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ON THE DIOPHANTINE EQUATION F x
n + F x

n+1 = F y
m

NORIKO HIRATA-KOHNO AND FLORIAN LUCA

ABSTRACT. Here, we find all the solutions of the
title Diophantine equation in positive integer variables
(m,n, x, y), where Fk is the k-th term of the Fibonacci se-
quence.

1. Introduction. Let (Fn)n≥0 be the Fibonacci sequence given by
F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0. The Diophantine
equation

(1) F x
n + F x

n+1 = Fm

in positive integers (m,n, x) was studied in [5]. There, it was shown
that no solution other than (m,n) = (3, 1) exists for which 1x +1x = 2
(valid for all positive integers x), and the solutions for x = 1 and x = 2
arising via the formulas Fn + Fn+1 = Fn+2 and F 2

n + F 2
n+1 = F2n+1.

Here, we revisit equation (1) under the more general form

(2) F x
n + F x

n+1 = F y
m

in positive integers (m,n, x, y). The solution with n = 1 arising from
1x + 1x = 2 for any positive integer x with m = 3 and y = 1 will
be called trivial. So, we shall assume that n ≥ 2. The solutions with
(x, y) = (1, 1), (2, 1) given by Fn+Fn+1 = Fn+2 and F 2

n+F 2
n+1 = F2n+1

will also be called trivial. In the case x = 1, there is a nontrivial solution
arising from F4 + F5 = F6 = F 3

3 ; therefore, (m,n, x, y) = (3, 4, 1, 3).
It is the only solution with y > 1 when x = 1 or x = 2 because 8 is
the only Fibonacci number larger than 1 which is a perfect power of
another Fibonacci number (see [2]). In the case n = 2, we get the
equation 1+2x = F y

m. When y = 1, there is no solution (see [1]), while
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for y ≥ 2, this is Catalan’s equation whose only solution 1 + 23 = 32

yields (m,n, x, y) = (4, 2, 3, 2) as a solution to our original equation.

Our main result shows that no other solution exists.

Theorem 1.1. All positive integer solutions (m,n, x, y) of equation (2)
are (3, 1, x, 1), (n+ 2, n, 1, 1), (3, 4, 1, 3), (2n+ 1, n, 1, 1), (4, 2, 3, 2).

Before getting to the proof, we mention that similar looking equa-
tions have already been studied. For example, in [3], it was shown that
the only solution in positive integers (k, ℓ, n, r) of the equation

F k
1 + F k

2 + · · ·+ F k
n−1 = F ℓ

n+1 + · · ·+ F ℓ
n+r

is (k, ℓ, n, r) = (8, 2, 4, 3), while in [7], Miyazaki showed that the only
positive integer solutions (x, y, z, n) of the equation

F x
n + F y

n+1 = F z
2n+1

are for (x, y, z) = (2, 2, 1) (and for all positive integers n).

2. The proof of Theorem 1.1.

2.1. An inequality among the variables m,n, x, y. We write
(α, β) = ((1 +

√
5)/2, (1−

√
5)/2) and use the Binet formula

(3) Fn =
αn − βn

α− β
valid for all n ≥ 0.

We also use the inequality

(4) αn−2 ≤ Fn ≤ αn−1 valid for all n ≥ 1.

We may assume that n ≥ 3, x ≥ 3 and y ≥ 2 in (2) because the case
y = 1 was treated in [5]. Further, by Fermat’s last theorem, it follows
that d = gcd(x, y) ∈ {1, 2}, for if d ≥ 3 divides both x and y, then the

triple (X,Y, Z) = (F
x/d
n , F

x/d
n+1, F

y/d
m ) is a positive integer solution to

the Fermat equation Xd + Y d = Zd with integer exponent d ≥ 3 and
coprime positive integers X and Y , which we know does not exist. In
particular, since x ≥ 3, it follows that x ̸= y. It is clear that m ≥ 3,
but observe that in fact the inequality m ≥ 4 holds, for if m = 3, then
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with (a, b) = (Fn, Fn+1) we are led to a solution of the equation

ax + bx = 2y

in coprime integers 1 < a < b, and integers x ≥ 3 and y ≥ 2. Since a
and b are coprime, they are both odd, so when x is even, the left-hand
side above is congruent to 2 modulo 8, which is impossible for y > 1,
while if x is odd, then the number (ax + bx)/(a+ b) is odd, larger than
1, and divides the left-hand side of the above equation but not the
right-hand side of it, which is again impossible.

Equation (2) and inequalities (4) imply the following inequalities:

(αm−2)y < F y
m = F x

n + F x
n+1 < (Fn + Fn+1)

x = F x
n+2 < (αn+1)x,

(αm−1)y > F y
m = F x

n + F x
n+1 > F x

n+1 > (αn−1)x,

leading to

−2y < (n+ 1)x−my and my − (n+ 1)x > −2x+ y,

so

(5) |(n+ 1)x−my| < 2max{x, y}.

We record this as a lemma.

Lemma 2.1. If (m,n, x, y) is a solution of (2) with n ≥ 3, x ≥ 3 and
y ≥ 2, then inequality (5) holds.

From now on, we put

(6) M = min{m,n+ 1} and N = max{m,n+ 1}.

2.2. Bounds on x and y in terms of N . Since n ≥ 3, we have that
Fn/Fn+1 ≤ 2/3. Equation (2) implies that

F y
m − F x

n+1 = F x
n ;

hence,

(7) F y
mF−x

n+1 − 1 =

(
Fn

Fn+1

)x

≤ 1

1.5x
.

We shall use several times a result of Matveev (see [6], or [2, Theorem
9.4]), which asserts that if α1, α2, . . . , αK are positive real algebraic
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numbers in an algebraic number field K of degree D, b1, b2, . . . , bK are
rational integers, and

Λ = αb1
1 αb2

2 · · ·αbK
K − 1

is not zero, then
(8)

|Λ|>exp
(
−1.4×30K+3K4.5D2(1+logD)(1+logB)A1A2 · · ·AK

)
,

where
B ≥ max{|b1|, |b2|, . . . , |bK |},

and

Ai ≥ max{Dh(αi), | logαi|, 0.16},(9)

for all i = 1, 2, . . . ,K.

Here, for an algebraic number η, we write h(η) for its logarithmic
absolute height whose formula is

(10) h(η) =
1

d

(
log a0 +

d∑
i=1

logmax{|η(i)|, 1}
)
,

with d being the degree of η over Q and

(11) f(X) = a0

d∏
i=1

(X − η(i)) ∈ Z[X]

being the minimal primitive polynomial over the integers having posi-
tive leading coefficient a0 and η as a root. In particular, for a positive
integer η, we have h(η) = log η.

In a first application of Matveev’s theorem, we takeK = 2, α1 = Fm,
α2 = Fn+1. We also take b1 = y, and b2 = −x. Thus,

(12) Λ1 = F y
mF−x

n+1 − 1

is the expression appearing on the left-hand side of inequality (7).
Clearly, Λ1 = (Fn/Fn+1)

x > 0, so, in particular, it is nonzero.

We take B = max{x, y}. Since α1 and α2 are integers, it follows
that we can take D = 1. We can take A1 = m logα and A2 = n logα,
then by (4), inequalities (9) hold for both i = 1, 2. Now Matveev’s
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theorem tells us that

(13) |Λ1| > exp (−C1 ×m logα× n logα× (1 + logB)) ,

where

(14) C1 = 1.4× 305 × 24.5 < 8× 108.

Taking logarithms in inequality (7) and comparing the resulting in-
equality with (13), we get

−C1(logα)
2mn(1 + logB) < log |Λ1| < −x log(1.5),

so

(15) x <
C1(logα)

2

log(1.5)
mn(1 + logB),

which leads to

(16) x < 5× 108mn(1 + logB) < 109mn logB,

because logB ≥ log 3 > 1.

If x > y, then B = x and the above inequality gives

(17) x < 109mn log x.

If y > x, then B = y. Further, by Lemma 2.1, we have that

|my − (n+ 1)x| < 2y;

therefore,

(18) y < (m− 2)y < (n+ 1)x ≤ Nx

(because m ≥ 4), so inequality (16) shows that

(19) x < 109mn log(Nx).

If

(20) x ≤ N,

we already have a sharp bound on x by definition of N . Otherwise,
x > N and inequality (19) shows that

(21) x < 109mn log(Nx) < 2× 109mn log x.
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Comparing (17), (20) and (21), we conclude that inequality (21) holds
in all cases.

It is well-known and easy to prove that, if A ≥ 3 and x/ log x < A,
then x < 2A logA. Thus, taking A = 2× 109mn, inequality (21) gives
us

x < 4× 109mn log(2× 109N2)(22)

< 4× 109mn(log(2× 109) + 2 logN)

< 4× 109mn(22 + 2 logN)

< 1011mn logN.

In the above chain of inequalities, we used that fact that N ≥ 4, which
implies that 22 + 2 logN < 24 logN . From estimate (18), we also
deduce that

(23) y < Nx < 1011MN2 logN.

We record what we have just proved.

Lemma 2.2. If (n,m, x, y) is a solution in positive integers of equation
(2) with n ≥ 3, x ≥ 3 and y ≥ 2, then both inequalities

x < 1011MN logN, y < 1011MN2 logN

hold.

2.3. Solutions with N ≤ 1000. Assume that N ≤ 1000. By Lemma
2.2, we have

x < 1011 × (103)2 log(103) < 1018,

y < 1011 × (103)3 log(103) < 1021.

Put Γ1 = y logFm − x logFn+1, and observe Γ1 > 0 and Λ1 + 1 = eΓ1 .
Hence, from (7), we get

0 < Γ1 < eΓ1 − 1 = Λ1 <
1

1.5x
.

Dividing the last inequality above by x logFm, we get

(24) 0 <
y

x
− logFn+1

logFm
<

1

x logFm(1.5)x
.
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Observe that

(logFm)(1.5)x ≥ (log 3)(1.5)x > 2x for all x ≥ 6.

In fact, the inequality logFm(1.5)x > 2x fails only when x ∈ {3, 4, 5}
and m ∈ {4, 5}. For such values of x and m, with (a, b) = (Fn, Fn+1),
we are led to solutions of one the equations

ax + bx = 3y or ax + bx = 5y,

but none of these equations has any solutions in positive coprime
integers 1 < a < b, x ∈ {3, 4, 5} and y ≥ 2. Hence, (logFm)(1.5)x > 2x;
therefore, inequality (24) becomes

(25) 0 <
y

x
− logFn+1

logFm
<

1

2x2
,

which, by a known criterion of Legendre, implies that y/x is a conver-
gent to the continued fraction of logFn+1/ logFm, and it is in fact a
convergent with an odd index. Recall also that d = gcd(x, y) ∈ {1, 2}.

We ran a computer code that tested all possibilities (m,n) with
N ≤ 1000. Since the convergents pk/qk of any irrational number γ
satisfy pk ≥ Fk, and since F105 > 1021, we generated, for each pair
(m,n) with m ≥ 4, n ≥ 3, and m /∈ {n, n+1}, the first 105 convergents
pk/qk of logFn+1/ logFm to see whether one of the pairs (y, x) =
(pk, qk), (2pk, 2qk) for which x ≥ 3, the congruence F x

n + F x
n+1 ≡ F y

m

(mod 1010) holds. That is, we only tested equation (2) modulo 1010.
This computation took about six hours with Mathematica, and no
solution to the above congruence was found. We record our conclusion
as follows.

Lemma 2.3. If (m,n, x, y) is a solution of equation (2) with n ≥ 3,
x ≥ 3, and y ≥ 2, then N > 1000.

2.4. Bounds for x, y and N in terms of M . By Lemmas 2.2 and
2.3, we have

(26) max{x, y} < 1011N3 logN < αN .

The right-most inequality above holds in fact for all N ≥ 84. Say
z ∈ {x, y} is such that (z,N) is one of the two pairs (x, n+ 1), (y,m).
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Then inequality (26) implies that

(27)
z

α2N
<

1

αN
.

By the Binet formula (3) and the fact that β = −α−1, we have

F z
N =

αNz

5z/2

(
1− (−1)N

α2N

)z

=
αNz

5z/2
exp

(
z log

(
1− (−1)N

α2N

))
.

We use the fact that the inequalities

(28) 1 + t < et < 1 + 2t

and
1− t < e−t < 1− t/2

hold for all t ∈ (0, 1/2), as well as their logarithmic versions

t/2 < log(1 + t) < t(29)

and

−2t < log(1− t) < −t for all t ∈ (0, 1/2),

and (27), to deduce that if N is odd, then

1 <

(
1− (−1)N

α2N

)z

=

(
1 +

1

α2N

)z

(30)

= exp

(
z log

(
1 +

1

α2N

))
< exp

(
z

α2N

)
< exp

(
1

αN

)
< 1 +

2

αN
,

while, if N is even, then

1 >

(
1− (−1)N

α2N

)z

=

(
1− 1

α2N

)z

(31)

= exp

(
z log

(
1− 1

α2N

))
> exp

(
− 2z

α2N

)
> exp

(
− 2

αN

)
> 1− 2

αN
.
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Thus, from the two inequalities (30) and (31) above, we deduce that if
we put

εN,z =

(
1− (−1)N

α2N

)z

− 1,

then

(32) F z
N =

αNz

5z/2
(1 + εN,z) , and |εN,z| <

2

αN
.

Since x ≥ 3 and N > 1000, we deduce easily from (7) and (32) that

(33)
F y
m

F x
n+1

,
F z
N

αNz/5z/2
∈
(
1

2
, 2

)
.

Suppose now that N = n+ 1. Then z = x and

F y
m = F x

n+1 + F x
n =

α(n+1)x

5x/2
+

(
α(n+1)x

5x/2

)
εn+1,x + F x

n ,

so

|F y
mα−(n+1)x5x/2 − 1| =

∣∣∣∣εn+1,x +
F x
n

α(n+1)x/5x/2

∣∣∣∣(34)

< |εn+1,x|+
(

Fn

Fn+1

)x( F x
n+1

α(n+1)x/5x/2

)
<

2

αn+1
+

2

1.5x
≤ 4

1.5λ
,

where

(35) λ = min{x,N}.

Here we used, in addition to (33), the fact that α > 1.5. The same
inequality is obtained when N = m, because in this case z = y and

F x
n+1 = F y

m − F x
n =

(
αmy

5y/2

)
+

(
αmy

5y/2

)
εm,y − F x

n ,
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so

|F x
n+1α

−my5y/2 − 1| =
∣∣∣∣εm,y −

(
F x
n

αmy/5y/2

)∣∣∣∣(36)

< |εm,y|+
(

Fn

Fn+1

)x(F x
n+1

F y
m

)(
F y
m

αmy/5y/2

)
<

2

αN
+

2

1.5x
<

4

1.5λ
.

To summarize, from (34) and (36), we get that if we put {w, z} = {x, y}
such that (w,M), (z,N) are the two pairs (x, n+ 1), (y,m), then the
inequality

(37) |Fw
Mα−Nz5z/2 − 1| < 10

1.5λ

holds, where λ is given by formula (35). We shall use (37) and
Matveev’s theorem to get an upper bound on x and N in terms of
M .

We continue by getting a lower bound on the left-hand side of
inequality (37). For this, we take K = 3, α1 = FM , α2 = α, α3 =

√
5.

We also take b1 = w, b2 = −Nz, b3 = z. Hence,

Λ2 = αb1
1 αb2

2 αb3
3 − 1 = Fw

Mα−Nz5z/2 − 1

is the expression which appears under the absolute value in the left-
hand side of inequality (37). It is easy to see that Λ2 ̸= 0, for if Λ2 = 0,
we then get that α2Nz = F 2w

M 5z ∈ Z, which is impossible since no power
of α of positive integer exponent can be an integer. Observe next that
α1, α2, α3 are all real and belong to the field K = Q(

√
5), so we can

take D = 2. Next, since FM < αM (see (4)), it follows that we can
take

A1 = 2M logα > D logFM = Dh(α1).

Next, since h(α2) = (logα)/2 = 0.240606 . . . , it follows that we can
take A2 = 0.5 > Dh(α2). Since h(α3) = (log 5)/2 = 0.804719 . . ., it
follows that we can take A3 = 1.61 > Dh(α3). Finally, Lemma 2.2,
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and the fact that N > 1000, tell us that we can take

B = N9 = N4 ×N ×N4 > (103)4 × logN ×MN2 ×N

> (1011MN2 logN)×N > max{Nz, z, w}
= max{|b1|, |b2|, |b3|}.

Matveev’s theorem tells us that

(38) |Λ2| > exp(−C2(1 + logB)A1A2A3),

where

(39) C2 = 1.4× 306 × 34.5 × 22(1 + log 2) < 1012.

Thus,

C2(1 + logB)A1A2A3(40)

< 1012 × (2 logα)× 0.5× 1.61× (1 + log(N9))M

< 8× 1011M(1 + 9 logN)

< 8× 1012M logN.

Comparing (40) with (37), we get that

(41) λ <
log 10

log 1.5
+

(
1

log 1.5

)
8× 1012M logN < 2× 1013M logN.

Before proceeding further, for reasons that will become clear later,
we make one comment about Mw and Nz. If z > w, we then have by
inequality (5), that

Mw ≤ (N + 2)z ≤ 2Nz,

while if z < w, then, again by (5) and the fact that M ≥ 3, we have

Mw

3
≤ (M − 2)w ≤ Nz, therefore Mw ≤ 3Nz.

So, it is always the case that Mw ≤ 3Nz. A similar argument shows
that Nz ≤ 2Mw; therefore,

(42)
Nz

Mw
∈
(
1

3
, 2

)
.

Next, we distinguish several cases.
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Case 1. λ = N . Then, by (41), we get

(43) N < 2× 1013M logN.

Hence,

N < 2× 2× 1013M log(2× 1013M)(44)

= 4× 1013M(log(2× 1013) + logM)

< 4× 1013M(31 + logM)

< 4× 32× 1013M logM

< 1.5× 1015M logM.

From Lemma 2.2, we get

x < 1011MN logN(45)

< 1011(1.5× 1015M logM)M log(1.5× 1015M logM)

< 1.5× 1026M2(logM)(35 + 2 logM)

< 1.5× 37× 1026M2(logM)2

< 1028M2(logM)2.

Thus, if w = x, then

(46) Mw = Mx < 1028M3(logM)2,

while if w = y, then z = x and

Nz = Nx < (1.5× 1015M logM)(1028M2(logM)2)(47)

< 1.5× 1043M3(logM)3.

Using containment (42), we deduce from estimates (46) and (47)

(48) max{Nz,Mw} < 5× 1043M3(logM)3.

Since My ≤ max{Mw,Nz}, we get from (48),

(49) y < 5× 1043M2(logM)3.

Case 2. λ = x. In this case, from inequality (41), we have

(50) x = λ < 2× 1013M logN.

We now distinguish two subcases.



ON THE DIOPHANTINE EQUATION Fx
n + Fx

n+1 = F y
m 521

Case 2.1. m = N . Then n + 1 = M . Further, if x > y, then by
inequality (5), the fact that y ≥ 2 and (50), we have

N = m ≤ my

2
<

(n+ 3)x

2
< (n+ 1)x(51)

= Mx < 2× 1013M2 logN,

while if x < y, then by inequality (5), the fact that y ≥ 4 in this case
and (50), we have

(52) N = m < m(y − 2) < (n+ 1)x < Mx < 2× 1013M2 logN.

So, comparing (51) and (52), we conclude that in this case we always
have

(53) N < 2× 1013M2 logN.

Case 2.2. n+1 = N . First, note that if y > x, then, by (5), we have

y < (m− 2)y < (n+ 1)x = Nx,

while if x > y, then

y ≤ my

2
<

(n+ 3)x

2
< (n+ 1)x = Nx.

Hence, the inequality

(54) y < Nx

holds in this case.

Further, observe that x = z. Thus, we also have

F x
n =

αnx

5x/2

(
1− (−1)n

α2n

)x

.

Further, by (27), we have

x

α2n
=

x

α2N−2
<

α2

αN
.

The argument from inequalities (30) and (31) now shows that

F x
n =

αnx

5x/2
(1 + ζn,x) , where |ζn,x| <

2α2

αN
.
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We thus get

F y
m = F x

n+1 + F x
n =

αnx(αx + 1)

5x/2
+

(
α(n+1)x

5x/2

)
εn+1,x +

(
αnx

5x/2

)
εn,x,

so

(55)

∣∣∣∣F y
mα−nx

(
5x/2

αx + 1

)
− 1

∣∣∣∣ < |εn+1,x|
(

αx

αx + 1

)
+ |εn,x|

(
1

αx + 1

)
<

4

αN
,

where we used the facts that

|εn+1,x| <
2

αN
, |εn,x| <

2α2

αN
,

αx

αx + 1
< 1,

and
1

αx + 1
<

1

α2
,

and the right-most inequality above holds because x ≥ 3.

We continue by getting a lower bound on the left-hand side of
inequality (55) using again Matveev’s theorem. For this, we take
K = 3, α1 = Fm, α2 = α, α3 = (αx + 1)/5x/2. We also take
b1 = y, b2 = −nx, b3 = −1. Hence,

Λ3 = αb1
1 αb2

2 αb3
3 − 1 = F y

mα−nx

(
5x/2

αx + 1

)
− 1

is the expression which appears under the absolute value in the left-
hand side of inequality (55). We first check that Λ3 ̸= 0. If Λ3 = 0,
then

α2nx(αx + 1)2 = F 2y
m 5x ∈ Z.

Conjugating the above expression in Q(
√
5), we get that

α2nx(αx + 1)2 = β2nx(βx + 1)2,

which is impossible because the left-hand side of it is very large (at
least α2000), while the right-hand side of it is smaller than 2 for
x ≥ 3. Observe next that α1, α2, α3 are all real and belong to the
field K = Q(

√
5), so we can take D = 2. Next, since Fm = FM < αM ,
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it follows that we can take

A1 = 2M logα > D logFM = Dh(α1).

Next, since h(α2) = (logα)/2 = 0.240606 . . ., it follows that we can take
A2 = 0.5 > Dh(α2). For α3, its conjugate in K is (−1)x(βx + 1)/5x/2,
so its minimal polynomial over the integers is a divisor of

5x
(
X − αx + 1

5x/2

)(
X − (−1)x

βx + 1

5x/2

)
= 5xX2 − 5x/2(αx + (−1)xβx + 1 + (−1)x)X

+ (−1)x(αx + βx + 1 + (−1)x) ∈ Z[X].

Thus, with the notations from (11) for η = α3, we have a0 ≤ 5x,

|α(1)
3 | = |α3| =

αx + 1

5x/2
< 2

(
α√
5

)x

< 1

(because x ≥ 3), and

|α(2)
3 | = |βx + 1|

5x/2
<

2

5x/2
< 1.

Hence, h(α3) = (log a0)/2, so we can take

A3 = 1.61x > x log 5 =
D log 5x

2
≥ D log a0

2
= Dh(α3).

Finally, inequality (50), the fact that N > 1000 as well as inequality
(54), tell us that we can take

B = N7 = N4 ×N ×N2 > (103)4

× 20 logN ×MN

> (2× 1013M logN)

×N > Nx = max{Nx, y, 1}
= max{|b1|, |b2|, |b3|}.

In the above, we used the fact that the inequality N > 20 logN holds
for all N > 1000. We thus get that

(56) |Λ3| > exp(−C2(1 + logB)A1A2A3),
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where C2 < 1012 (see inequality (39)). Thus,

C2(1 + logB)A1A2A3(57)

< 1012 × (2 logα)× 0.5× 1.61× (1 + logN7)Mx

< 8× 1011Mx(1 + 7 logN)

< 7× 1012Mx logN.

Inserting (50) into (57), we get that

C2(1 + logB)A1A2A3(58)

< 7× 1012M(2× 1013M logN) logN

< 1.5× 1026M2(logN)2.

From inequalities (55), (56) and (58), we get that

N <
log 4

logα
+

(
1

logα

)
1.5× 1026M2(logN)2(59)

< 4× 1026M2(logN)2.

Taking the worst possibility between (53) and (59), we get that

N < 4× 1026M2(logN)2.

We now use the fact that, if A > 100, then the inequality

t

log t
< A implies t < 4A(logA)2

(see [3]) with A = 4× 1026M2, to get that

N < 4× 1026M2(log(4× 1026M2)2(60)

= 4× 1026M2(log(4× 1026) + 2 logM)2

< 4× 1026M2(62 + 2 logM)2

< 4× 1026M2 × 642(logM)2

< 2× 1030M2(logM)2.
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Using also inequality (50), we get

x < 2× 1013M logN(61)

< 2× 1013M log(2× 1030M2(logM)2)

< 2× 1013M(log(2× 1030) + 4 logM)

< 2× 1013M(70 + 4 logM)

< 2× 74× 1013M logM

< 1.5× 1015M logM.

So, as in Case 1, we deduce that if w = x, then

(62) Mw = Mx < 2× 1015M2 logM,

while if w = y, then z = x and

Nz = Nx(63)

< (2× 1030M2(logM)2)(1.5× 1015M(logM))

< 3× 1045M3(logM)3.

Using containment (42), we deduce from estimates (62) and (63)

(64) max{Nz,Mw} < 1046M3(logM)3.

In particular, since My ≤ max{Nz,Mw}, we also get from (64) that

(65) y < 1046M2(logM)3.

From (44), (45), (48), (49), (60), (61), (64) and (65), we record what
we have just proved in the following way.

Lemma 2.4. If (m,n, x, y) is a solution to equation (2) with n ≥
3, x ≥ 3 and y ≥ 2, then

N < 2× 1030M2(logM)2,

x < 1028M2(logM)2,

y < 1046M2(logM)3,

max{Mw,Nz} < 1046M3(logM)3.
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2.5. The case when M ≤ 1000. Here, we go back to the inequality
(37), which is

(66) |Fw
Mα−Nz5z/2 − 1| < 10

1.5λ
.

Since M ≤ 1000, we have, by Lemma 2.4, that

max{w,Nz, z} < (1046)(103)3(log(103))3 < 1056.

Assume that λ ≥ 8. Then the right-hand side of (66) is at most 1/2,
so by a classical argument it follows that

(67) |w logFM −Nz logα+ z log
√
5| < 20

1.5λ
.

However, the minimum of the expression appearing on the left-hand
side of inequality (67) over all possible indices M < 3000 and integer
exponents w,Nz, z of maximal absolute values at most 5×1065 (hence,
which includes our current range) was bounded from below using LLL in
[3, Section 6]. The lower bound there is 100/1.5750. This immediately
implies that λ < 750.

If x > N , we then get N = λ < 750, a contradiction with the results
obtained at subsection 2.3.

Thus, x < N and x = λ < 750. Hence, we are in Case 2
of the analysis from subsection 2.4. We treat the two cases from
subsection 2.4.

Case 2.1. m = N . In this case, by inequality (5), we have

(M − 1)x = nx > (m− 2)y = (N − 2)y ≥ (M − 1)y,

where the last inequality holds because otherwise m = N = M = n+1,
which is false since Fn and Fn+1 are coprime. Hence, y ≤ x; therefore,
y < x. Let

(68) λ1 = min{M,x}.

Assume that λ1 > 20. Then λ > 20, and inequality (67) becomes

(69) |x logFn+1 −my logα+ y log
√
5| < 20

1.5λ
.
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With the Binet formula (3) and the fact that n+1 = M > 20, we have

logFn+1 = log

(
αn+1

51/2

)
+ log

(
1− (−1)n+1

α2n+2

)
(70)

= (n+ 1) logα− log
√
5 + ζn,

where

(71) |ζn| <
2

α2n+2
.

Inserting formula (70) with the bound (71) into (69), we get

(72) |(x(n+ 1)−my) logα− (x− y) log
√
5| < 20

1.5λ
+

2x

α2M
.

Since αM ≥ αλ1 > α20 > 1500 > 2x, it follows that

2x

α2M
<

1

αM
<

1

(1.5)M
≤ 1

(1.5)λ1
.

Thus, estimate (72) implies

(73)

∣∣∣∣x(n+ 1)−my

x− y
− log

√
5

logα

∣∣∣∣ < (
21

logα

)
1

(1.5)λ1
.

The first few convergents (pk/qk)k≥0 of log
√
5/ logα are

1, 2,
5

3
,
97

58
,
199

119
,
1888

1129
,
2087

1248
, . . . .

Since 0 < x − y < 750 < 1129, it follows that a lower bound on the
expression appearing in the left-hand side of (73) is∣∣∣∣ log√5

logα
− p5

q5

∣∣∣∣ > 4

107
,

which together with (73) gives λ1 ≤ 45. So, y < x ≤ 45 if λ1 = x,
whereas if λ1 = n+ 1, then

y <
xn

N − 2
<

750× 45

999
< 45.

Thus, y ∈ [2, 44]. We covered the rest by brute force. That is, we
checked whether for some triple (n, x, y) with n ∈ [3, 1000], x ∈ [3, 750]
satisfying min{n+ 1, x} ≤ 45 and for 2 ≤ y < min{x, 45}, the number
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F x
n + F x

n+1 is the yth power of some integer. This computation took
several hours, and no new solutions were found.

Case 2.2. n + 1 = N . In this case, m ≤ 1000. We next use some
elementary arguments to restrict the ranges of the variables x and m.
We first note that x is even, for if x is odd, then

FN+1 = Fn+2 = Fn + Fn+1 | F x
n + F x

n+1 = F y
m.

However, by the primitive divisor theorem, we know that FN+1 has a
primitive prime factor p, which is a prime factor that does not divide
Fk for any 1 ≤ k ≤ N . In particular, the primitive prime factor p of
FN+1 cannot divide Fm. By the same argument, we get that in fact
4 | x, since if 2∥x, then

F2N−1 = F2n+1 = F 2
n + F 2

n+1 | (F 2
n)

x/2 + (F 2
n+1)

x/2 = F y
m,

and the contradiction is again obtained by invoking the fact that F2N−1

possesses a primitive prime factor which cannot divide Fm. Thus, 4 | x.
If both Fn and Fn+1 are odd, the left-hand side of equation (2) is
congruent to 2 modulo 4, implying that y = 1, which is false. Thus,
one of Fn and Fn+1 is even and the other is odd, so the left-hand side of
equation (2) is congruent to 1 modulo 16. Since 4 | x, we conclude that
y is odd, for if not, then with X = F

x/4
n , Y = F

x/4
n+1 and Z = F

y/2
m , we

would get a solution to the equation X4+Y 4 = Z2 in positive integers
X, Y, Z, which we know does not exist. Since the left-hand side of the
expression

F x
n + F x

n+1 − 1 = F y
m − 1 = (Fm − 1)

(
F y
m − 1

Fm − 1

)
,

is a multiple of 16 and the second factor on the right-hand side above
is odd (because y is odd), we get that Fm ≡ 1 (mod 16). There are 123
values form ≤ 1000 such that Fm ≡ 1 (mod 16). Further, observe that,
since 4 | x, it follows that every prime factor p of Fm must be congruent
to 1 modulo 8 (this is because the multiplicative order of Fn+1/Fn

modulo each such prime p is a multiple of 8). The factorizations of all
Fibonacci numbers Fm with m ≤ 1000 are known. Testing by hand
each of the 123 candidates above against this last condition leaves only
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21 candidates, namely,

(74) m ∈ {23, 26, 47, 71, 121, 122, 167, 191, 193, 337, 359,
383, 431, 433, 601, 647, 649, 794, 866, 911, 913} .

By a standard argument, inequality (55) together with the fact that N
is very large implies that

(75)
∣∣∣y logFm − nx logα+ log(5x/2/(αx + 1))

∣∣∣ < 8

αN
.

Assume, for example, that the expression under the absolute value in
above is positive. We then get that

0 < y

(
logFm

logα

)
− nx+

(
log(5x/2/(αx + 1)

logα

)
(76)

<
8

(logα)αN
<

20

αN
.

We now apply the Baker-Davenport reduction as presented in [4].
Namely, let m be in the list (74), and let x < 750 be multiple of 4.
Put

γ =
logFm

logα
, µ =

log(5x/2/(αx + 1))

logα
, A = 20, B = α.

Then inequality (76) is

(77) 0 < uγ − v + µ <
A

BN

in positive integers u and v. For the purposes here, (u, v) = (y, nx).
We first need a bound T on y. Since

y <
Nx

m− 2
<

750N

20
< 4N < 4(2× 1030 × (103)2(log(103))2 < 1042

(where we used Lemma 2.4 for the bound on N), it follows that we can
take T = 1043. Now we need to take the denominator q of a convergent
to γ such that q > 10T and put ε = ∥µq∥ − 10T∥γq∥ in such a way
that ε > 0. It turns out that by choosing q to be the denominator of
the 250th convergent of γ leads to the conclusion that ε > 3 × 10−36

for all choices of m and x. Further, the maximal denominator of such
a convergent satisfies q < 2 × 10133, while the minimal one satisfies
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q > 7× 10116. Then the theory says that

N <
log(Aq/ε)

logB
<

log
(
20× 2× 10133 × 1036/3

)
logα

< 815,

a contradiction to the fact that N > 1000. A similar contradiction
is obtained if one assumes that the expression appearing under the
absolute value in (75) is negative, namely, we just change

(γ, µ, A) to

(
1

γ
,
log(5x/2/(αx + 1))

logFm
,

8

logFm

)
.

respectively. We give no further details. This completes the analysis
when M ≤ 1000. We record what we have proved as follows.

Lemma 2.5. If (m,n, x, y) is a solution of equation (2) with x ≥
3, n ≥ 3 and y ≥ 2, then N > M > 1000.

2.6. An absolute bound on all the variables m,n, x, y. Since
N > M > 1000, it follows, from Lemma 2.4, that

max{x, y} < 1046M2(logM)3 < αM−2 ≤ min{αn−1, αm}.

The middle inequality above holds for all M ≥ 256. Hence, all three
inequalities

x

α2n
≤ 1

αn+1
,

x

α2n+2
≤ 1

αn+1
,

y

α2m
≤ 1

αm

hold; therefore, as in subsection 2.4, we may write

F x
n =

αnx

5x/2
(1 + ζn,x) ,(78)

Fn+1 =
α(n+1)x

5x/2
(1 + ζn+1,x) ,

F y
m =

αmy

5y/2
(1 + ζm,y) ,

where

(79) max{|ζn,x|, |ζn+1,x|} ≤ 2

αn+1
, |ζm,y| ≤

2

αm
.
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We also have the analog of containment (33), namely,

(80)
F x
n

αnx/5x/2
,

F x
n+1

α(n+1)x/5x/2
,

F y
m

αmy/5y/2
∈
(
1

2
, 2

)
.

Inserting approximations (78) into equation (2) and shuffling some
terms, we get

αmy

5y/2
−α(n+1)x

5x/2
− αnx

5x/2
=

(
α(n+1)x

5x/2

)
ζn+1,x+

(
αnx

5x/2

)
ζn,x−

(
αmy

5y/2

)
ζm,y,

which, together with (80), implies the following inequalities:∣∣∣αmy−(n+1)x5(x−y)/2 − 1
∣∣∣(81)

<
1

αx
+ |ζn+1,x|+

(
1

αx

)
|ζn,x|+

(
αmy/5y/2

α(n+1)x/5x/2

)
|ζm,y|

<
1

αx
+

3

αn+1
+

(
αmy/5y/2

F y
m

)(
F y
m

F x
n+1

)(
F x
n+1

α(n+1)x/5x/2

)
|ζm,y|

<
1

αx
+

3

αn+1
+

16

αmy
<

20

αλ1
,

where λ1 = min{x,M} has the same meaning as in (68), and

∣∣∣αmy−nx5(x−y)/2(αx + 1)−1 − 1
∣∣∣

(82)

<

(
αx

αx + 1

)
|ζn+1,x|+

|ζn,x|
αx + 1

+

(
αx

αx + 1

)(
αmy/5y/2

α(n+1)x/5x/2

)
|ζm,y|

<
3

αn+1
+

16

αm
<

20

αM
.

We apply Matveev’s theorem to the left-hand side of inequality (81)

with K = 2, α1 = α, α2 =
√
5, b1 = my − (n + 1)x, b2 = x − y and

D = 2. Thus,

Λ4 = αb1
1 αb2

2 − 1 = αmy−(n+1)x5(x−1)/2 − 1.

Observe that Λ4 ̸= 0 since otherwise we would get that α2my−2(n+1)x =
5y−x ∈ Z, and this is possible only if my = (n + 1)x and y = x, but
this last equality is not allowed. We take as in prior applications of
this theorem A1 = 0.5 > logα = Dh(α1) and A2 = 1.61 > log 5 =
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2Dh(α2). Further, since x ≥ 3, it follows that the right-hand side in
(81) is at most 20/α3 < 5; therefore,

α|my−(n+1)x|

5|y−x|/2 < 6,

so

|b1| = |my − (n+ 1)x| <
log

(
6× 5|y−x|/2)
logα

(83)

=

(
log 5

2 logα

)
|y − x|+ log 6

logα
< 2|y − x|+ 18

< 20max{x, y}.

Thus, using Lemmas 2.4 and 2.5, we can take

B = M20(84)

= M17 ×M2 ×M > (103)17 ×M2 × (logM)3

> 20× 1046M2(logM)3

> 20max{x, y} > max{|b1|, |b2|}.

Matveev’s theorem tells us that

(85) |Λ4| > exp(−C1(1 + logB)A1A2),

where C1 < 8× 108 is given by (14). Thus,

C1(1 + logB)A1A2 < 8× 108 × 0.5× 1.61(1 + log(M20))(86)

< 8× 0.5× 1.61× 108 × 21 logM

< 2× 1010 logM.

Comparing estimates (81), (85) and (86), we get that

(87) λ1 <
log 20

logα
+

(
2× 1010

logα

)
logM < 5× 1010 logM.

We now distinguish two cases.

Case 1. λ1 = M . In this case, from (86), we get

M < 5× 1010 logM ;

therefore,

(88) M < 2× 5× 1010 log(5× 1010) < 3× 1012.
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Case 2. λ1 = x. In this case, from (86), we get

(89) x < 5× 1010 logM.

We apply Matveev’s theorem to the left-hand side of the inequality (82)

with K = 3, α1 = α, α2 =
√
5, α3 = αx +1, b1 = my− nx, b2 = x− y,

b3 = −1 and D = 2. Thus,

Λ5 = αb1
1 αb2

2 αb3
3 − 1 = αmy−nx5(x−y)/2(αx + 1)−1 − 1.

Let us check that Λ5 ̸= 0. If Λ5 = 0, we then get that

(90) αx + 1 = 5(x−y)/2αmx−ny.

Conjugating the above relation in Q(
√
5), we get

(91) βx + 1 = 5(x−y)/2βmx−ny.

Multiplying relations (90) and (91), we get

αx + βx + (−1)x + 1 = (αx + 1)(βx + 1)(92)

= (αβ)my−nx5x−y

= (−1)my−nx5x−y.

Since the left-hand side of equation (92) above is larger than 1 for x ≥ 3,
it follows that my−nx is even and x > y. If x is odd, the above relation
implies that Lx = 5x−y, where (Lk)k≥0 is the Lucas companion of the
Fibonacci sequence given by L0 = 2, L1 = 1 and Lk+2 = Lk+1 + Lk

for all k ≥ 0. However, it is easy to check (by invoking the identity
L2
k − 5F 2

k = 4(−1)k, for example), that 5 - Lk for any positive integer
k. Thus, x is even and the equation becomes

αx + βx + 2 = 5x−y.

If 4 | x, the above equation gives L2
x/2 = 5x−y, which is again

impossible because Lk is never a multiple of 5. Finally, when 2∥x,
we get 5F 2

x/2 = 5x−y; therefore, Fx/2 = 5(x−y−1)/2. It is well-known

that the only Fibonacci number larger than 1 which is a power of 5 is
F5 = 5. Thus, x = 10 and x − y − 1 = 2; therefore, y = 7. Thus,
equation (2) becomes

F 10
n + F 10

n+1 = F 7
m.
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Hence, F2n+1 = F 2
n + F 2

n+1 | F 10
n + F 10

n+1 = F 7
m, and, by the primitive

divisor theorem, we conclude that 2n + 1 | m. However, this is
impossible since one can easily check that

F 7
2n+1 > F 10

n + F 10
n+1

holds for all n ≥ 1. Indeed, one checks that the above inequality holds
for n = 1, whereas for n ≥ 2, we have

F 5
n + F 5

n+1 < (Fn + Fn+1)
5 = F 5

n+2 < α5n+5 < α14n−7 < F 7
2n+1.

Thus, indeed Λ5 ̸= 0.

We take, as in prior applications of Matveev’s theorem, A1 = 0.5 >
logα = Dh(α1) and A2 = 1.61 > log 5 = 2Dh(α2). As for α3 = αx+1,
this is an algebraic integer whose conjugate is βx + 1 whose absolute
value is smaller than 2. Thus,

Dh(α3) ≤ log(αx + 1) + log 2 < log(2αx) + log 2

= x logα+ 2 log 2 ≤ x

(
logα+

2 log 2

3

)
< x,

so we can take A3 = x. Finally, observe that by the calculation (83),
we have

|b1| = |my − nx| ≤ |my − (n+ 1)x|+ x < 20|y − x|+ 18 + x

< 21max{x, y}.

Hence, using Lemmas 2.4 and 2.5, we conclude, as at estimate (84),
that we can take

B = M20 = M17 ×M2 ×M(93)

> (103)17 ×M2 × (logM)3

> 21× 1046M2(logM)3

> 21max{x, y} > max{|b1|, |b2|}.

Matveev’s theorem now implies that

(94) |Λ5| > exp(−C2(1 + logB)A1A2A3),
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where C2 < 1012 is given by (39). Note that

C2(1 + logB)A1A2A3 < 1012 × 0.5× 1.61× x(1 + logN20)(95)

< 1012 × 0.5× 1.61× 21x logM

< 2× 1013x logM.

From estimates (82), (94) and (95), we get that

M <

(
log 20

logα

)
+

(
2× 1013

logα

)
x logM < 5× 1013x logM.

Thus,

(96) M < 5× 1013x logM.

Inserting estimate (89) into (96), we get

M < 5× 1013(5× 1010 logM) logM < 3× 1024(logM)2.

Thus,

(97) M < 4× 3× 1024(log(3× 1024))2 < 4× 1028.

Comparing the bounds (88) with (97) on M obtained in the two cases,
we conclude that the inequality (97) always holds. Inserting the above
bound for M into the inequalities of Lemma 2.4, we get

N < 2× 1030(4× 1028)2(log(4× 1028))2 < 1092,

x < 1028M2(logM)2

< 1028(4× 1028)2(log(4× 1028))2 < 1089,

y < 1046M2(logM)2

< 1046(4× 1028)2(log(4× 1028))2 < 10107.

We record the following conclusions.

Lemma 2.6. If (m,n, x, y) is a solution of equation (2) with n ≥ 3,
x ≥ 3 and y ≥ 2, then

max{x, y} < 10107.

2.7. Reducing the bound. We work some more on inequality (81).
Assume that λ1 > 600. Then 20/αλ1 < 1/2, so by a classical argument
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we get that∣∣∣(my − (n+ 1)x) logα− (y − x) log
√
5
∣∣∣ < 40

αλ1
.

Thus, ∣∣∣∣ (my − (n+ 1)x

x− y
− log

√
5

logα

∣∣∣∣ < 40

(logα)|x− y|αλ1
(98)

<
100

|x− y|αλ1
.

Since λ1 > 600, we have, by Lemma 2.6, that

αλ1 > α600 > 10125 > 200max{x, y} > 200|x− y|,

showing that the expression appearing on the right-hand side of (98)
is smaller than 1/(2|x − y|2), so by Legendre’s result, (my − (n +

1)x)/(x − y) equals some convergent pk/qk of γ = log
√
5/ logα for

some nonnegative integer k. If k < 100, then

1

10100
<

∣∣∣∣γ − p99
q99

∣∣∣∣ ≤ ∣∣∣∣γ − (my − (n+ 1)x

x− y

∣∣∣∣ < 100

αλ1
;

therefore,

λ1 <
log(10102)

logα
< 489,

which is false since we are assuming that λ1 > 600. Thus, k ≥ 100,
and since the 214th convergent p214/q214 of γ has q > 10110 > |x− y|,
we conclude that k ∈ [100, 213]. Since∣∣∣∣γ − p214

q214

∣∣∣∣ > 1

10222
,

we get that

1

10222
<

∣∣∣∣γ − pk
qk

∣∣∣∣ < 100

|x− y|αλ1
≤ 100

q100αλ1
≤ 1

1046αλ1
,

where we used the fact that |x− y| ≥ q100 > 1048, giving

λ1 <
log(10176)

logα
< 843.

Hence, λ1 < 843. If M ≤ x, we then have M = λ1 < 843, a
contradiction. Thus, x = λ1; therefore, x < 843. We now get a better



ON THE DIOPHANTINE EQUATION Fx
n + Fx

n+1 = F y
m 537

bound for M . That is, using estimate (96) and comparing it also with
estimate (88) according to the two cases distinguished in subsection 2.6,
we conclude that

M < 5× 1013x logM < 5× 843× 1013 logM < 5× 1016 logM,

giving
M < 2× 5× 1016 log(5× 1016) < 4× 1018,

which, via Lemma 2.4, yields

x < 1028(4× 1018)2 log(4× 1018) < 2× 1048,(99)

y < 1046(4× 1018)2 log(4× 1018) < 2× 1066.

Now the convergent p134/q134 of γ has q134 > 4× 1066 > |x− y| and∣∣∣∣γ − p134
q134

∣∣∣∣ > 1

10134
;

therefore, by an argument previously used, we have

λ1 <
log(10134)

logα
< 642.

Thus, x ∈ [3, 641]. We now move on to inequality (82). Since
M > 1000, we get that

(100) |(x− y) log
√
5− (nx−my) logα− log(αx + 1)| < 80

αM
.

Here, we fix x and note that we are in a suitable position to apply the
Baker-Davenport reduction method as we did in Case 2.2 of subsec-
tion 2.5. Suppose that the expression appearing inside that logarithm
at (100) is positive. We then have

0 < uγ − v + µ <
A

BM
,

where we take

γ =
log

√
5

logα
, µ = − log(αx + 1)

logα
, A =

80

logα
, B = α,

and (u, v) = (|x − y|, |nx − my|). By estimates (99), we can take
T = 1067 as a bound on u. We choose the denominator q250 of the
250th convergent for γ. We have q ∈ [10131, 10132]. We compute
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ε = ∥µq∥ − 10T∥γq∥ for all possible choices of x. The minimum value
satisfies

M <
log(Aq/ε)

logB
<

log(170× 10132 × 1035)

logB
< 810,

a contradiction.

A similar contradiction is obtained in the case when the expression
under the absolute value in (100) is negative.

The theorem is therefore proved. �
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