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ON PERMUTATION BINOMIALS

MOHAMED AYAD, KACEM BELGHABA AND OMAR KIHEL

ABSTRACT. Let Fq be the finite field of characteristic
p containing q = pr elements. Let f(x) = axn + xm be a
binomial with coefficients in Fq and d = gcd (n − m, q − 1).
In this paper, we prove that there does not exist any
permutation binomial such that d satisfies certain congruence
conditions, and we do some computations to list all non
permutation binomials for n−m = 3 and q ≤ 100.

1. Introduction. Let Fq be the finite field of characteristic p con-
taining q = pr elements. A polynomial f(x) ∈ Fq is called a permuta-
tion polynomial of Fq if the induced map f : Fq → Fq is one to one.
The study of permutation polynomials goes back to Hermite [3] for Fp

and Dickson [2] for Fq. Lidl and Mullen [4] formulated a list of open
problems. Permutation monomials are completely understood; how-
ever, permutation binomials are not well understood. For some partial
results on the subject, see [5, 8, 10, 11].

We fix some notation which will be used through this paper. The
letter p always denotes a prime number and Fq the finite field containing

q = pr elements. For any polynomial g(x) ∈ Fq[x], we denote by g(x)
the unique polynomial of degree at most q − 1, with coefficients in Fq

such that g(x) ≡ g(x) (mod (xq − x)). When we refer to a binomial
f(x) over Fq, we always mean a polynomial f(x) ∈ Fq[x] of the form
f(x) = axn + xm with the nonrestrictive condition gcd(m,n) = 1 (see
[9, Example 2.1]), n > m and a ̸= 0. Let d = gcd(n − m, q − 1). It
is well known that, if d = 1, then f(x) is not a permutation of Fq.
The idea of examining d for the existence of permutation polynomials
is not new. For recent references on permutation binomials and a
general class of polynomials of the form xrf(x(q−1)/l), one can see
([1, 6, 7, 12, 13, 14]). In this paper, we prove that there does not
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exist any permutation binomial such that d satisfies certain congruence
conditions. We do some computations to list all non permutation
binomials of degree smaller than q for n−m = 3 and q ≤ 100.

2. Non existence of permutation binomials of certain shapes.
An old and yet very useful result in the theory of permutation polyno-
mials, is the following theorem proved by Hermite for the prime fields
and Dickson in the general case.

Theorem 2.1. Let p be a prime number, q = pr and g(x) ∈ Fq[x].
Then g(x) is a permutation polynomial if and only if

(i) g(x) = 0 has a unique solution in Fq.

(ii) For every l ∈ {1, . . . , q − 2}, deg gl(x) ≤ q − 2.

We deduce from Theorem 2.1 the following corollary.

Corollary 2.2. Let f(x) = axn + xm ∈ Fq[x], such that a ̸= 0 and
gcd(m,n) = 1. Let d = gcd(n −m, q − 1). Suppose d ≥ 2. Then f(x)
is a permutation polynomial of Fq if and only if :

(i) f(x) = 0 has a unique solution in Fq.

(ii) For every l ∈ {1, . . . , q − 2} such that d | l, we have deg f l(x) ≤
q − 2.

Proof. From Theorem 2.1, we have only to prove that if l ∈
{1, . . . , q − 2} and d - l, then deg f l(x) ≤ q − 2. Let k be an integer,
and let k be the integer in {1, . . . , q − 1} such that k ≡ k (mod q − 1).
Then, modulo xq − x, we have

xk ≡
{

1 if k = 0

xk if k ̸= 0.

It follows that if k > 0, then xk ≡ xq−1 (mod xq − x) if and only if
k ≡ 0 (mod q − 1). Suppose that there exists l ∈ {1, . . . , q − 2} with

d - l such that deg f l(x) = q − 1. We deduce from

(2.1) (axn + xm)l =
l∑

j=0

(
l

j

)
ajxnj+m(l−j) =

l∑
j=0

(
l

j

)
ajx(n−m)j+lm
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that there exists an integer j ∈ {0, . . . , l} such that

x(n−m)j+lm ≡ xq−1 (mod xq − x).

Hence, (n−m)j + lm > 0 and (n−m)j + lm ≡ 0 (mod q − 1). Since
d = gcd(n−m, q−1), then d | (n−m) and d | q−1. But gcd(n,m) = 1
implies that gcd(d,m) = 1. Then d | l which is a contradiction. �

One of the main results in this paper is the following theorem.

Theorem 2.3. Let f(x) be a binomial such that d > 1. If p ≡ 1
(mod d2), then f(x) is not a permutation polynomial of Fq.

For the proof of Theorem 2.3, we need the following lemma.

Lemma 2.4. Let f(x) be a binomial such that d > 1. Let l ∈
{1, . . . , q − 2} be such that d | l. Then the following assertions are
equivalent :

(i)

(2.2) deg f l(x) ≤ q − 2

(ii)

(2.3)
l∑

j=0
(n−m)j+lm≡0 (mod q−1)

(
l

j

)
aj = 0

(iii)

(2.4)

γl∑
λ=0

(
l

j0 + λ(q − 1)/d

)(
a(q−1)/d

)λ

= 0,

where j0 is the smallest nonnegative integer ≥ 0 satisfying

j0 ≡ −lm

(n−m)

(
mod

q − 1

d

)
≡ −lm

d
/
n−m

d

(
mod

q − 1

d

)
and γl is the largest integer λ such that

j0 + λ(q − 1)/d ≤ l.
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Proof. From equation (2.1), deg f l(x) ≤ q − 2 if and only if

(2.5)

l∑
j=0

(n−m)j+lm≡0 (mod q−1)

(
l

j

)
aj = 0

The condition (n−m)j + lm ≡ 0 (mod q − 1) is equivalent to

(n−m)

d
j +

l

d
m ≡ 0

(
mod

q − 1

d

)
,

which is equivalent to

(2.6) j ≡ −lm

(n−m)

(
mod

q − 1

d

)
,

where j0 is the smallest nonnegative integer satisfying (2.6). Then
j ≡ j0 (mod (q − 1)/d). Hence, equation (2.5) is equivalent to

γl∑
λ=0

(
l

j0 + λ(a−1
d )

)(
(a)

q−1
d

)λ

= 0,

where γl is the largest integer λ such that j0 + λ( q−1
d ) ≤ l. �

Lemma 2.5 (Lucas). Let A and B be two positive integers such that

A = a0 + a1p+ · · ·+ asp
s

and
B = b0 + b1p+ · · ·+ bsp

s

with 0 ≤ ai < p and 0 ≤ bi < p for every i ∈ {1, . . . , s}. Then(
A

B

)
≡

s∏
i=0

(
ai
bi

)
(mod p).

Proof of Theorem 2. We will show that equation (2.4) does not hold
for l = q−1

d . Let M be the unique integer such that 0 ≤ M < q−1
d

and M ≡ m
(n−m)/d (mod q−1

d ). Let j0 be the integer in equation (2.4).
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Then

j0 = − l

d
M + λ0

q − 1

d

= −q − 1

d2
M + λ0

q − 1

d

=
q − 1

d2
(−M + λ0d).

The above integer j0 is the smallest nonnegative integer that can be
written under the form j0 = q−1

d2 (−M + λ0d), for a certain integer
λ0. Obviously, −M + λ0d < d, otherwise −M + (λ0 − 1)d ≥ 0, which
contradicts the minimality of j0. Suppose that −M + λ0d = 0, then
d | M . Since M = m(n−m

d )−1 + µ q−1
d for a certain µ ∈ Z and(

n−m

d

)−1

∈
{
1, . . . ,

q − 1

d
− 1

}
and d | q − 1

d
,

then d | m; hence, d | n, which is a contradiction to gcd(m,n) = 1.
Therefore,

0 < −M + λ0d < d and j0 =
q − 1

d2
M0,

with 0 < M0 = −M + λ0d < d. Then j0 > 0 and γl in equation (4)
verifies

j0 + γl
q − 1

d
≤ l =

q − 1

d
.

Hence, γl = 0.

Equation (2.4) is equivalent to
( q−1

d
j0

)
= 0. On the other hand,

q − 1

d
=

p− 1

d
+

p− 1

d
p+ · · ·+ p− 1

d
pr−1

and

j0 =
q − 1

d2
M0 =

p− 1

d2
M0 +

p− 1

d2
M0p+ · · ·+ p− 1

d2
M0p

r−1,

with
p− 1

d2
M0 <

p− 1

d2
d =

p− 1

d
< p− 1.



394 MOHAMED AYAD, KACEM BELGHABA AND OMAR KIHEL

Then, Lemma 2.5 implies that( q−1
d

j0

)
≡

( p−1
d

M0
p−1
d2

)r

̸≡ 0 (mod p).

Hence, f(x) is not a permutation polynomial of Fq. �

Corollary 2.6. Let f(x) be a binomial. If p ≡ 1 (mod (n−m)2), then
f(x) is not a permutation polynomial of Fq.

Proof. We have d = gcd(n − m, q − 1) = n − m. If n − m = 1,
then f(x) is not a permutation polynomial by the observation made in
the introduction of this paper. If n − m ≥ 2, the result follows from
Theorem 2. �

Corollary 2.7. Let f(x) be a binomial. If p ≡ 1 (mod 4) and
gcd(n − m, q − 1) = 2, then f(x) is not a permutation polynomial of
Fq.

Proof. The hypothesis of Theorem 2.3 is verified with d = gcd(n −
m, q − 1) = 2. �

Theorem 2.8. Let f(x) be a binomial such that d > 1. Suppose that
there exists an integer δ > d

2 such that n ≡ 0 (mod 2δ) and q ≡ 1
(mod 2δ). Then f(x) is not a permutation polynomial of Fq.

Proof. We will prove that equation (2.3) does not hold for

l =
q − 1

2δ
≤ q − 2.

Since

(n−m)l + lm = nl =
n

2δ
(q − 1) ≡ 0 (mod q − 1),

then one of the values of j is l. Then

l =
q − 1

2δ
= j0 + λ

(
q − 1

d

)
.

We have

l = j0 + λ
q − 1

d
> j0 + λ

q − 1

2δ
= j0 + λl,
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which implies that λ = 0 and l = j0. Hence, equation (2.3) reduces

to
(
l
l

)
= 0, which is a contradiction. Then f(x) is not a permutation

polynomial of Fq. �

Theorem 2.9. Let f(x) = axn + xm be a binomial. Suppose that n
is even, p ̸= 2, n ≡ m (mod 9) and gcd(n −m, q − 1) = 3. Then the
following assertions hold :

(i) If p ≡ −1 (mod 3), then f(x) is not a permutation polynomial of
Fq.

(ii) If p ≡ 1 (mod 3) and for every primitive cubic root of unit ζ in
Fp, the polynomial g(x) = ζaxn−m + 1 has no root in Fq, then
f(x) is not a permutation polynomial of Fq.

Proof. Suppose that f(x) is a permutation polynomial, then equa-
tion (2.3) holds for l = q−1

2 . From the equality

(n−m)
q − 1

6
+

q − 1

2
m =

n+ 2m

6
(q − 1)

and the hypothesis n is even, we deduce that one of the values of j in
equation (2.3) is j = q−1

6 . Hence,

q − 1

6
= j0 + λ

q − 1

3
,

which implies that λ = 0 and j0 = q−1
6 . We have

l =
q − 1

2
=

q − 1

6
+

q − 1

3
= j0 +

q − 1

3
.

Hence, equation (2.3) reduces to(
l

j0

)
(a)

j0 + (a)
l
= 0.

Then

(a)
q−1
3 +

( q−1
2

q−1
6

)
= 0;

hence,

(a)
q−1
3 = −

( q−1
2

q−1
6

)
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Let ϵ = −
( q−1

2
q−1
6

)
. Clearly, ϵ is a cubic root of unity. If (i) holds, the

unique cubic root of unity in Fp is 1, then ϵ = 1 and (a)
q−1
3 = 1. Since

q − 1

3
and

n−m

3

are relatively prime, then, there exists x and y in Z such that

x
n−m

3
+ y

q − 1

3
= 1.

It follows that

a = (a)
x(n−m

3 ) · (a)y(
q−1
3 )

= (a)
x(n−m

3 )
=

[
(a)

x2(n−m
9 )

](n−m)

.

Let c = ax
2(n−m

9 ). Then

−1

a
=

(
−1

c

)n−m

.

Hence, f(0) = f(−1/c) = 0, which implies that f is not one-to-one,
which is a contradiction.

Suppose that (ii) holds. We have (a)
q−1
3 = ϵ. Then ϵ3 = 1, i.e., ϵ is

a root of unity in Fp. Using the above Bezout identity, we obtain

a = (a)
x(n−m

3 ) · (a)y(
q−1
3 )

= ϵy (a)
x(n−m

3 )

= ϵy
(
ϵy (a)

x(n−m
3 )

)x(n−m
3 )

= ϵy(1+x(n−m
3 ))

(
(a)

x2(n−m
9 )

)n−m

= ϵy
(
(a)

x2(n−m
9 )

)n−m

.

Let c = ax
2 n−m

9 . Then a = ϵy(c)n−m. Hence, ηa(−1/c)n−m + 1 = 0,
where η = ϵ−y. If η = 1, then f(0) = f(−1/c) = 0, which is a
contradiction to f is one-to-one. If η = ζ is a primitive cubic root of
unity, then g(−1/c) = 0, where g(x) = ζaxn−m + 1, which is exactly
the hypothesis in (ii). �
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Remark 2.10. The conditions on p and n in Theorem 2.9 can be
stated as follows:

(i) p ≡ 2 or 5 (mod 9) and n ≡ 2 or 4 (mod 6).
(ii) p ≡ 4 or 7 (mod 9) and n ≡ 1 or 2 (mod 3).

Theorem 2.11. Let k and d be positive integers such that d ≥ 2,
1 ≤ k ≤ d − 1, d | q − 1 and d2 < q − 1. Then, for any a ∈ Fq, the
polynomial f(x) = axm+d + xm does not permute Fq if m satisfies one
of the following conditions.

(i) m = k(q − 1)/d.
(ii) m = u+ k(q − 1)/d with

q − 1

d
− d ≤ u ≤ q − 1

d
− 1

and (
d

q−1
d − u

)
̸= 0 (mod p).

Proof. Suppose that f(x) permutes Fq for some a ∈ F⋆
q and some

m satisfying (i) or (ii). Then a is a root of (2.4) for l = d. The
integer j = j0 + λ(q − 1)/d appearing in this equation fulfills the
conditions 0 ≤ j ≤ d and j + m ≡ 0 (mod (q − 1)/d). If λ ≥ 1,
then j ≥ (q − 1)/d > d, which is excluded. It follows that λ = 0,

j0 ≡ −m (mod (q − 1)/d) and equation (3) reduces to
(
d
j0

)
≡ 0

(mod p). In case (i), we obtain j0 = 0, and then
(
d
0

)
≡ 0 (mod p),

a contradiction. In the second case we have j0 = q−1
d − u and the

integer
(

d
q−1
d −u

)
is nonzero modulo p by assumption. Therefore, we

also get a contradiction in this case. �

Example 2.12. Let d = 3 and q = pr. The conditions relating d
and q in this theorem read q ≡ 1 (mod 3) and q − 1 > 9. Suppose
that 3 - (q − 1)/3, and let m = k(q − 1)/3 with k ∈ {1, 2} or
m = 2(q−1)/3−c, with c = 1, 2, 3. Then for any a ∈ F⋆

q , the polynomial

f(x) = axm+3 + xm does not permute Fq.

Here is the complete list of all binomials of degree smaller than q
obtained in this way for n−m = 3 and q ≤ 100.

q=13, f(x)=ax7+x4, ax11 + x8, ax8 + x5, ax9 + x6, ax10 + x7.
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q=52, f(x)=ax11+x8, ax19+x16, ax16+x13, ax17+x14, ax18+x15.

q=31, f(x)=ax13+x10, ax23+x20, ax20+x17, ax21+x18, ax22+x19.

q=43, f(x)=ax17+x14, ax31+x28, ax28+x25, ax29+x26, ax30+x27.

q=72, f(x)=ax19+x16, ax35+x32, ax32+x29, ax33+x30, ax34+x31.

q=61, f(x)=ax23+x20, ax43+x40, ax40+x37, ax41+x38, ax42+x39.

q=67, f(x)=ax25+x22, ax47+x44, ax44+x41, ax45+x42, ax46+x43.

q=79, f(x)=ax29+x26, ax55+x52, ax52+x49, ax53+x50, ax54+x51.

q=97, f(x)=ax35+x32, ax67+x64, ax64+x61, ax65+x62, ax66+x63.
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