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CLASSIFICATION OF TOTALLY UMBILICAL ¢+
CR-SUBMANIFOLDS OF COSYMPLECTIC
MANIFOLDS

SIRAJ UDDIN, VIQAR AZAM KHAN AND CENAP OZEL

ABSTRACT. In [6], Cabras, Ilanus and Pitis proved
that in a cosymplectic manifold there does not exist any
extrinsic sphere tangent to the structure vector field &.
We consider the structure vector field £ normal to the
submanifold in the sense of Papaghiuc [12] and derive that a
totally umbilical CR-~submanifold of a cosymplectic manifold
is either (i) totally geodesic, (ii) anti-invariant or (iii) an
extrinsic sphere.

1. Introduction. A submanifold M tangent to the structure vec-
tor field £ is called a contact CR-submanifold if it admits a pair of
differentiable distributions D and D+ such that D is invariant and
its orthogonal complementary distribution D+ is anti-invariant, i.e.,
TM =D & D+ @ (£) with ¢(D,) C D, and ¢(D}) C T M, for ev-
ery © € M. Thus, a CR-submanifold M tangent to £ is invariant if
D+ is identically zero and an anti-invariant if D is identically zero,
respectively. If neither D = {0} nor D+ = {0}, then M is a proper
CR-submanifold.

A submanifold M of a Riemannian manifold M is said to be totally
umbilical if H(X,Y) = g(X,Y)H. If h(X,Y) = 0, for any X and YV
tangent to M, then M is said to be a totally geodesic submanifold. If
H =0, then it is called a minimal submanifold.

A submanifold M of dim M > 2 is said to be an extrinsic sphere
[7] if it is totally umbilical and has a non-zero parallel mean curvature
vector H.
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In [1], Bejancu studied the CR-submanifolds of a Kaehler mani-
fold. Later on, many research articles have been published on CR-
submanifolds for different structures [4]. These submanifolds are the
natural generalization of both holomorphic and totally real submani-
folds of a Kaehler manifold. Totally umbilical CR-submanifolds of a
Kaehler manifold have been studied by Bejancu [2], Chen (see [7, 8]),
and Deshmukh and Husain [9].

An odd-dimensional counterpart of a Kaehler manifold is given by a
cosymplectic manifold, which is locally a product of a Kaehler manifold
with a circle or a line [5]. Indeed, a cosymplectic structure on a
(2n + 1)—dimensional manifold M is a normal almost contact metric
structure (¢, &, 1, g) on M such that the 1—form 1 and the fundamental
2—form ® are closed (see [3, 10]). A trivial example of a cosymplectic
manifold is given by the product of a 2n-dimensional Kaehler manifold
with a 1-dimensional manifold.

The submanifolds of a cosymplectic manifold have been studied by
Ludden [10]. Later on, Cabras, Ianus and Pitis [6] proved that in a
cosymplectic manifold there does not exist any extrinsic sphere tangent
to the structure vector field £&. Thus, to study extrinsic spheres in a
cosymplectic manifold, we consider the structure vector field £ normal
to the submanifold in the sense of Papaghiuc, the submanifold in this
case is called a ¢+ —submanifold [12].

For a totally umbilical contact CR-submanifold tangent to the struc-
ture vector filed & of a cosymplectic manifold we proved the following
theorem.

Theorem 1.1 ([13]). Let M be a totally umbilical CR-submanifold of a

cosymplectic manifold M. Then at least one of the following statements
18 true.

(i) M is totally geodesic,
(i) the anti-invariant distribution D+ is one-dimensional, i.e.,

dimD* =1,
(iii) the mean curvature vector H € T'(p).

In this paper we study a totally umbilical contact CR-submanifold
of a cosymplectic manifold when the structure vector field £ is normal
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to the submanifold. We discuss all possible cases on the classification
of a totally umbilical £+ CR-submanifold of cosymplectic manifolds.

2. Preliminaries. Let M be a (2n + 1)-dimensional smooth man-
ifold with an almost contact structure (¢,&,n), that is, ¢ is a (1,1)
tensor field, £ is a vector field and 7 is a 1-form, satisfying the following
properties

(21) ¢*=-IT+n®E  ¢=0, nop=0, n¢ =1

In this case we call (M, ¢, &, n) an almost contact manifold. From [3],

there exists a Riemannian metric g on an almost contact manifold M
satisfying the following compatibility condition

(2.2) 9(6X, ¢Y) = g(X,Y) = n(X)n(Y).

for any X,Y tangent to M.

From [3], we have the following definition. An almost contact
structure (¢,&,n) is said to be normal if [¢,¢] + 2dn ® & vanishes

identically on M, where
[0, 01(X,Y) = 6°[X, Y] + [6X, 9Y] — ¢[¢X, Y] — ¢[X, 6]

is the Nijenhuis tensor of ¢ for any vector fields X, Y tangent to M.

The fundamental 2-form ® on M is defined as O(X,Y) =g(X,¢Y),

for any vector fields X, Y tangent to M. If & = dn, the almost
contact structure is called a contact structure. A normal almost contact
structure with ® and 7 is called a cosymplectic structure. It is well
known that the cosymplectic structure is characterized by

(2.3) Vx¢p=0 and Vxn=0,

where V is the Levi-Civita connection of g on M. From (2.3), it follows
that Vx& = 0.

If we denote the curvature tensor of a cosymplectic manifold M by
R, then we have the following equalities

(2.4) R(¢X,¢Y)Z = R(X,Y)Z
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and
R(X,Y)$Z = ¢R(X,Y)Z.

__Let M be a submanifold of an almost contact metric manifold
M with the induced metric g, and let V and V+ be the induced
connections on the tangent bundle 7'M and the normal bundle T M of
M, respectively. We denote by F (M) the algebra of smooth functions
on M and by I'(TM) the F(M)-module of all smooth sections of a
vector bundle TM over M. Then, the Gauss and Weingarten formulae
are given by

(2.5) VxY = VxY +h(X,Y)

(2.6) VxN =—AyX + V%N,

for each X, Y € I'(TM) and N € I'(T+M), where h is the second
fundamental form and Ay is the shape operator for the immersion of
M into M. They are related as

(2.7) 9(h(X,Y),N) = g(ANX,Y),

where g denotes the Riemannian metric on M as well as induced on
M. The mean curvature vector H on M is given by

1 m
2. E— o
(2.8) H mZh(el,eZ),
=1
where m is the dimension of M and {ey, e, ..., e} is alocal orthonor-

mal frame of the vector fields on M.

The covariant derivative of the second fundamental form h is defined
as

(29 (Vxh)(Y,Z)=Vx(h(Y,Z)) — h(VxY,Z) — h(Y,VxZ).

The equations of Gauss and Codazzi are given, respectively, by

(2.10) R(X,Y;Z,W)=R(X,Y;Z, W)+ g(h(X,W),h(Y, Z))
—g(h(X, Z),h(Y,W)),

(2.11)  R(X,Y;Z,N) = g((Vxh)(Y, Z), N) = g((Vyh)(X, Z), N),
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where R denotes the curvature tensor of M,
R(X,Y;Z, W) =g(R(X,Y)Z, W),
for any X,Y, Z, W vector fields tangent to M and N normal to M.

By the definition of totally umbilical submanifold, the equations
(2.5), (2.6), (2.9), (2.10) and (2.11) reduce to the following five equa-
tions, respectively:

(2.12) VxY = VxY +g(X,Y)H,
(2.13) VxN = —g(H,N)X + V%N,
(2.14) (Vxh)(Y,Z) = g(Y, Z)VxH,

(2.15) R(X,Y;Z,W)=R(X,Y;Z W)
+ o {g(X,W)g(Y, Z) — g(X, Z)g(Y,W)}

(2.16)  R(X,Y;Z,N) = g(Y,2)9(VxH,N) - g(X, Z)g(VyH,N)

where o = | H||%.

3. Totally umbilical £+ CR-submanifolds. Throughout this sec-
tion, the structure vector field ¢ is normal to the submanifold M, and
we say that M is a £+ submanifold. Thus, in this case we define CR-
submanifolds as follows. A ¢+ submanifold M of an almost contact
metric manifold M is called a &+ CR-submanifold if there exists a pair
of differentiable distributions D and D+ on M such that D is invariant
and its orthogonal complementary distribution D' is anti-invariant,
ie, TM = D@ D+ with ¢(D,) C D, and ¢(Di) C T;- M, for ev-
ery x € M. Thus, a &+ CR-submanifold M is invariant if D+ = {0}
and anti-invariant if D = {0}, respectively. If neither D = {0} nor
DL = {0}, then M is a proper ¢+ CR-submanifold. In the case of a
¢+ CR-submanifold of an almost contact metric manifold, the normal
bundle T M is decomposed as

T+M = p® (€) ® ¢D™.

Now we give the following main result for a totally umbilical &+
CR-submanifold.
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Theorem 3.1. Let M be a totally umbilical &+ CR-submanifold of a
cosymplectic manifold M. Then M is one of the following.

(i) It is totally geodesic.
(ii) It is an anti-invariant submanifold.
(iii) It is an extrinsic sphere.

Here we note that case (iii) occurs when dim M is odd.
Proof. Here we consider the structure vector field £ normal to M.

Then, by direct calculations as in Theorem 1.1 [13], we get the following
equality

9(Z,W)? } _o,

3.1) 9(H, “’Z>{1 R

for any Z, W € I'(D+). From (3.1), we obtain that either H = 0, which
iscase (i) or H# Oand H e T'(u®(§)) or H# 0 and H ¢ T'(u® (€)).

Now, if H # 0 and H € I'(u & (£)), then for any X € I'(D) and
N € T'(¢D+), we have

Vx¢N = ¢V xN.
Using (2.12) and (2.13), we obtain
(3.2) VxéN +g(X,pN)H = —g(H, N)pX + ¢V%N.

The second part of the left hand side and the first part of the right
hand side are zero by the orthogonality of two distributions; hence,
we get Vx¢N = ¢VxN. This means that VxN € ['(¢D+). Since
HeT(u® (&), then

(3-3) 0=g(VxN,H)=—g(N,VxH).

Thus, it follows from (3.3) that V% H € I'(u @ (€)), for any X € I'(D).
Also, for a cosymplectic manifold, we have

VxoH = ¢V x H.
Then, from (2.13), we derive

—9(¢H, H)X + Vx¢H = —g(H,H)pX + ¢V H.
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By orthogonality of H and ¢H, the above equation takes the form
(3.4) VxoH = —g(H,H)¢pX + ¢V H.

Hence, equation (3.4) gives ¢X = 0, for all X € I'(D), i.e.,, D = {0}.
This proves case (ii) of the theorem.

Now, suppose H # 0 and H ¢ T'(u @ (£)). Then, again by (3.1),
we obtain dimD+ = 1. Also, if we consider dim M > 5, then there
are at most two unit orthonormal vectors X,Y € TI'(D) such that
(2.16), we have

R(¢Y,$X; X,N) =0,
for any non zero vector field N € I'(T+M). Using (2.4), we obtain
R(Y,X;X,N) =0. Again, using (2.16), we deduce that g(VHH,N) =
0, for all Y € I'(D) and N € I'(T+ M), this means that

(3.5) VyH =0, foralY eT(D).

Now, for any X € T'(D) and Z € I'(D+), from (2.16), we can derive
R(Z,X;¢X,N) =0, for any N € I'(u @ (£)). Using (2.4), we obtain
E(Z,X;X, N) = 0. Then, from (2.16), we obtain g(V4H, N) = 0, for
any N € T'(u @ (&), which implies that

(3.6) ViH e T(¢D1), for all Z € T(DH).

Also, from (2.16), we get R(Z, X; ¢ X, ngZ)~: 0, for any X € I'(D) and
Z € T(D*). Hence, by (2.4), we derive R(Z, X;X,¢Z) = 0. Thus,
from (2.16), we obtain that (V4 H, ¢Z) = 0, for any Z € I'(D*), that
is

(3.7) VzHcT(u®(€), forall ZecT(DY).

Then from (3.6) and (3.7), we conclude that VZH € T'(u @ (£)) N
T(¢DL), e,

(3.8) VzH =0, forall ZecT(Dh).

Equations (3.5) and (3.8) imply that VxH = 0, for all X € ['(TM).

Hence, by definition, M is an extrinsic sphere in M. This completes
the proof of the theorem. O
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Given a Riemannian manifold M for any two linearly independent
vectors X, Y € T'(TM), the sectional curvature denoted by K(X,Y)
is defined as

R(X,Y;Y,X)
IXP[Y]? = (X, Y)?2

(3.9) K(X,Y) =

where R is the Riemannian curvature tensor. If X and Y are orthonor-
mal vector fields on M, then their sectional curvature is

(3.10) K(X,Y)=R(X,Y;Y, X).

For a CR-submanifold M normal to the structure vector field &, the
plane section X A Z with X € T'(D) and Z € I'(D4) is called a CR-

section. The sectional curvature I?(X A Z) of a CR-section X A Z is
called a CR-sectional curvature. Now we are ready to give the following
result.

Theorem 3.2. Let M be a totally umbilical &t CR-submanifold of
a cosymplectic manifold M. Then all CR-sectional curvatures of M
vanish.

Proof. For a totally umbilical submanifold we have

R(X,Y;Z,N) = g(Y, Z)g(Vx H,N) — g(X, Z)g(V$ H,N),

for any X,Y,Z € T(TM) and N € I'(T+M). In particular, if for any
unit vectors X € I'(D) and Z € I'(D1), then the above equation takes
the form B

R(X,Z;9X,¢Z) =0.

Using the property of Riemannian curvature tensor, we obtain
R($X,¢Z; X, Z) = 0.

Then, from (2.4) and the property of Riemannian curvature tensor, we
get

(3.11) R(X,Z:X,Z)=—-R(X,Z;Z,X) =0.

Hence, by equations (3.10) and (3.11), we obtain K (X A Z) = 0 which
is the desired result. ]
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