis elements, and therefore
t ∼ 1/t. So the parameter space is isomorphic to [−2, 2] (under the
correspondence t ∈ S1 → s = t+ t−1 = 2Re(t) ∈ [−2, 2]). �

To explicitly describe when a pair (A,B) is reducible, we follow [5,
2.2]. First of all, A and B are diagonalizable (recall that A,B ∈ SU(2)),
so we can rule out the Jordan type case since it is not possible. So

Proposition 3.2. In either of the cases:

• Am = Bn ̸= ± Id,
• A = ± Id or B = ± Id,

the pair (A,B) is reducible.
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Proof. Let us deal with the first case, when Am = Bn ̸= ± Id. A
is diagonalizable with respect to a basis {e1, e2} and takes the form(
λ 0
0 λ−1

)
. Then

Bn = Am =

(
λm 0
0 λ−m

)
,

so B is diagonal in the same basis and the pair is reducible. For the
second case, if A = α Id, where α = ±1, then any basis diagonalizing B
diagonalizes A; hence, the pair is reducible. The case B = α Id follows
in the same way. �

Irreducible representations. Now we look at the set of irreducible
representations, Yirr. Let (A,B) ∈ RSU(2)(G) be an irreducible
pair. Both matrices are diagonalizable and using Proposition 3.2 they
must satisfy that Am = Bn = ± Id, A,B ̸= ± Id. The eigenvalues
λ, λ−1 ̸= ±1 of A satisfy λm = ±1, the eigenvalues µ, µ−1 of B satisfy
µn = ±1 and λm = µn.

We can associate to A a basis {e1, e2} under which it diagonalizes,
and the same for B, obtaining another basis {f1, f2}. The eigenvalues
λ, µ and the eigenvectors ei, fi completely determine the representation
(A,B). We are interested in i∗(MSU(2)), SL(2,C)-equivalence classes
of such pairs (A,B), and these are fully described by the projective
invariant of the four points {e1, e2, f1, f2}, the cross ratio

[e1, e2, f1, f2] ∈ P1 − {0, 1,∞}

(we may assume that the four eigenvectors are different since the
representation is irreducible, see [5] for details).

Since both A,B ∈ SU(2), we know that e1 ⊥ e2 and ∥e1∥ = ∥e2∥ =
1, so shifting the vectors by a suitable rotation C ∈ SU(2), we can
assume that e1 = [1 : 0], e2 = [0 : 1], and therefore f1 = [a : b], f2 =
[−b : a], since they are orthogonal too. So the pair (A,B) inside
XSL(2,C) is determined by λ, µ satisfying the conditions above and
the projective cross ratio

r =
[
e1, e2, f1, f2

]
=

[
0,∞,

b

a
,−a

b

]
=

bb

−aa
=

bb

bb− 1
=

t

t− 1
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where we have used that aa + bb = 1 and t = |b|2, b ∈ (0, 1). We also
get that r is real and r ∈ (−∞, 0).

The converse is also true: if the triple (λ, µ, r), satisfies that λm =
µn = ±1, λ, µ ̸= ±1 and r ∈ (−∞, 0), then (A,B) ∈ i∗(MSU(2)).

To see this, r determines uniquely t = |b|2 since r(t) is invertible
for t ∈ (0, 1). Once |b| is fixed, we get that |a| is fixed too, using
|a|2 = 1 − |b|2. We can choose any (a, b) ∈ S1 × S1, and we conclude
that (A,B) is SL(2,C)-equivalent to a SU(2)-representation. To be
more precise, it is equivalent to the representation with eigenvalues
λ, µ and eigenvectors [1 : 0], [0 : 1], [a : b], [−b, a].

Finally, we have to take account of the Z2 × Z2-action given by the
permutation of the eigenvalues:

• Permuting e1, e2 takes (λ, µ, r) to (λ−1, µ, r−1).
• Permuting f1, f2 takes (λ, µ, r) to (λ, µ−1, r−1).

Since λm = µn = ±1, we get that

(3.1) λ = eπik/m, µ = eπik
′/n,

where, since λ ∼ λ−1, µ ∼ µ−1 and λ ̸= ±1, µ ̸= ±1, we can restrict
to the case when 0 < k < m, 0 < k′ < n. We also notice that
λm = µn implies that k ≡ k′ (mod 2). So the irreducible part is made
of (m− 1)(n− 1)/2 intervals.

We have just proved

Proposition 3.3.

Yirr
∼= {(λ, µ, r) : λm = µn = ±1;λ, µ ̸= ±1; r ∈ (−∞, 0)}/Z2 × Z2.

This real algebraic variety consists of [(m− 1)(n− 1)]/2 open intervals.

To describe the closure of the irreducible orbits, we have to consider
the case when e1 = f1, since this is what happens in the limit (the
situation is analogous when e2 = f2). In this situation r = 0, and the
representation is equivalent to a reducible representation. Taking into
account Lemma 3.1, it corresponds to a certain t ∈ S1 such that λ = tn,
µ = tm. We have another limit case r = −∞, if we allow e1 = f2. The
representation is again reducible and corresponds to another t′ ∈ S1

such that λ = (t′)n, µ−1 = (t′)m.
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Remark 3.4. The explicit description of the set of SU(2)-representations
allows us to give an alternative proof of Corollary 2.4, which stated that
the inclusion i∗ : MSU(2) → MSL(2,C) is injective.

Let us see this. Suppose that (A,B) and (A′, B′) are two SU(2)-
representations which are mapped to the same point in MSL(2,C), i.e.,
which are SL(2,C)-equivalent. If we denote by u1, u2, u3, u4 the set
of eigenvectors of (A,B) and by v1, v2, v3, v4 the set of eigenvectors of
(A′, B′), we know that

[u1, u2, u3, u4] = [v1, v2, v3, v4] = r ∈ (−∞, 0).

Since their cross ratio is the same, we know that there exists P ∈
SL(2,C) that takes the set {ui} to {vi}. Moreover, since P takes
the unitary basis {u1, u2} to the unitary basis {v1, v2}, we get that
P ∈ SU(2), and therefore both representations are SU(2)-equivalent.

Topological description. We finally describe Y topologically. We
refer to [5] for a geometric description of XSL(2,C).

Using Proposition 3.3, Yirr is a collection of real intervals (parametrized
by r ∈ (−∞, 0)) for a finite number of (λ, µ) that satisfy the required
conditions. By our last observation, the limit cases when r = 0,∞ (i.e.,
points in the closure of Yirr) correspond to the points where the closure
of Yirr intersects Yred.

As we saw before, each interval has two points in its closure: these
are t0 ∈ S1 such that tn0 = λ, tm0 = µ (r = 0) and t1 ∈ S1 corresponding
to tn1 = λ, tm1 = µ−1 (r = −∞). The conditions on λ, µ force that
t0 ̸= t1 so that we get different intersection points with Yred.

Y is topologically a closed interval (Yred) with (m−1)(n−1)/2 closed
intervals (Yirr) attached at (m− 1)(n− 1) different endpoints (without
any intersections among them). The interval Yred = [−2, 2] sits inside
Xred

∼= C, and every real interval in Yirr is inside the corresponding
complex line in Xirr.

The situation is described in the following two pictures:
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Figure 1. Picture of XSL(2,C), defined over C. The drawn lines are curves
isomorphic to C. The closure of each curve in Xirr intersects Xred at two
distinct points.

Figure 2. Picture of Y ⊂ XSL(2,C), defined over R. The picture displays
the set of real segments which form Yirr.

Note that, in the SU(2)-case, since Yred
∼= [−2, 2] is a real closed

interval, we can look at the particular order of the pairs of intersection
points of the closure of Yirr with Yred. This is why the above picture
displays Yred as a collection of tangled intervals, in contrast to the
SL(2,C)-case where no ordering can be defined.
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More concretely, each component of Yirr is characterized by a triple
(λ, µ, r), where λ = e(πik)/m, µ = e(πik

′)/n, 0 < k < m, 0 < k′ < n and
k ≡ k′ (mod 2) (cf., Proposition 3.3). Its closure intersects Yred at two
points: the two reducible representations described by the eigenvalues
(λ, µ) and (λ, µ−1). There is a unique t1 such that tn1 = λ, tm1 = µ and a
unique t2 such that tn2 = λ, tm2 = µ−1. The points si = ti+t−1

i ∈ [−2, 2]
give us the intersection points with Yred

∼= [−2, 2]. Since both ti are
n-th roots of λ, they will be of the form

ti = e[πi(k+2aim)]/mn

for certain ai verifying 0 ≤ ai < n. Solving the equation tm1 = µ and
tm2 = µ−1, we get that a1, a2 are the unique solutions to the equations:

k + 2a1m ≡ k′ (mod 2n)

k + 2a2m ≡ 2n− k′ (mod 2n)

We finally obtain that the intersection points of the component given
by the triple (k, k′, r) are the points

s1 = 2 cos

(
πk

mn
+

2a1π

n

)
, s2 = 2 cos

(
πk

mn
+

2a2π

n

)
.

The ordering of these sets of pairs of points (one pair for each
admissible (k, k′)) depends on the type of torus knot group, i.e., on
(m,n). As Figure 3 shows, we can obtain all kind of situations
depending on the particular choice of (m,n). Looking at G5,6, notice
that it is not true that we always have pairs of positive and negative
endpoints.

A natural question is whether the inclusion of the SU(2)-character
variety Y inside the SL(2,C)-character variety is a homotopy equiva-
lence, i.e., if the two varieties have the same homotopy type. The result
is in general false if we choose an arbitrary finitely generated group G,
but remains true in some cases, for example, G = Zk (see [2, 8]).

Looking at the explicit description of Y and XSL(2,C) we also obtain
in our case

Corollary 3.5. Y is a reformation retract of XSL(2,C).
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Figure 3. Examples of several character varieties for some Gm,n.
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4. Noncoprime case. If gcd (m,n) = d > 1, then Gm,n no longer
represents a torus knot, since these are only defined in the coprime
case. However, the group Gm,n = ⟨x, y | xn = ym⟩ still makes sense,
and we can study the representations of this group into SL(2,C) and
SU(2) using the method described above. We will denote by a, b the
integers that satisfy

m = a d,

n = b d.

As we did before, we focus on Y = i∗(XSU(2)), the set of characters of
SU(2)-representations.

Reducible representations. First of all, we describe what happens
in the SL(2,C) case.

Proposition 4.1. There is an isomorphism

Xred
∼=

⌊d/2⌋⊔
i=0

Xi
red

where:

• Xi
red

∼= C∗ for 0 < i < d/2.
• Xi

red
∼= C for i = 0 and i = d/2 if d is even.

Proof. As it is shown in [5], an element in Xred can be regarded as
the character of a split representation, ρ = ρ′ ⊕ ρ′−1. There is a basis
such that

A =

(
λ 0
0 λ−1

)
, B =

(
µ 0
0 µ−1

)
,

where Am = Bn implies that λm = µn. We deduce that (λa)d = (µb)d,
so that (λ, µ) belong to one of the components

Xi
red = {(λ, µ)|λa = ξiµb} = {(λ, µ)|λaµ−b = ξi},

where ξ is a primitive d-th root of unity. These components are disjoint,
and each one of them is parametrized by C∗. To see this, let us fix a
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component, Xi
red, and let α be a b-th root of ξi. Then

Xi
red = {(λ, µ)|λa = ξiµb}

= {(λ, µ)|λa = αbµb}

= {(λ, ν)|λa = νb} ∼= C∗.

In other words, for each (λ, µ) ∈ Xi
red, there is a unique t ∈ C∗ such

that tb = λ, ta = αµ. However, we have to take account of the action
given by permuting the two vectors in the basis, which corresponds to
the change (λ, µ) ∼ (λ−1, µ−1). In our decomposition, if (λ, µ) ∈ Xi

red,

then (λ−1, µ−1) ∈ X−i
red. So t ∈ Xi

red is equivalent to 1/t ∈ X−i
red.

For 0 ≤ i ≤ d − 1, we have two possibilities. If i ̸≡ −i (mod d),
then Xi

red and X−i
red get identified. If i ≡ −i (mod d), then t ∼ t−1 ∈

Xi
red

∼= C, and thus Xi
red/∼

∼= C∗/a∼a−1
∼= C.

When d is even, there are two i ∈ Z/dZ such that i ≡ −i (mod d),
so we get two copies of C in Yred. When d is odd, we get just one, since
there is only one solution (i ≡ 0). The remaining copies of Xi

red get

identified pairwise: Xi
red ∼ X−i

red. �

Now, for the case of SU(2)-representations, we have

Proposition 4.2. There is an isomorphism

Yred
∼=

⌊d/2⌋⊔
i=0

Y i
red,

where:

• Y i
red

∼= S1 for 0 < i < d/2.
• Y i

red
∼= [−2, 2] for i = 0, i = d/2 if d is even.

Proof. If (A,B) is a reducible SU(2)-representation, both are diag-
onalizable with respect to a certain basis, and therefore

A =

(
λ 0
0 λ−1

)
, B =

(
µ 0
0 µ−1

)
.

The equality Am = Bn gives us that λm = µn. So the pair (λ, µ) be-
longs to a certain component Xi

red. Since it is a SU(2)-representation,
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the eigenvalues λ and µ satisfy that |λ| = |µ| = 1. This implies that
(λ, µ) ∈ S1 ⊂ C∗ ∼= Xi

red: we define Y i
red := S1 ⊂ Xi

red.

We have to take into account the equivalence relation in Xred given
by the permutation of the eigenvectors. If i ̸≡ −i (mod d), then
Y i
red

∼= Y −i
red. If i ≡ −i (mod d), then Y i

red
∼= S1/a∼a−1

∼= [−2, 2].
This gives the desired result. �

Irreducible representations. We start by describing what happens
in the SU(2) case.

Proposition 4.3. We have an isomorphism

Yirr
∼= {(λ, µ, r) : λm = µn = ±1;

λ, µ ̸= ±1, r ∈ (−∞, 0)}/Z2 × Z2.

This real algebraic variety consists of :

• (m− 1)(n− 1) + 1/2 open intervals if m,n are both even,
• (m− 1)(n− 1)/2 open intervals in any other case.

Proof. By Proposition 3.2, a representation (A,B) is reducible unless
Am = Bn = ± Id, A,B ̸= ± Id. So the set of irreducible representations
can be described using the same tools as before: the set of equivalence
classes of irreducible representations is a collection of intervals r ∈
(−∞, 0) parametrized by pairs (k, k′) satisfying

(4.1) 0 < k < m, 0 < k′ < n, k ≡ k′ (mod 2).

We compute the number of such pairs, separating in three different
cases according to the parity of m and n:

Suppose m,n are both even. If k ≡ k′ ≡ 0 (mod 2), then k ∈
{2, 4, . . . ,m− 2}, k′ ∈ {2, 4, . . . n− 2}, so there are [(m− 2)(n− 2)]/4
such pairs. If k ≡ k′ ≡ 1 (mod 2), k ∈ {1, 3, . . .m − 1}, k′ ∈
{1, 3, . . . , n−1}, we have mn/4 pairs. The sum is [(m− 2)(n− 2)]/4+
mn/4 = [(m− 1)(n− 1) + 1]/2.

Suppose m is even and n is odd (the case m odd and n even
is similar). Then, if k ≡ k′ ≡ 0 (mod 2), k ∈ {2, 4, . . . ,m − 2},
k′ ∈ {2, 4, . . . n − 1}, we get (m− 2)(n− 1)/4 such pairs. If k ≡
k′ ≡ 1 (mod 2), k ∈ {1, 3, . . .m − 1}, k′ ∈ {1, 3, . . . , n − 2}, and
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there are m(n− 1)/4 such pairs. We get in total m(n− 1)/4 +
(m− 2)(n− 1)/4 = (m− 1)(n− 1)/2.

Finally, suppose both m,n odd. If k ≡ k′ ≡ 0 (mod 2), k ∈
{2, 4, . . . ,m−1}, k′ ∈ {2, 4, . . . n−1}, and we get (m− 1)(n− 1)/4 such
pairs. If k ≡ k′ ≡ 1 (mod 2), k ∈ {1, 3, . . .m−2}, k′ ∈ {1, 3, . . . , n−2},
there are (m− 1)(n− 1)/4 such pairs. We get (m− 1)(n− 1)/2 pairs
in total.

We have obtained a decomposition

Yirr =
⊔
k,k′

Y
(k,k′)
irr ,

where every Y
(k,k′)
irr is an open interval isomorphic to (−∞, 0). �

For the case of SL(2,C)-representations, we have the following

Proposition 4.4. The component Xirr ⊂ XSL(2,C) is described as

Xirr =
⊔
k,k′

X
(k,k′)
irr ,

where k, k′ satisfy (4.1), and X
(k,k′)
irr = P1 − {0, 1,∞}. This complex

algebraic variety consists of [(m− 1)(n− 1) + 1]/2 components if m,n
are both even, of (m− 1)(n− 1)/2 components if one of m,n is odd.

Moreover Y
(k,k′)
irr = (−∞, 0) ⊂ X

(k,k′)
irr in the natural way.

The limit cases r = 0, r = −∞ correspond to the closure of the irre-
ducible components, and these points are exactly where Y irr intersects
Yred. The triples (λ, µ, 0), (λ, µ,−∞) correspond to the reducible rep-
resentations with eigenvalues (λ, µ) and (λ, µ−1). Since λ, µ ̸= ±1, we
get two different intersection points. Note that the pattern of intersec-
tions for Xirr and Xred is the same, but the components are complex
algebraic varieties now.

To understand the way the closure of the components of Yirr inter-
sect Yred, we have the following:
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Proposition 4.5. The closure of Y
(k,k′)
irr is a closed interval that joins

Y i0
red with Y i1

red, where

i0 =
k − k′

2
, i1 =

k + k′

2
(mod d).

Proof. Set D = 2d ab, and consider ω a primitive D-th root of unity.
Then ξ := ωD/d = ω2ab is a primitive d-th root of unity. The irreducible

component Y
(k,k′)
irr is the interval (λ, µ, r), r ∈ (−∞, 0), where

λ = (ωb)k, µ = (ωa)k
′
,

and k, k′ are subject to the conditions (4.1), see equation (3.1). The

points in the closure of Y
(k,k′)
irr correspond to the reducible represen-

tations with eigenvalues (λ, µ) and (λ, µ−1). Clearly, (λ, µ) ∈ Xi0
red,

since
λaµ−b = ωkabω−k′ab = ω2ab(k−k′)/2 = ωi02ab = ξi0 ,

and (λ, µ−1) ∈ Xi1
red, since

λaµb = ωkabωk′ab = ξi1 . �

Proposition 4.5 gives a clear rule to depict Y = Yirr ∪ Yred for
every pair (m,n). Actually, Y is a collection of intervals attached on
their endpoints to Yred, which consists of several disjoint copies of S1

and [−2, 2]. Note that the pattern of intersections for the irreducible
components of XSL(2,C) = Xirr ∪Xred is the same as that of Y .

When m,n are coprime, we recover our previous pictures.

Corollary 4.6. For any two different components Y i0
red, Y

i1
red ⊂ Yred,

there is a pair (k, k′) such that Y
(k,k′)

irr joins them.

In particular, Y is a connected topological space.

Proof. We can assume 0 ≤ i0 < i1 ≤ d/2. Then 0 < k = d+i0−i1 <
d ≤ m and 0 < k′ = d−i0−i1 < d ≤ n both satisfy that k ≡ k′ (mod 2)
and (k − k′)/2 = i0, (k + k′)/2 = i1. �

Remark 4.7. It can be checked that there is no component Y
(k,k′)

irr

which joins Y i0
red to itself when m = n, or when one of m,n divides the
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other, and we are dealing with i0 = 0 or i0 = d/2 (the latter only if d
is even).

Actually, such a component would correspond to a pair (k, k′)
such that (k − k′)/2 ≡ ±i0 (mod d) and (k + k′)/2 ≡ ±i0 (mod d).
Accounting for all possibilities of signs, we have either k ≡ ±2i0, k

′ ≡ 0
(mod d), or k ≡ 0, k′ ≡ ±2i0 (mod d). This has solutions unless
m > n = d, i0 = 0, d/2; n > m = d, i0 = 0, d/2; or m = n = d, any i0.

Finally, as it happened in the coprime case,

Corollary 4.8. Y is a reformation retract of XSL(2,C).

Proof. We see, looking at Propositions 4.1 and 4.2, that each com-
ponent of Yred, which is either isomorphic to [−2, 2] or S1, is a de-
formation retract of its corresponding component in Xred (isomorphic
to C or C∗, respectively). Besides, the closure of each component in
Yirr, isomorphic to [0,∞], is again a deformation retract of the closure
of its corresponding component in Xirr (isomorphic to C). Using the
gluing lemma, we can construct a global homotopy to show that Y is
a deformation retract of X, as desired. �
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ENDNOTES

1. This map is an isomorphism of algebraic varieties for the torus
knot groups G = Gm,n in (1.1). This is shown in [5] directly as a
consequence of the description of the character variety.
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2. J.M. Gómez, A. Pettet and J. Souto, On the fundamental group of
Hom(Zk, G), Math. Z. 271 (2012), 33–44.

3. E.P. Klassen, Representations of knot groups in SU(2), Trans. Amer. Math.

Soc. 326 (1991), 795–828.
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