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FORMAL FIBERS WITH COUNTABLY MANY
MAXIMAL ELEMENTS

DOMENICO AIELLO, S. LOEPP AND PHILIP VU

ABSTRACT. Let T be a complete local (Noetherian)
ring. Let C be a countable set of pairwise incomparable non-
maximal prime ideals of T . We find necessary and sufficient
conditions for T to be the completion of a local integral do-
main whose generic formal fiber has maximal elements pre-
cisely the elements of C. Furthermore, if the characteristic of
T is zero, we provide necessary and sufficient conditions for
T to be the completion of an excellent local integral domain
whose generic formal fiber has maximal elements precisely
the elements of C. In addition, for a positive integer k, we
construct local integral domains that contain a prime ideal
of height k whose formal fiber has countably many maximal
elements.

1. Introduction. Suppose T is a complete local (Noetherian) ring,
and let G be a set of prime ideals of T . We are interested in determining
necessary and sufficient conditions so that T is the completion of a local
(Noetherian) domain A where A is a subring of T and

{P ∈ SpecT | P ∩A = (0)} = G.

Theorem 3.1 in [2] answers the above question in the case where the
number of maximal elements of G is finite. In this paper, we answer
the question in the case where the number of maximal elements of G is
countable. The question is still open if the number of maximal elements
of G is uncountable.

When we say a ring is local, we mean that it is Noetherian and has
exactly one maximal ideal. Let A be a local ring and Q a prime ideal of

A. The formal fiber of A at Q is defined to be Spec(Â⊗A k(Q)) where

Â is the completion of A at its maximal ideal and k(Q) is AQ/QAQ.
Since there is a one-to-one correspondence between prime ideals of the

ring Â ⊗A k(Q) and prime ideals of Â, whose intersection with A is
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Q, we will abuse notation by saying that if P is a prime ideal of Â
satisfying A ∩ P = Q, then P is in the formal fiber of A at Q. If A
is an integral domain, the formal fiber of A at (0) is called the generic
formal fiber of A. So, by our abuse of notation, the generic formal fiber
of A is the set

{P ∈ Spec Â | P ∩A = (0)}.

Our main question, then, can be rephrased as: given a complete local
ring T , what sets of prime ideals of T can be realized as the generic
formal fiber of a local integral domain whose completion is T?

In [2], the following result is proved, answering our main question in
the case where the number of maximal elements of the set G is finite.

Theorem 1.1. [2, Theorem 3.1]. Let T be a complete local ring
with prime subring Π, maximal ideal M and G ⊆ SpecT such that G
is nonempty and the number of maximal elements of G is finite. Then

there exists a local domain A such that Â = T and the generic formal
fiber of A is exactly the elements of G if and only if T is a field and
G = {(0)} or the following conditions hold :

(1) M /∈ G, and G contains all the associated prime ideals of T ;
(2) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G;
(3) If Q ∈ G, then Q ∩Π = (0).

In Section 2, we show that Theorem 1.1 holds with the condition
“the number of maximal elements of G is finite” weakened to “the
number of maximal elements of G is countable.”

We also consider the case where A is excellent. In other words, if
T is a complete local ring and G is a set of prime ideals of T , we are
interested in finding necessary and sufficient conditions so that T is the
completion of an excellent local domain A where A is a subring of T
and

{P ∈ SpecT | P ∩A = (0)} = G.

If T contains the integers, then the following theorem from [2] answers
the question in the case where the number of maximal elements of G
is finite.
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Theorem 1.2. [2, Theorem 4.1]. Let T be a complete local ring
containing the integers, let M denote the maximal ideal of T , and let
Π denote the prime subring of T . Let G ⊆ SpecT be such that G is
nonempty and the number of maximal elements of G is finite. Then

there exists an excellent local domain A with Â = T and such that A has
generic formal fiber exactly G if and only if T is a field and G = {(0)}
or the following conditions hold :

(1) M /∈ G, and G contains all the associated prime ideals of T ;
(2) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G;
(3) If Q ∈ G, then Q ∩Π = (0);
(4) T is equidimensional ;
(5) TP is a regular local ring for all maximal elements P ∈ G.

In this paper, we generalize Theorem 1.2 in the same way we
generalize Theorem 1.1. In other words, we show that Theorem 1.2
holds with the condition “the number of maximal elements of G
is finite” weakened to “the number of maximal elements of G is
countable.”

Finally, we use our results to control the formal fibers of nonzero
prime ideals. There is much less known about constructing rings whose
formal fibers at a nonzero prime ideal have a given set of maximal
elements. We call a formal fiber semilocal if the number of maximal
elements of the formal fiber is finite. In [1, 3, 5], results about semilocal
formal fibers at height-one prime ideals are proved. We know of only
one paper, however, in which results about semilocal formal fibers at
prime ideals of height greater than one are proved. In [4], the authors
demonstrate a class of integral domains that have a prime ideal with
height greater than one that has a semilocal formal fiber.

In Section 3, we provide a new class of such integral domains.
Our class, however, also contains integral domains with nonzero prime
ideals whose formal fibers have a countably infinite number of max-
imal elements. For example, we construct an excellent local do-
main S such that the completion of S is Q[[y1, y2, y3, x1, x2, x3]],
where y1, y2, y3, x1, x2, x3 are indeterminates, and such that the ideal
(x1, x2, x3)S is a height 3 prime ideal of S whose formal fiber has max-
imal elements {(y1 − qy2, x1, x2, x3) | q ∈ Q} (see Example 3.5). Our
method for constructing these integral domains is different than those
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in [4], and our proofs are much less technical.

All rings in this paper are assumed to be commutative with unity.
When we say that a ring is quasi-local, we mean it is a ring with one
maximal ideal that is not necessarily Noetherian. As noted earlier, we
use the convention that a local ring is a Noetherian ring with exactly
one maximal ideal. When we say that (T,M) is a local ring, we mean
that T is a local ring with maximal ideal M .

2. The generic formal fiber. The techniques for our proofs are
based on those in [2]. Suppose that (T,M) is a complete local ring and
G is a set of prime ideals of T such that the set of maximal elements of
G is countable. We show that the conditions given in Theorem 1.1 are
both necessary and sufficient for there to exist a local domain A such

that Â = T , and the generic formal fiber of A is exactly the elements
of G. Showing the conditions are necessary is straightforward. The
bulk of the proof, therefore, is dedicated to showing the conditions are
sufficient. Assuming that the conditions hold, we construct the desired
integral domain A. We now outline the ideas for constructing such an
A.

We start with the prime subring of T and carefully adjoin elements
so that our final ring A satisfies the following conditions.

(1) Â = T ;
(2) If P ∈ G, then P ∩A = (0);
(3) If P ̸∈ G, then P ∩A ̸= (0).

Since we are assuming that all of the associated prime ideals of T are
contained in G, condition (2) gives us that A is an integral domain.
The above conditions also imply that the generic formal fiber of A is
G. So A will be our desired integral domain.

To satisfy condition (1), we adjoin “enough” elements to the prime

subring of T so that Â = T . But, as we do this, it is clear that to
get condition (2) to hold for A, we must be careful never to adjoin a
nonzero element of a prime ideal in the set G. Likewise, if P is a prime
ideal not in G, then we must, at some point, adjoin a nonzero element
of P to get condition (3) to hold. We use [7, Proposition 2.1], to
ensure that we have adjoined “enough” elements to the prime subring

to guarantee Â = T .
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Proposition 2.1. [7, Proposition 1]. If (A,M ∩A) is a quasi-local
subring of a complete local ring (T,M), the map A → T/M2 is onto
and IT ∩ A = I for every finitely generated ideal I of A, then A is

Noetherian and the natural homomorphism Â → T is an isomorphism.

Our ring A, then, will satisfy the conditions that A → T/M2 is onto
and, if I is a finitely generated ideal of A, then IT ∩ A = I. Keeping
in mind that we cannot adjoin any nonzero elements of prime ideals in
G, we introduce the following definition, found in [2].

Definition 2.2. Let (T,M) be a complete local ring, and let C be
a set of prime ideals of T . Suppose that (R,R ∩ M) is a quasi-local
subring of T such that |R| < |T | and R ∩ P = (0) for every P ∈ C.
Then we call R a small C-avoiding subring of T and will denote it by
SCA-subring.

Suppose that T is not a field. Letting C be the set of maximal
elements of G, it is easy to see that, given our conditions, the prime
subring Π of T is localized at Π ∩ M is an SCA-subring. As we
adjoin elements, we ensure that we maintain the properties of SCA-
subrings. This will guarantee that we never adjoin a nonzero element
of a prime ideal in G. Suppose that R is an SCA-subring of T and
let x ∈ T . If P ∈ G and x + P ∈ T/P is transcendental over R, then
R[x] ∩ P = (0). To maintain the SCA-subring properties, then, we
adjoin elements x of T such that x + P ∈ T/P is transcendental over
R for all P ∈ G. The construction in [2] uses the following lemma to
adjoin these transcendental elements.

Lemma 2.3. [2, Lemma 2.4]. Let (T,M) be a complete local ring
such that dimT ≥ 1, C a finite set of nonmaximal prime ideals of T
such that no ideal in C is contained in another ideal of C, and let D
be a subset of T such that |D| < |T |. Let I be an ideal of T such that
I ̸⊆ P for all P ∈ C. Then I ̸⊆

∪
{r + P | r ∈ D, P ∈ C}.

It is Lemma 2.3 that imposes the condition that the set of maximal
elements of the generic formal fiber should be finite in the result in [2].
To obtain our result for the case where C is countable, we strengthen
Lemma 2.3. To do this, we need the following lemma from [6].
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Lemma 2.4. [6, Lemma 2]. Let T be a complete local ring with
maximal ideal M , C a countable set of primes in SpecT such that
M /∈ C, and let D be a countable set of elements of T . If I is an ideal
of T which is contained in no single P in C, then I ̸⊆

∪
{r+P | r ∈ D,

P ∈ C}.

We also use [5, Lemma 2.2] and [2, Lemma 2.2], which we state
here.

Lemma 2.5. [5, Lemma 2.2]. Let (T,M) be a complete local ring
of dimension at least one. Let P be a nonmaximal prime ideal of T .
Then |T/P | = |T | ≥ |R|, where R denotes the set of real numbers.

Lemma 2.6. [2, Lemma 2.2]. Let T be an integral domain and I a
nonzero ideal of T . Then |I| = |T |.

We now state and prove our result that strengthens Lemma 2.3.
Although we use Lemma 2.7 for a very specific purpose in this paper
(that is, to adjoin transcendental elements), it is interesting in its own
right as a generalization of the Prime Avoidance lemma.

Lemma 2.7. Let (T,M) be a complete local ring such that dimT ≥ 1,
let C be a countable set of incomparable nonmaximal prime ideals of T ,
and let D be a subset of T such that |D| < |T |. Let I be an ideal of T
such that I ̸⊆ P for all P ∈ C. Then I ̸⊆

∪
{r + P | r ∈ D, P ∈ C}.

Proof. The case when C is finite holds by Lemma 2.3, so suppose
C is infinite. Since C is countable, we may suppose C = {Pi}∞i=1. By
Lemma 2.4, withD = {0}, we have that I ̸⊆ ∪∞

i=1Pi. Let x ∈ I\∪∞
i=1Pi.

For r ∈ D and Pi ∈ C, either r + Pi /∈ ⟨x + Pi⟩, where ⟨x + Pi⟩ is the
ideal of T/Pi generated by x+ Pi, or

r + Pi = (x+ Pi)(s+ Pi)

for some s ∈ T . For each r ∈ D satisfying r + Pi ∈ ⟨x + Pi⟩, choose
one such s and define a family of functions fi : D → T for all i ∈ N as
follows:

fi(r) =

{
0 if r + Pi /∈ ⟨x+ Pi⟩,
s if r + Pi = (x+ Pi)(s+ Pi).
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Let Si = Image (fi), and note that |T | > |D| ≥ |Si| for every i.

We now construct a sequence {ti}∞i=1 of elements of T such that the
following properties hold:

(1) tn ∈ ∩n−1
i=1 Pi ∩Mn;

(2)
∑n

i=1 ti + Pn ̸= s+ Pn for all s ∈ Sn;
(3) The sequence {

∑n
i=1 ti}∞n=1 converges in T to

∑∞
i=1 ti.

First note that (M + P1)/P1 is not the zero ideal of T/P1 since
otherwise M ⊆ P1, which is impossible as P1 is not maximal. By
Lemma 2.5, we have |T | = |T/P1| and, by Lemma 2.6, we have
|T/P1| = |(M + P1)/P1|. It follows that |(M + P1)/P1| > |S1|, and
so there exists t1 ∈ M such that t1 + P1 ̸= s+ P1 for all s ∈ S1.

We now inductively construct tn for n > 1. Assume ti has been
defined for all i < n to satisfy conditions (1) and (2) from above. Note
that

∩n−1
i=1 Pi ∩Mn + Pn

Pn

is not the zero ideal of T/Pn, and so∣∣∣∣∩n−1
i=1 Pi ∩Mn + Pn

Pn

∣∣∣∣ = |T/Pn| > |Sn|.

Consider the map gn : Sn → T given by gn(s) = s −
∑n−1

i=1 ti for
s ∈ Sn. Note that the map gn is injective since, if gn(s) = gn(s

′), then

s−
∑n−1

i=1 ti = s′ −
∑n−1

i=1 ti, and adding
∑n−1

i=1 ti to both sides gives us
s = s′. Thus,

|gn(Sn)| = |Sn| <
∣∣∣∣∩n−1

i=1 Pi ∩Mn + Pn

Pn

∣∣∣∣.
Hence, there exists tn ∈ ∩n−1

i=1 Pi ∩Mn such that, for all s ∈ Sn,

tn + Pn ̸= s−
n−1∑
i=1

ti + Pn,

and so
n∑

i=1

ti + Pn ̸= s+ Pn
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for all s ∈ Sn. It follows that, for our choice of tn, conditions (1) and
(2) from above are satisfied.

Now, for any k ∈ N, {
∑n

i=k ti}∞n=k is a Cauchy sequence. Since
the series

∑∞
i=k ti is the limit of {

∑n
i=k ti}∞n=k, it follows that

∑∞
i=k ti

converges in T as T is complete.

We now claim x(
∑∞

i=1 ti) ∈ I and x(
∑∞

i=1 ti) ̸∈
∪
{r + Pi | r ∈

D,Pi ∈ C}. Clearly, x(
∑∞

i=1 ti) ∈ I since x ∈ I. Suppose

x

( ∞∑
i=1

ti

)
∈
∪

{r + Pi | r ∈ D,Pi ∈ C}.

Then, for some n ≥ 1 and r ∈ D, we have

x

( ∞∑
i=1

ti

)
∈ r + Pn,

and so

x

( ∞∑
i=1

ti

)
+ Pn = r + Pn.

For each i, since ti ∈ ∩i−1
j=1Pj ∩ M i, we have for i > n that ti ∈ Pn.

Since
∑m

i=n+1 ti ∈ Pn for all m > n, we have
∑∞

i=n+1 ti ∈ Pn, as ideals
in a complete local ring are closed. Thus, we have

x

( n∑
i=1

ti

)
+ Pn = r + Pn,

and, since r + Pn ∈ ⟨x+ Pn⟩,

x

( n∑
i=1

ti

)
+ Pn = r + Pn = (x+ Pn)(s+ Pn).

for some s ∈ Sn. Therefore,

(x+ Pn)

( n∑
i=1

ti + Pn

)
= (x+ Pn)(s+ Pn),

and since T/Pn is an integral domain,

n∑
i=1

ti + Pn = s+ Pn,
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a contradiction to our choice of ti’s. Hence,

x

( ∞∑
i=1

ti

)
/∈
∪

{r + Pi | r ∈ D,Pi ∈ C},

and so we have that I ̸⊆
∪
{r + Pi | r ∈ D,Pi ∈ C}. �

With Lemma 2.7, we strengthen the results in [2]. As our proofs are
quite similar to those found in [2], we state our new results here and
often refer to the proofs in [2], noting the adjustments to the proofs as
needed. We begin with the following definition.

Definition 2.8. Let S be a set. Then Γ(S) = sup(|S|,ℵ0).

The proof of the following lemma is taken almost directly from the
proof of [2, Lemma 2.5]. The only difference is that we use Lemma 2.7
in place of Lemma 2.3. We include the proof in this paper so that
the reader can explicitly see the way Lemma 2.7 is used to adjoin
transcendental elements to maintain the property that R ∩ P = (0)
for all P ∈ G. The set C in the following result should be thought of
as the set of maximal elements of G. Lemma 2.9 will be used to ensure
that the map A −→ T/M2 is onto, a condition needed to employ
Proposition 2.1.

Lemma 2.9. Let (T,M) be a complete local ring of dimension at least
one. Let C be a countable set of nonmaximal prime ideals of T such
that no ideal in C is contained in any other ideal in C. Let J be an
ideal of T such that J ̸⊆ P for all P ∈ C. Let R be an SCA-subring of
T and u+ J ∈ T/J . Then there exists an infinite SCA-subring S of T
such that R ⊆ S ⊆ T , Γ(S) = Γ(R), and u + J is in the image of the
map S → T/J . Moreover, if u ∈ J , then S ∩ J ̸= (0).

Proof. Let P ∈ C. As R ∩ P = (0), R embeds into T/P . Let
D(P ) be a full set of coset representatives of the cosets t + P ∈ T/P
that make (u + t) + P algebraic over R. If R is finite, then the set of
elements in T/P that are algebraic over R is countable, while if R is
infinite, then the set of elements in T/P that are algebraic over R is
equal to the cardinality of R. In either case, we have |D(P )| < |T | since
|R| < |T | and, by Lemma 2.5, |T | ≥ |R|, where R denotes the set of
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real numbers. Let D =
∪

P∈C D(P ) and note that, as C is countable
and |D(P )| < |T |, we have |D| < |T |. Now use Lemma 2.7 with I = J
to find an x ∈ J such that x /∈

∪
{r + P | r ∈ D, P ∈ C}. Then

(u+x)+P ∈ T/P is transcendental over R for every P ∈ C. We claim
that S = R[u+ x](R[u+x]∩M) is the desired SCA-subring. It is easy to
see that Γ(S) = Γ(R) and |S| < |T |. Now suppose that f ∈ R[u+x]∩P
for some P ∈ C. Then f = rn(u+x)n+ · · ·+ r1(u+x)+ r0 ∈ P where
ri ∈ R. But we chose x such that (u+x)+P is transcendental over R.
Therefore, ri ∈ R∩P = (0) for every i = 1, 2, . . . , n, and it follows that
f = 0. So S ∩ P = (0), and we have S is an SCA-subring. Further, if
u ∈ J , then u + x ∈ J . Since (u + x) + P is transcendental over R, it
must be the case that u+ x ̸= 0 and that S is infinite. It follows that
S ∩ J ̸= (0). �

The following two lemmas will be used to construct A so that
IT ∩ A = I for every finitely generated ideal I of A. This property
will be needed for Proposition 2.1.

Lemma 2.10. Let (T,M) be a complete local ring of dimension at
least one. Let C be a countable set of incomparable nonmaximal prime
ideals of T such that, if Q ∈ AssT , then Q ⊆ P for some P ∈ C, and
let R be an SCA-subring of T . Suppose that I is a finitely generated
ideal of R and c ∈ IT ∩ R. Then there exists an SCA-subring S of T
such that R ⊆ S ⊆ T , Γ(S) = Γ(R), and c ∈ IS.

Proof. The result follows from the proof of [2, Lemma 2.6] using
Lemma 2.7 in place of Lemma 2.3. �

Lemma 2.11. Let (T,M) be a complete local ring of dimension at least
one. Let J be an ideal of T with J ̸⊆ P for all P ∈ C, where C is a
countable set of incomparable nonmaximal prime ideals of T . Suppose
that if Q ∈ AssT then Q ⊆ P for some P ∈ C, and let u + J ∈ T/J .
Suppose R is an SCA-subring. Then there exists an SCA-subring S of
T such that the following properties hold :

(1) R ⊆ S ⊆ T ;
(2) Γ(S) = Γ(R);
(3) If u ∈ J , then S ∩ J ̸= (0);
(4) u+ J is in the image of the map S → T/J ;
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(5) For every finitely generated ideal I of S, we have IT ∩ S = I.

Proof. The result follows from the proof of [2, Lemma 2.7] using
Lemma 2.9 in place of [2, Lemma 2.5] and Lemma 2.10 in place of [2,
Lemma 2.6]. We note here that the reason why Γ(S) = Γ(R) is not
explained in detail in the proof of [2, Lemma 2.7]. We recommend the
reader desiring a more detailed argument see the proof of Lemma 2.11
in [3]. �

Lemma 2.12. Let (T,M) be a complete local ring of dimension at
least one, and let G be a set of nonmaximal prime ideals of T where
G contains the associated prime ideals of T and such that the set of
maximal elements of G, call it C, is countable. Moreover, suppose that
if Q ∈ SpecT with Q ⊆ P for some P ∈ G, then Q ∈ G. Also suppose
that, for each prime ideal P ∈ G, P contains no nonzero integers of T .
Then there exists a local domain A such that the following properties
hold :

(1) Â = T ;
(2) If p is a nonzero prime ideal of A, then T ⊗A k(p) ∼= k(p) where

k(p) = Ap/pAp;
(3) The generic formal fiber of A is exactly the elements of G (and so

has maximal elements the elements of C);
(4) If I is a nonzero ideal of A, then A/I is complete.

Proof. The result follows from the proof of [2, Lemma 2.8] using
Lemma 2.11 in place of [2, Lemma 2.7]. Again, we recommend the
reader desiring more details to refer to the proof of Lemma 2.12 in
[3]. �

We now come to the two main results of our paper. The proofs of
Theorems 2.13 and 2.15 are based on the proofs of Theorems 3.1 and
4.1 in [2], although we provide fewer details here. The reader interested
in more detailed explanations is encouraged to refer to the proofs in
[2].

Theorem 2.13. Let (T,M) be a complete local ring with prime subring
Π, and let G ⊆ SpecT be such that G is nonempty and the set of
maximal elements of G is countable. Then there exists a local domain
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A such that Â = T and the generic formal fiber of A is exactly the
elements of G if and only if T is a field and G = {(0)} or the following
conditions hold :

(1) M /∈ G, and G contains all the associated prime ideals of T ;
(2) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G;
(3) If Q ∈ G, then Q ∩Π = (0).

Proof. It is not difficult to verify that the conditions are necessary.
To see that the conditions are sufficient, first note that if T is a field,
then A = T is our desired domain. If T is not a field, then the first
condition of the theorem gives us that dimT ≥ 1. Lemma 2.12 now
gives us the desired domain A. �

Example 2.14. Let T = Q[[x, y, z]] be the power series ring over Q.
Let C = {⟨x− qy⟩ | q ∈ Q}, and define G = C ∪{⟨0⟩}. There exists, by
Theorem 2.13, a local integral domain A whose completion is T with
its generic formal fiber precisely the elements of G.

Theorem 2.15. Let (T,M) be a complete local ring containing the
integers, and let Π denote the prime subring of T . Let G ⊆ SpecT
be such that G is nonempty and the set of maximal elements of G is

countable. Then there exists an excellent local domain A with Â = T ,
and such that A has generic formal fiber exactly G if and only if T is
a field and G = {(0)} or the following conditions hold :

(1) M /∈ G, and G contains all the associated prime ideals of T ;
(2) If Q ∈ G and P ∈ SpecT with P ⊆ Q, then P ∈ G;
(3) If Q ∈ G, then Q ∩Π = (0);
(4) T is equidimensional ;
(5) TP is a regular local ring for all maximal elements P ∈ G.

Proof. We note here that the proof is taken almost directly from the
proof of Theorem 4.1 in [2]. Since this is one of our main theorems
we have included the proof here. Assume that T is the completion
of an excellent domain A having generic formal fiber exactly G with
maximal ideals the maximal elements of G. If dimT = 0, then T is
a field and G = {(0)}. Thus, consider the case where dimT ≥ 1. By
Theorem 2.13, the first three conditions hold. As A is excellent, it is
universally catenary. Hence, A is formally catenary, and it follows that
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A/(0) ∼= A is formally equidimensional. Thus, the completion, T , is
equidimensional.

To see that the fifth condition holds, note that the maximal ideals
of T ⊗A k((0)) are the maximal elements of G. Let P be one of these
maximal elements. Then T ⊗A k((0)) localized at P is isomorphic to
TP . Since A is excellent, T ⊗A k((0)) is regular, implying that TP is a
regular local ring for every maximal element of G as desired.

Conversely, first suppose that T is a field and G = {(0)}. Then
A = T is the desired domain. So, suppose that T is not a field and that
all of the five conditions hold true for some complete local ring T and
for some nonempty set G of prime ideals of T such that the number
of maximal elements of G is countable. We want to show that there
exists an excellent domain A possessing generic formal fiber exactly G.
It is not difficult to verify that conditions (1) and (5) imply that T is
reduced.

Now, if dimT = 0, then T is a field and we are in the case where
A = T is the desired domain. Suppose, on the other hand, that
dimT ≥ 1. Then use Lemma 2.12 to construct the domain A. We
claim that A is excellent with generic formal fiber exactly G. From the
construction of A, A has the desired generic formal fiber. To see that A
is excellent, suppose that p is a nonzero prime ideal of A. Then, from
Lemma 2.12, we have T ⊗A k(p) ∼= k(p). Now let L be a finite field
extension of k(p). Then T⊗AL ∼= T⊗Ak(p)⊗k(p)L ∼= k(p)⊗k(p)L ∼= L.
Thus, the fiber over p is geometrically regular. Now TP is regular
by assumption for every maximal element P of G. It follows that
T ⊗A k((0)) is regular. Now, since T contains the integers, so does A.
It follows that k((0)) is a field of characteristic zero, and hence that
T ⊗A L is regular for every finite field extension L of k((0)). Thus, all
of the formal fibers of A are geometrically regular. Since A is formally
equidimensional, it is universally catenary, and thus A is excellent.
Hence, A is the desired domain. �

Example 2.16. Let T = K[[x, y, z]], where K is a field containing the
rationals, and let C = {⟨x− qy⟩ | q ∈ Q}. Define G = C ∪ {⟨0⟩}. It is
easily seen that the first three conditions of Theorem 2.15 are satisfied.
Since T is an integral domain, it is equidimensional, so condition (4) is
satisfied. Since T is a regular local ring, TP is a regular local ring for
all prime ideals P of T . It follows that condition (5) of Theorem 2.15 is
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satisfied. Thus, there exists an excellent domain A whose completion
is T with a generic formal fiber precisely the elements of G.

3. Formal fibers of nonzero prime ideals. Our results from
the previous section allow us to construct local domains for which we
have control over the formal fiber of a nonzero prime ideal. In par-
ticular, we provide a class of local domains whose formal fiber at a
height k prime ideal has a specified set of countably many maximal el-
ements. Suppose (T,M) is a complete local ring and C is a nonempty
countable set of incomparable prime ideals of T . Let x1, x2, . . . , xk

be indeterminants, and let C ′ be the set {QT [[x1, x2, . . . , xk]] +
(x1, x2, . . . , xk)T [[x1, x2, . . . , xk]] | Q ∈ C} ⊂ Spec(T [[x1, x2, . . . , xk]]).
We give sufficient conditions for there to exist a domain S containing
x1, x2, . . . , xk, whose completion is T [[x1, x2, . . . , xk]] and such that the
formal fiber of the height k prime ideal (x1, x2, . . . , xk)S has maximal
elements precisely the elements of C ′.

We begin by using Theorem 2.13 to obtain a local domain A with
completion T and whose generic formal fiber has maximal elements
precisely the elements of C. We then show our desired domain S is
A[x1, x2, . . . , xk] localized at the prime ideal (A∩M)A[x1, x2, . . . , xk]+
(x1, x2, . . . , xk)A[x1, x2, . . . , xk].

Theorem 3.1. Let (T,M) be a complete local ring with prime subring
Π, and let C be a nonempty countable set of incomparable prime ideals
of T such that either T is a field and C = {(0)}, or the following
conditions hold :

(1) M /∈ C;
(2) If P ∈ AssT , then P ⊆ Q for some Q ∈ C;
(3) If Q ∈ C, then Q ∩Π = (0).

Let k be a positive integer, and let x1, x2, . . . , xk be indeterminates.
Then there exists a local integral domain S such that x1, x2, . . . , xk ∈ S,
the completion of S is T [[x1, x2, . . . , xk]], and (x1, x2, . . . , xk)S is a
height k prime ideal of S whose formal fiber has maximal elements
precisely {QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]] | Q ∈
C} ⊂ Spec (T [[x1, x2, . . . , xk]]).
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Proof. Let G = {P ∈ SpecT | P ⊆ Q for some Q ∈ C}. Then,

by Theorem 2.13, there is a local domain A such that Â = T and the
generic formal fiber of A is exactly the elements of G. Let S be the ring
A[x1, x2, . . . , xk] localized at the prime ideal (A∩M)A[x1, x2, . . . , xk]+
(x1, x2, . . . , xk)A[x1, x2, . . . , xk]. Clearly, S is an integral domain whose

completion is Â[[x1, x2, . . . , xk]] = T [[x1, x2, . . . , xk]]. It is also clear
that (x1, x2, . . . , xk)S is a prime ideal of S. Since x1, x2, . . . , xk are
indeterminates, the height of the prime ideal (x1, x2, . . . , xk)S is k.

We now show that, for Q ∈ C, we have

(QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]]) ∩ S

= (x1, x2, . . . , xk)S.

It suffices to show

(QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]])

∩A[x1, x2, . . . , xk]

= (x1, x2, . . . , xk)A[x1, x2, . . . xk].

Let

f ∈ (QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]])

∩A[x1, x2, . . . , xk].

Since (QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]]) ∩ T [x1,
x2, . . . , xk] = QT [x1, x2, . . . , xk] + (x1, x2, . . . , xk)T [x1, x2, . . . , xk], we
have that f ∈ QT [x1, x2, . . . , xk] + (x1, x2, . . . , xk)T [x1, x2, . . . , xk]. So
we can write f = q+g where q ∈ Q and g ∈ (x1, x2, . . ., xk)T [x1, x2, . . .,
xk]. As f ∈ A[x1, x2, . . . , xk], we can write f = a+ h where a ∈ A and
h ∈ (x1, x2, . . . , xk)A[x1, x2, . . . xk]. Now, the equality f = q+g = a+h
holds true in the ring T [x1, x2, . . . , xk], and so the coefficients of each
monomial must be equal. In particular, the constant term on each
side must be equal. In other words, q = a ∈ Q ∩ A = (0). It follows
that f = h ∈ (x1, x2, . . . , xk)A[x1, x2, . . . xk]. Containment in the other
direction is clear.

It remains to show that if J ∈ Spec (T [[x1, x2, . . . , xk]]) such
that J ∩ S = (x1, x2, . . . , xk)S, then J ⊆ QT [[x1, x2, . . . , xk]] +
(x1, x2, . . . , xk)T [[x1, x2, . . . , xk]] for some Q ∈ C. Now, (J ∩ T ) ∩
A = J ∩ A = (J ∩ S) ∩ A = (x1, x2, . . . , xk)S ∩ A = (0). So
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J ∩ T is in the generic formal fiber of A. It follows that J ∩
T ⊆ Q for some Q ∈ C. Let f ∈ J . Then f = t + g
for some t ∈ T and g ∈ (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]]. Since
x1, x2, . . . , xk ∈ J , we have g ∈ J and so t ∈ T ∩ J ⊆ Q. Hence,
f ∈ QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]], and we
have J ⊆ QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]], as
desired. �

Example 3.2. Let T = Q[[y1, y2, y3]]/(y1y2), and let C = {(y1, y2 −
qy3) | q ∈ Q}. Then the hypotheses of Theorem 3.1 are satisfied.
Using k = 2, there exists an integral domain S such that x1, x2 ∈ S,

Ŝ = Q[[y1, y2, y3, x1, x2]]/(y1y2), and (x1, x2)S is a height 2 prime ideal
of S whose formal fiber has countably many maximal elements, namely,
{(x1, x2, y1, y2 − qy3) | q ∈ Q}.

Example 3.3. We use Theorem 3.1 to show that there is a local
domain S whose completion is C[[x1, x2, x3, x4]] and such that x1, x2 ∈
S and the formal fiber of (x1, x2)S has only one maximal element,
namely, (x1, x2, x3)C[[x1, x2, x3, x4]]. To do this, simply let T =
C[[x3, x4]], C = {(x3)}, and k = 2. Then, by Theorem 3.1, the desired
domain S exists.

We now show that, with some extra assumptions on our local ring T
and our set C of prime ideals of T , we can force our constructed domain
S to be excellent. The proof employs the argument from the proof of
Theorem 3.1 but replaces the use of Theorem 2.13 with Theorem 2.15.

Theorem 3.4. Let (T,M) be a complete local ring containing the
integers. Let Π denote the prime subring of T , and let C be a nonempty
countable set of incomparable prime ideals of T such that, either T is
a field and C = {(0)}, or the following conditions hold :

(1) M ̸∈ C;
(2) If P ∈ AssT , then P ⊆ Q for some Q ∈ C;
(3) If Q ∈ C, then Q ∩Π = (0);
(4) T is equidimensional ;
(5) TQ is a regular local ring for all Q ∈ C.
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Let k be a positive integer, and let x1, x2, . . . , xk be indeterminates.
Then there exists an excellent local domain S such that x1, x2, . . . , xk ∈
S, the completion of S is T [[x1, x2, . . . , xk]], and (x1, x2, . . . , xk)S is
a height k prime ideal of S whose formal fiber has maximal elements
precisely {QT [[x1, x2, . . . , xk]] + (x1, x2, . . . , xk)T [[x1, x2, . . . , xk]] | Q ∈
C} ⊂ Spec (T [[x1, x2, . . . , xk]]).

Proof. Let G = {P ∈ SpecT | P ⊆ Q for some Q ∈ C}. Then,
by Theorem 2.15, there is an excellent local domain A such that

Â = T , and the generic formal fiber of A is exactly the elements of
G. Let S be the ring A[x1, x2, . . . , xk] localized at the prime ideal
(A ∩ M)A[x1, x2, . . . , xk] + (x1, x2, . . . , xk)A[x1, x2, . . . , xk]. Then, by
the proof of Theorem 3.1, we have that S is a local domain such that

Ŝ = T [[x1, x2, . . . , xk]] and (x1, x2, . . . , xk)S is a height k prime ideal
of S whose formal fiber has the desired maximal elements. Noting that
excellence is preserved under adjoining finitely many indeterminants
and localization, we conclude S is our excellent local domain. �

Example 3.5. Let T = Q[[y1, y2, y3]], and let C = {(y1−qy2) | q ∈ Q}.
Then, by Theorem 3.4 using k = 3, there exists an excellent local
domain S such that the indeterminates x1, x2 and x3 are in S, the
completion of S is Q[[y1, y2, y3, x1, x2, x3]], and the formal fiber of
(x1, x2, x3)S has maximal elements {(y1 − qy2, x1, x2, x3) | q ∈ Q}.
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