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EXISTENCE OF EVENTUALLY POSITIVE SOLUTIONS
OF HIGHER ORDER IMPULSIVE DELAY

DIFFERENTIAL EQUATIONS

SHAO YUAN HUANG AND SUI SUN CHENG

ABSTRACT. A search of the literature reveals only a
few studies on the necessary as well as sufficient conditions
for the existence of eventually positive and/or monotone
solutions of higher order impulsive differential equations that
also allow delays. To fill this gap, we study a general
class of higher order impulsive delay differential equations
and establish necessary and/or sufficient conditions for the
existence of eventually positive and monotone solutions. Our
results are sharp in the sense that, in special cases, they are
necessary and sufficient. Illustrative examples are included.

1. Introduction. Impulsive differential equations are mathemati-
cal apparatus for simulation of different dynamical processes and phe-
nomena observed in nature (for illustration, a pendulum equation in
Example 3.3 is provided in a later section, see also [11] and the refer-
ences therein). For this reason, many impulsive differential equations
are studied and their qualitative properties investigated. However, by
inspecting recent studies such as ([1]–[22]) and their references, we
may see that only several recent papers (see e.g., [4, 5, 12, 19]) are
concerned with necessary and/or sufficient conditions for the existence
of eventually positive and/or monotone solutions of higher order im-
pulsive delay differential equations.

In particular, in [12], the author is concerned with the following
system:

x(n)(t) + a(t)x(n−1)(t) +

m∑
i=1

pi(t)x(gi(t)) = 0,(1)
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t ∈ [0,∞)\ {tk}k∈N ,

(2) x(i)(t+k ) = akx
(i)(tk), k ∈ N and i = 0, 1, . . . , n− 1,

under the following conditions:

(D1) a and pi are continuous, Lebesque measurable and locally essen-
tially bounded functions on [0,∞) for i = 1, 2, . . . ,m;

(D2) ak > 0 for k ∈ N;
(D3) the function A(0, t), defined by (11), is bounded for t ≥ 0 and

lim inft→∞ A(0, t) > 0;
(D4) pi(t) ≥ 0 for t ≥ 0 and i = 1, 2, . . . ,m; and
(D5) for each i = 1, 2, . . . ,m, gi is a continuous function on [0,∞) such

that gi(t) ≤ t for t ≥ 0, and limt→∞ gi(t) = +∞.

Theorem 2.4 in [12] ‘provides’ a sufficient condition for the existence
of bounded nonoscillatory solution:
(3)∫ ∞

0

∫ sn−2

0

· · ·
∫ s1

0

1

r(s0)

∫ ∞

s0

r(s)
m∑
i=1

pi(s)

A(gi(s), s)
ds ds0 · · · dsn−2 < ∞

where

r(t) = exp

(∫ t

0

a(s) ds

)
.

However, for n ≥ 3, we note that the function∫ t

0

∫ sn−3

0

· · ·
∫ s1

0

1

r(s0)

∫ ∞

s0

r(s)
m∑
i=1

pi(s)

A(gi(s), s)
ds ds0 · · · dsn−3

is increasing and nonnegative for t ≥ 0. So condition (3) cannot
hold unless pi(t) = 0 for almost every t ≥ 0. Furthermore, we can
easily construct an eventually positive solution under the condition
that pi(t) = 0 for almost every t ≥ 0. So this result is only valid under
the case where n = 2.

There are other mistakes in reference [20] which is concerned with
second order impulsive differential equations with delays (see a later
section). These mistakes in [20] cast doubt on the correctness of the
main theorem in [20].

Besides these results in [12], there are similar results in reference [7]
for equations without impulses. There the authors are concerned with
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the equation

(4) x(n)(t) + f(t, x(g(t))) = 0, t ≥ 0,

where f is a nondecreasing function on R and uf(t, u) > 0 for u ̸= 0.
Theorem 2 in [7] tells us that there exists an eventually positive solution
x of equation (4) with x(t)x(n−1)(t) > 0 and x(t)x(n)(t) > 0 eventually,
and x(n−2)(t) is bounded above by a constant, if and only if∫ ∞

a

tf(t, cgn−2(t)) dt < ∞

for some a ≥ 0 and c > 0. Other similar theorems can also be found in
[7].

Next, in reference [5], the authors are concerned with the problem
of existence of nonoscillatory solutions of system

x′′′(t) + f(t, x(t)) = 0, t ∈ [0,∞)\ {tk}k∈N ,(5)

x(t+k ) = x(tk), k ∈ N,(6)

x′(t+k ) = x′(tk), k ∈ N,(7)

x′′(t+k ) = x′′(tk)− I2k(x(tk)), k ∈ N(8)

where f is a continuous function on [0,∞) × R with uf(t, u) > 0 for
u ̸= 0 and t ≥ 0, and I2k are continuous functions on R for k ∈ N with
uIk(u) > 0 for u ̸= 0. Theorem 2 in [5] provides a sufficient condition
that |f(t, u)| ≤ |f(t, v)| and |I2k(u)| ≤ |I2k(v)| for |u| ≤ |v|, and∫ ∞

0

t2 |f(t, c)| dt+
∞∑
k=1

t2k |I2k(c)| < ∞

for some c ̸= 0 such that the system (5)–(8) has a bounded nonoscilla-
tory solution.

The above mistakes and list of results motivate us to study general
classes of higher order impulsive delay differential equations and estab-
lish necessary and/or sufficient conditions for the existence of eventually
positive and monotone solutions, which may be used to complete, to
generalize or to patch up several recent results in the literature.

To this end, we first recall some usual notation. R andN will be used
to denote the set of real numbers and positive integers, respectively,
while R+ denotes the interval (0,+∞). We set Nn = {1, 2, . . . , n} and
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Nn = {0, 1, . . . , n}. We let

Υ = {t1, t2, . . .}

be a set of real numbers such that 0 = t0 < t1 < t2 < · · · and
limk→∞ tk = +∞. Assuming that I1 and I2 are intervals in R, we
define

PC(I1, I2) = {φ : I1 −→ I2 | φ is continuous in each interval

I1 ∩ (tk, tk+1] for k ∈ N ∪ {0} and with

discontinuity of the first kind only} ,

PC(1)(I1, I2) = {φ ∈ PC(I1, I2) | φ(t)
is continuously differentiable almost everywhere on I1} ,

and

PC(i)(I1, I2) =
{
φ ∈ PC(I1, I2) | φ(j) ∈ PC(1)(I1,R) for j ∈ Ni−1

}
for i ≥ 2. Also, y′(t) will be used to denote the left derivative
of the function y(t) at t. We need an order relation in the space
PC([T,∞), [0,∞)): If y1 and y2 belong to PC([T,∞), [0,∞)), we say
that y1 ≤ y2 if and only if y1(t) ≤ y2(t) almost everywhere on [T,∞).
A partially ordered subset of PC([T,∞), [0,∞)) is called a complete
lattice if all its subsets have both a supremum and an infimum.

Let n ≥ 2 be given. We investigate the following nonlinear delay
differential systems with impulses
(9)(
r(t)x(n−1)(t)

)′
+ F

(
t, x(n−1)(gn−1(t)), x

(n−2)(gn−2(t)), . . . , x(g0(t))
)
=0,

(10) x(i)(t+k ) = I(i)k

(
x(i)(tk)

)
,

where t ∈ [0,∞)\Υ, k ∈ N and i ∈ Nn−1, under some or all of the
following conditions:

(A1) for any t ≥ 0, F (t, µ) is a continuous function on Rn, and for
any µ ∈ Rn, F (t, µ) belongs to PC([0,∞),R);

(A2) for each i ∈ Nn−1, gi is a continuous function on [0,∞) with
gi(t) ≤ t for t ≥ 0, and limt→∞ gi(t) = +∞;
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(A3) 0 < t1 < t2 < · · · are fixed numbers with limk→∞ tk = +∞;
(A4) r is a positive differentiable function on [0,∞);
(A5) for each i ∈ Nn−1 and k ∈ N, I(i)k is a continuous function on

R such that µI(i)k(µ) > 0 for µ ̸= 0;
(A6) there exists M0 ≥ 1 ≥ m0 > 0 such that

m0 ≤
∏

s≤tk<t

I(0)k(δk)

δk
≤ M0

where k ∈ N and t ≥ s ≥ 0 with [s, t)∩Υ ̸= ∅ for any sequence
{δk ̸= 0}k∈N;

(A7) for each i ∈ Nn−2, there exists Mi ≥ 1 such that∏
s≤tk<t

I(i)k(δk)

δk
≤ Mi,

where k ∈ N and t ≥ s ≥ 0 with [s, t)∩Υ ̸= ∅ for any sequence
{δk ̸= 0}k∈N.

We remark that condition (A5) means that, for each i ∈ Nn−1 and
k ∈ N , I(i)k(µ) > 0 for µ > 0 and I(i)k(µ) < 0 for µ < 0. These
are needed in order to ‘propagate’ the positivity of solutions ‘into the
future’ and hence are important for the existence of positive solutions.
We further remark that∏

s≤tk<t

I(0)k(δk)

δk
:=

∏
{k:s≤tk<t}

I(0)k(δk)

δk
,

etc., and hence conditions (A6) and (A7) require the product of the
rates of change of values of solutions at tk has positive upper bound
and/or positive lower bound. We will give a specific example to
illustrate conditions (A6) and (A7) in Example 3.1.

Let T ≥ 0 and

rT = min
0≤j≤n−1

{
inf
t≥T

gj(t)

}
.

Definition 1.1. Let T ≥ 0. For any ϕ ∈ PC(n−1)([rT , T ],R), a
function x ∈ PC(n)([T,∞),R) is said to be a solution of system (9)–
(10) on [T,∞) satisfying the initial value condition

x(t) = ϕ(t), t ∈ [rT , T ],

if x(t) satisfies (9) for almost every t ≥ T and satisfies (10) for t ≥ T .



242 SHAO YUAN HUANG AND SUI SUN CHENG

Definition 1.2. Let x = x(t) be a real function defined for all
sufficiently large t. We say that x is eventually positive if there exists
a number T such that x(t) > 0 for every t ≥ T . We say that x is
nonoscillatory if either x(t) or −x(t) is eventually positive.

Let a(i)k > 0, ak > 0, bk > 0 and b∗k > 0 for k ∈ N and i ∈ Nn−1.
We define functions

Ai(s, t) =

{ ∏
s≤tk<t a(i)k if [s, t) ∩Υ ̸= ∅

1 if [s, t) ∩Υ = ∅(11)

and

A(s, t) =

{ ∏
s≤tk<t ak if [s, t) ∩Υ ̸= ∅

1 if [s, t) ∩Υ = ∅,

B(s, t) =

{ ∏
s≤tk<t bk if [s, t) ∩Υ ̸= ∅

1 if [s, t) ∩Υ = ∅

and

B∗(s, t) =

{ ∏
s≤tk<t b

∗
k if [s, t) ∩Υ ̸= ∅

1 if [s, t) ∩Υ = ∅

for t ≥ s ≥ 0 and i ∈ Nn−2. Assume that there exist mi > 0 for
i ∈ Nn−2 such that

(A) Ai(s, t) ≥ mi for t ≥ s ≥ 0 and i ∈ Nn−2.

We remark that oscillatory, nonoscillatory, monotone and periodic
solutions, etc., are major concerns in the theory of impulsive differential
equations with delays. Yet simple questions such as the uniqueness of
eventually positive solutions are difficult due to the nonlinear nature
caused by the impulses. Therefore, much has to be done before the
solution structures of these equations can be clarified.

2. Main results. We first establish a necessary condition for the
existence of eventually positive and monotone solutions of systems with
nonlinear impulses.

Theorem 2.1. Let β > α > 0 be given. Assume that (A1)–(A7) hold
and I(n−1)k(µ)/µ ≤ b∗k for µ ̸= 0 and k ∈ N, and that there is a
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function Φ ∈ PC([0,∞),R) such that

(12) F (t, µ1, µ2, . . . , µn) ≥ Φ(t) ≥ 0

where β ≥ µn ≥ α, (−1)i+1µi ≥ 0 and t ≥ 0 for i ∈ Nn−1. Let x(t) be
a solution of the system

(
r(t)x(n−1)(t)

)′
+ F

(
t, x(n−1)(gn−1(t)), x

(n−2)(gn−2(t)), . . . , x(g0(t))
)
≤ 0,

(13)

t ∈ R0\Υ,

and (10) such that α ≤ x(t) ≤ β eventually. If one of the following
conditions holds

(i) n is even and (−1)i+1x(i)(t) > 0 eventually for i ∈ Nn−1; or
(ii) n is odd and (−1)ix(i)(t) > 0 eventually for i ∈ Nn−1;

then

(14)

∫ ∞

τ

∫ ∞

s0

∫ ∞

s1

· · ·
∫ ∞

sn−3

∫ ∞

sn−2

Φ(sn−1)

r(sn−2)B∗(sn−2, sn−1)
dsn−1dsn−2 · · · ds0 < ∞

for some τ ≥ 0.

Proof. Assume that condition (i) holds. Without loss of generality,
we can assume that α ≤ x(t) ≤ β and (−1)i+1x(i)(t) > 0 for t ≥ r0.
Then we have

(15) F
(
t, x(n−1)(gn−1(t)), x

(n−2)(gn−2(t)), . . . , x(g0(t))
)
≥ Φ(t)

for t ≥ 0. We define functions

(16) A(i)(x)(s, t) =

{ ∏
s≤tk<t

I(i)k(x
(i)(tk))

x(i)(tk)
if [s, t) ∩Υ ̸= ∅

1 if [s, t) ∩Υ = ∅

for t ≥ s ≥ 0 and i ∈ Nn−1. By (A6), (A7) and I(n−1)k(µ)/µ ≤ b∗k for
µ ̸= 0 and k ∈ N , we see that

A(0)(x)(s, t) ≥ m0,(17)

0 < A(i)(x)(s, t) ≤ Mi
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and

0 < A(n−1)(x)(s, t) ≤ B∗(s, t)

for t ≥ s ≥ 0 and i ∈ Nn−2. Let

z(t) =
r(t)x(n−1)(t)

x(t)

for t ≥ 0. By assumption, we see that z(t) > 0 for t ≥ 0, and

(18) z(t+k ) =
r(tk)I(n−1)k(x

(n−1)(tk))

I(0)k(x(tk))
= ckz(tk)

for k ∈ N, where

ck =
x(tk)

I(0)k(x(tk))

I(n−1)k(x
(n−1)(tk))

x(n−1)(tk)
.

By (15), we see that
(19)

z′(t) ≤
−F

(
t, x(n−1)(gn−1(t)), x

(n−2)(gn−2(t)), . . . , x(g0(t))
)

x(t)
≤−Φ(t)

β

for t ≥ 0. Let

C(s, t) =

{ ∏
s≤tk<t

ck if [s, t) ∩Υ ̸= ∅

1 if [s, t) ∩Υ = ∅

for t ≥ s ≥ 0. We divide (19) by C(0, t). Then

(20)

(
z(t)

C(0, t)

)′

≤ − 1

β

Φ(t)

C(0, t)

for t ≥ 0. Let d > 0 be given. In view of (18), we note that the
function z(t)/C(0, t) is continuous for t ≥ 0. We integrate (20) from t
to d. Then

− z(t)

C(0, t)
≤ z(d)

C(0, d)
− z(t)

C(0, t)
≤ − 1

β

∫ d

t

Φ(s)

C(0, s)
ds

for t ≥ 0. Since d is arbitrary, we have

r(t)x(n−1)(t)

α
≥ z(t) ≥ 1

β

∫ ∞

t

Φ(s)

C(t, s)
ds
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for t ≥ 0, from which it follows that

(21) x(n−1)(t) ≥ α

βr(t)

∫ ∞

t

Φ(s)

C(t, s)
ds

for t ≥ 0. We divide (21) by An−2(x)(0, t) and then integrate it from t
to d. We may see that

− x(n−2)(t) ≥ x(n−2)(d)− x(n−2)(t)

≥ α

β

1

Mn−2

∫ d

t

1

r(sn−2)

∫ ∞

sn−2

Φ(sn−1)

C(sn−2, sn−1)
dsn−1 dsn−2

for 0 ≤ t ≤ d. Since d is arbitrary, we further see by (17) that

−x(n−2)(t) ≥ α

β

1

Mn−2

∫ ∞

t

1

r(sn−2)

∫ ∞

sn−2

Φ(sn−1)

C(sn−2, sn−1)
dsn−1 dsn−2

for t ≥ 0. We use similar arguments n− 2 times. Then

x(t) ≥ α

β

( n−2∏
i=1

1
Mi

)
m0

∫ t

0

∫∞
s0

∫∞
s1

· · ·
∫ ∞

sn−3

∫ ∞

sn−2

Φ(sn−1)

r(sn−2)C(sn−2, sn−1)
dsn−1 dsn−2 · · · ds0

≥ α

β

( n−2∏
i=1

1
Mi

)
m2

0

∫ t

0

∫∞
s0

∫∞
s1

· · ·
∫ ∞

sn−3

∫ ∞

sn−2

Φ(sn−1)

r(sn−2)B∗(sn−2, sn−1)
dsn−1 dsn−2 · · · ds0

for t ≥ 0. Since x(t) is bounded, we see that (14) holds.

Assume that condition (ii) holds. Without loss of generality, we may
assume that α ≤ x(t) ≤ β and (−1)ix(i)(t) > 0 for t ≥ r0. Similarly,
we have (15), (16) and (17). In view of (13) and (15),

(22)
(
r(t)x(n−1)(t)

)′
≤ −Φ(t) for t ≥ 0.

Let d > 0 be given. We divide (22) by An−1(x)(0, t), and then integrate
it from t to d. We have

r(d)x(n−1)(d)

A(n−1)(x)(0, d)
− r(t)x(n−1)(t)

A(n−1)(x)(0, t)
≤ −

∫ d

t

Φ(sn−1)

A(n−1)(x)(0, sn−1)
dsn−1
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for d ≥ t ≥ 0. Since x(n−1)(d) > 0 and d is arbitrary, we can see that

x(n−1)(t) ≥ 1

r(t)

∫ ∞

t

Φ(sn−1)

A(n−1)(x)(t, sn−1)
dsn−1(23)

≥ 1

r(t)

∫ ∞

t

Φ(sn−1)

B∗(t, sn−1)
dsn−1

for t ≥ 0.

We divide (23) by A(n−2)(0, t), and then integrate it from t to d.

Since x(n−2)(d) < 0 and d is arbitrary, we can see that

−x(n−2)(t) ≥
∫ ∞

t

1

A(n−2)(t, sn−2)r(sn−2)

×
∫ ∞

sn−2

Φ(sn−1)

B∗(sn−2, sn−1)
dsn−1 dsn−2

for t ≥ 0, from which and (17), it follows that

−x(n−2)(t) ≥ 1

Mn−2

∫ ∞

t

1

r(sn−2)

∫ ∞

sn−2

Φ(sn−1)

B∗(sn−2, sn−1)
dsn−1 dsn−2

for t ≥ 0. We use similar arguments n− 2 times. Then

x(t) ≥
( n−2∏

i=1

1

Mi

)
m0

∫ t

0

∫ ∞

s0

· · ·
∫ ∞

sn−3

∫ ∞

sn−2

Φ(sn−1)

r(sn−2)B∗(sn−2, sn−1)
dsn−1 dsn−2 · · · ds0

for t ≥ 0. Since x(t) is bounded, we see that (14) holds. The proof is
complete. �

Remark 2.2. We will establish sufficient conditions such that con-
ditions (i) and (ii) in Theorem 2.1 hold. This is important to show
that Theorem 2.1 is non-vacuous. In addition, by inspecting the proof
of Theorem 2.1, we may see that condition (A6) in the hypotheses of
Theorem 2.1 may be replaced by∏

s≤tk<t

I(0)k(δk)

δk
≥ m0
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where k ∈ N and t ≥ s ≥ 0 with [s, t) ∩ Υ ̸= ∅ for any sequence
{δk ̸= 0}k∈N.

Next, we establish a sufficient condition for the existence of eventu-
ally positive and monotone solutions of systems with linear impulses.

Theorem 2.3. Assume that (A1)–(A6) and (A) hold, I(i)k(µ) = a(i)kµ

for µ ∈ R, i ∈ Nn−1 and k ∈ N, and that there exist positive numbers
α, β and γi for i ∈ Nn−1 with β > M0/(m0α). Assume that

(24)

∫ ∞

τ

∫ ∞

s0

∫ ∞

s1

· · ·
∫ ∞

sn−3

∫ ∞

sn−2

Q(sn−1)

r(sn−2)An−1(sn−2, sn−1)
dsn−1 dsn−2 · · · ds0 < ∞

for some τ ≥ 0 where

Q(t) = max
{
F (t, γ1,−γ2, . . . , (−1)n−2γn−1, β),

F (t, γ1,−γ2, . . . , (−1)n−2γn−1, α)
}
.

(1) If n is even and one of the following conditions holds:
(1-1) for any t ≥ 0, F (t, µ1, µ2, . . . , µn) ≥ F (t, ν1, ν2, . . . , νn) ≥ 0
where β ≥ µn ≥ νn ≥ α and γi ≥ (−1)n−i+1µi ≥ (−1)n−i+1νi ≥ 0
for i ∈ Nn−1; or
(1-2) for any t ≥ 0, F (t, µ1, µ2, . . . , µn) ≥ F (t, ν1, ν2, . . . , νn) ≥ 0
where β ≥ νn ≥ µn ≥ α and γi ≥ (−1)n−i+1µi ≥ (−1)n−i+1νi ≥ 0
for i ∈ Nn−1;
then the system (9)–(10) has an eventually positive solution x(t)
such that α ≤ x(t) ≤ β and 0 ≤ (−1)i+1x(i)(t) ≤ γi eventually for
i ∈ Nn−1.

(2) If n is odd and one of the following conditions holds:
(2-1) for any t ≥ 0, F (t, µ1, µ2, . . . , µn) ≥ F (t, ν1, ν2, . . . , νn) ≥ 0
where β ≥ µn ≥ νn ≥ α, and γi ≥ (−1)n−iµi ≥ (−1)n−iνi ≥ 0 for
i ∈ Nn−1; or
(2-2) for any t ≥ 0, F (t, µ1, µ2, . . . , µn) ≥ F (t, ν1, ν2, . . . , νn) ≥ 0
where β ≥ νn ≥ µn ≥ α and γi ≥ (−1)n−iµi ≥ (−1)n−iνi ≥ 0 for
i ∈ Nn−1;
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then system (9)–(10) has an eventually positive solution x(t) such that
α ≤ x(t) ≤ β and 0 ≤ (−1)ix(i)(t) ≤ γi eventually for i ∈ Nn−1

Furthermore, if

(25) F (t, µ1, µ2, . . . , µn) > 0, almost everywhere t ≥ 0,

where γi ≥ (−1)i+1µi ≥ 0 for i ∈ Nn−1 and β ≥ µn > 0, then
x(i)(t) ̸= 0 eventually for i ∈ Nn−1.

Proof. For the sake of convenience, let

Φ1(t) =

∫ ∞

t

Q(s)

r(t)An−1(t, s)
ds

for t ≥ 0. Let η = β/M0 − α/m0,

ε0 = min

{( ∏
1≤i≤n−2

mi

)
η, m0

( ∏
0≤i≤n−2

mi

)
η,(

M0

∏
0≤i≤n−2

mi

)
η,

(
1

M0

∏
0≤i≤n−2

mi

)
η

}

εk =
∏

k≤i≤n−2

miγn−k, k ∈ Nn−2,

and
εn−1 = γ1.

In view of (24), there exists T ∈ Υ such that T > τ ,

(26)

∫ ∞

T

∫ ∞

s0

∫ ∞

s1

· · ·
∫ ∞

sn−3

Φ1(sn−2) dsn−2 · · · ds0 < ε0,

(27)

∫ ∞

T

∫ ∞

sk

· · ·
∫ ∞

sn−3

Φ1(sn−2) dsn−2 · · · ds0 < εk, k ∈ Nn−3,

(28)

∫ ∞

T

Φ1(sn−2) dsn−2 < εn−2,

and

(29) Φ1(t) < εn−1, t ≥ T.
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Given y ∈ PC([T,∞), [0,∞)). Let Pn−1(y)(t) = y(t) for t ≥ T . By
induction, we can define

(30) Pi(y)(t) =

∫ ∞

t

Pi+1(y)(s)

Ai(t, s)
ds

for t ≥ T and i ∈ Nn−2. Let

U1(t) = A0(T, t)
α

m0
+

∫ t

T

A0(s, t)P1(y)(s) ds,(31)

U2(t) = A0(T, t)
β

M0
−

∫ ∞

t

P1(y)(s)

A0(t, s)
ds,

U3(t) = A0(T, t)
α

m0
+

∫ ∞

t

P1(y)(s)

A0(t, s)
ds,

and

U4(t) = A0(T, t)
β

M0
−

∫ t

T

A0(s, t)P1(y)(s) ds

for t ≥ T and tk ≥ T . For any y ∈ PC([T,∞), [0,∞)), we note that
Pi(y)(t) ≥ 0 and Uj(t) ≥ 0 for t ≥ T , i ∈ Nn−1 and j ∈ N2. Let us
define four sets

Xj = {y ∈ PC([T,∞), [0,∞)) : 0 ≤ Pi(y)(t) ≤ γn−i

and α ≤ Uj(y)(t) ≤ β for t ≥ T and i ∈ Nn−1}

for j ∈ N4. In view of (A6), we can see that Pi(0)(t) = 0 and
α ≤ Uj(0)(t) ≤ β for t ≥ T , i ∈ Nn−1 and j ∈ N4. It follows that Xj

is nonempty because of 0 ∈ Xj for j ∈ N4. Clearly, with this ordering,
Xj are complete lattices for j ∈ N4. For y ∈ PC([T,∞), [0,∞)), we
define an operator S in PC([T,∞), [0,∞)) by

S(y)(t)=
1

r(t)

∫ ∞

t

F(s, wn−1(y)(s), wn−2(y)(s), . . . w1(y)(s), w0(y)(s))

An−1(t, s)
ds

for t ≥ T where wi(y)(t) are functions on [rT ,∞) with respect to y(t).
We consider four cases: Case 1: n is even and condition (1-1) holds;
Case 2: n is even and condition (1-2) holds; Case 3: n is odd and
condition (2-1) holds; Case 4: n is odd and condition (2-2) holds.
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Case 1. We assume that

w0(y)(t) =

{
U1(y)(g0(t)) if g0(t) > T,
α if g0(t) ≤ T,

and

(32) wi(y)(t) =

{
(−1)

i+1
Pi(y)(gi(t)) if gi(t) > T,

0 if gi(t) ≤ T,

for t ≥ T , i ∈ Nn−1 and y ∈ X1. For any y ∈ X1, it is obvious that

(33) 0 ≤ (−1)i+1wi(y)(t) ≤ γn−i and α ≤ w0(y)(t) ≤ β

where t ≥ T for i ∈ Nn−1. Then

F (t, wn−1(y)(t), wn−2(y)(t), . . . , w0(y)(t))

≤ F (t, γ1,−γ2, · · · , γn−1, β) ≤ Q(t)

where t ≥ T . By (A), (27), (28) and (29), we see that

0 ≤ Pn−1(S(y))(t) = S(y)(t) ≤ Φ1(t) ≤ γ1,

0 ≤ Pn−2(S(y))(t)

=

∫ ∞

t

Pn−1 (S(y)) (s)

An−2(t, s)
ds

≤ 1

mn−2

∫ ∞

t

Φ1(s) ds ≤ γ2

and
0 ≤ Pi(S(y))(t) ≤ γn−i, i ∈ Nn−3,

where t ≥ T . By (A6), (A) and (26), we further see that

α ≤ U1(S(y))(t) ≤ M0

(
α

m0
+

∫ t

T

P1(S1(y))(s) ds

)
≤ M0α

m0
+

(
M0

∏
1≤i≤n−2

1

mi

)∫ ∞

0

∫ ∞

s0

· · ·
∫ ∞

sn−3

Φ1(sn−2)dsn−2 · · · ds0

≤ M0α

m0
+

(
M0

∏
1≤i≤n−2

1

mi

)
ε0 ≤ β
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for t ≥ T . So S(X1) ⊆ X1. Given y1, y2 ∈ X1 with y1 ≤ y2. By
induction, it is obvious that U1(y1) ≤ U1(y2) and Pi(y1) ≤ Pi(y2) for
any i ∈ Nn−1. So

0 ≤ (−1)
i+1

wi(y1)(t) ≤ (−1)
i+1

wi(y2)(t) ≤ γi

and

α ≤ w0(y1)(t) ≤ w0(y2)(t) ≤ β

where t ≥ T for i ∈ Nn−1, from which it follows that

F (t, wn−1(y1)(t), wn−2(y1)(t), . . . , w0(y1)(t))

≤ F (t, wn−1(y2)(t), wn−2(y2)(t), . . . , w0(y2)(t))

for t ≥ T . Then S(y1) ≤ S(y2), which implies that S is increasing in
X1. By the Knaster-Tarski fixed point theorem, there exists z1 ∈ X1

such that S(z1) = z1. Let

x1(t) =

{
U1(z1)(t) if t > T,
α if rT ≤ t ≤ T.

We assert that x1 is an eventually positive solution of system (9)–(10)

such that α ≤ x1(t) ≤ β and 0 ≤ (−1)i+1x
(i)
1 (t) ≤ γi eventually for

i ∈ Nn−1. Indeed, let T1 > T be such that rT1 > T . Then gj(t) > T

for t ≥ T1 and j ∈ Nn−1. Clearly, x1 ∈ PC(n)([T1,∞), [α, β]) and

0 ≤ (−1)i+1x
(i)
1 (t) = Pi(z1)(t) ≤ γn−i

for t ≥ T1 and i ∈ Nn−1. Furthermore,

x
(i)
1 (gi(t)) = (−1)i+1Pi(z1)(gi(t)) = wi(z1)(t)

where t ≥ T1 for i ∈ Nn−1. Then
(34)

x
(n−1)
1 (t)=z1(t)=

1
r(t)

∫∞
t

F
(
s,x

(n−1)
1 (gn−1(s)),x

(n−2)
1 (gn−2(s)),...,x1(g0(s))

)
An−1(t,s)

ds

for t ≥ T1. It follows that(
r(t)x

(n−1)
1 (t)

)′
=−F

(
t, x

(n−1)
1 (gn−1(t)), x

(n−2)
1 (gn−2(t)), . . . , x1(g0(t))

)
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for almost every t ≥ T1. In view of (30) and (31), it is easy to see that

x
(i)
1 (t+k ) = (−1)i+1Pi(z1)(t

+
k ) = a(i)k(−1)i+1Pi(z1)(tk) = a(i)kx

(i)
1 (tk)

and
x1(t

+
k ) = U1(z1)(t

+
k ) = a(0)kU1(z1)(tk) = a(0)kx1(t

+
k )

for tk ≥ T1 and i ∈ Nn−1. Therefore, x1(t) is an eventually pos-
itive solution of system (9)–(10) such that α ≤ x(t) ≤ β and 0 ≤
(−1)i+1x(i)(t) ≤ γi eventually for i ∈ Nn−1. Assume that (25) holds.
Since x1(g0(t)) > 0 for t ≥ T1, by (34), we note that z1(t) = S(z1)(t) >

0 for t ≥ T1. It follows that (−1)i+1x
(i)
1 (t) = Pi(z1)(t) > 0 for t ≥ T1

and i ∈ Nn−1.

Case 2. We assume that

w0(y)(t) =

{
U2(y)(g0(t)) if g0(t) > T,
α if g0(t) ≤ T,

and wi(y)(t) are defined by (32) for t ≥ T , i ∈ Nn−1 and y ∈ X2. We
note that (33) holds and

F (t, wn−1(y)(t), wn−2(y)(t), . . . w1(y)(t), w0(y)(t))

≤ F (t, γ1,−γ2, . . . γn−1, α) ≤ Q(t)

for t ≥ T . Similarly, we have

0 ≤ Pi(S(y))(t) ≤ γn−i

and

β ≥ U2(S(y))(t) ≥
m0β

M0
− 1

m0

∫ ∞

t

P1(y)(s) ds,

≥ m0β

M0
−
( ∏

0≤i≤n−2

1

mi

)∫ ∞

T

∫ ∞

s0

∫ ∞

s1

· · ·
∫ ∞

sn−3

Φ1(sn−2)dsn−2 · · · ds0 ≥ α

for t ≥ T and for i ∈ Nn−1. So S(X2) ⊆ X2. Given y1, y2 ∈ X2 with
y1 ≤ y2. Similarly, we have Pi(y1) ≤ Pi(y2) and U2(y1) ≥ U2(y2) for
any i ∈ Nn−1. It follows that

0 ≤ (−1)
i+1

wi(y1)(t) ≤ (−1)
i+1

wi(y2)(t) ≤ γi
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and

α ≤ w0(y2)(t) ≤ w0(y1)(t) ≤ β

where t ≥ T for i ∈ Nn−1, from which it follows that S(y1)(t) ≤
S(y2)(t) for t ≥ T , which implies that S is increasing in X2. By the
Knaster-Tarski fixed point theorem, there exists z2 ∈ X2 such that
S(z2) = z2. Let

x2(t) =

{
U2(z2)(t) if t > T
α if rT ≤ t ≤ T.

Let T1 > T be such that rT1 > T . Similarly, we can check that
x2(t) is an eventually positive solution of system (9)–(10) such that

α ≤ x2(t) ≤ β and 0 ≤ (−1)i+1x
(i)
2 (t) ≤ γi eventually for i ∈ Nn−1.

Assume that (25) holds. Similar to the previous Case 1, we can see

that (−1)i+1x
(i)
2 (t) = Pi(z2)(t) > 0 for t ≥ T1 and i ∈ Nn−1.

Case 3. We assume that

w0(y)(t) =

{
U3(y)(g0(t)) if g0(t) > T,
α if g0(t) ≤ T,

and

(35) wi(y)(t) =

{
(−1)

i
Pi(y)(gi(t)) if gi(t) > T,

0 if gi(t) ≤ T,

for t ≥ T , i ∈ Nn−1 and y ∈ X3. We note that 0 ≤ (−1)iwi(y)(t) ≤
γn−i and α ≤ w0(y)(t) ≤ β for t ≥ T . Similarly, we have

0 ≤ Pi(S(y))(t) ≤ γn−i and α ≤ U3(S(y))(t) ≤ β

for t ≥ T and for i ∈ Nn−1. So S(X3) ⊆ X3. Given y1, y2 ∈ X3 with
y1 ≤ y2, similarly, we have S(y1)(t) ≤ S(y2)(t) for t ≥ T , which implies
that S is increasing in X3. By the Knaster-Tarski fixed point theorem,
there exists z3 ∈ X3 such that S(z3) = z3. Let

x3(t) =

{
U3(z3)(t) if t > T
α if rT ≤ t ≤ T.

Let T1 > T be such that rT1 > T . Then we can check that x3(t) is an
eventually positive solution of system (9)–(10) such that α ≤ x3(t) ≤ β

and 0 ≤ (−1)ix
(i)
3 (t) ≤ γi eventually for i ∈ Nn−1. Assume that (25)
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holds. Similar to the previous cases, we can see that (−1)ix
(i)
3 (t) > 0

for t ≥ T1 and i ∈ Nn−1.

Case 4. We assume that

w0(y)(t) =

{
U4(y)(g0(t)) if g0(t) > T,
α if g0(t) ≤ T

and wi(y)(t) are defined by (35) for t ≥ T , i ∈ Nn−1 and y ∈ X4.
Similarly, we may verify that S(X4) ⊆ X4 and S is increasing in X4.
By the Knaster-Tarski fixed point theorem, there exists z4 ∈ X4 such
that S(z4) = z4. Let

x4(t) =

{
U4(z4)(t) if t > T
α if rT ≤ t ≤ T.

Let T1 > T be such that rT1 > T . Then we may check that x4(t) is an
eventually positive solution of system (9)–(10) such that α ≤ x4(t) ≤ β

and 0 ≤ (−1)ix
(i)
4 (t) ≤ γi eventually for i ∈ Nn−1. Assume that (25)

holds. Similar to the previous cases, we may see that (−1)ix
(i)
4 (t) > 0

for t ≥ T1 and i ∈ Nn−1. The proof is complete. �

In general, it is difficult to establish the converse result for a higher
order system with nonlinear impulses. However, when n = 2, we can
utilize a similar technique in the proof of Theorem 2.3 to establish a
sufficient condition.

Theorem 2.4. Assume that n = 2, (A1)–(A6) hold, bk ≤ I(1)k(µ)/µ ≤
b∗k for µ ̸= 0 and k ∈ N, and

(36)
I(0)k(µ)

µ
≤

I(0)k(ν)

ν
and

I(1)k(µ)

µ
≥

I(1)k(ν)

ν
if 0 < µ ≤ ν

for any k ∈ N. Assume that there are positive numbers α, β and γ
such that β > M0/(m0α) and one of the following conditions holds:

(i) for any t ≥ 0 and F (t, µ1, µ2) ≥ F (t, ν1, ν2) ≥ 0 where β ≥ µ2 ≥
ν2 ≥ α, and γ ≥ µ1 ≥ ν1 ≥ 0 for i ∈ Nn−1; or

(ii) I(0)k(µ) = a(0)kµ for µ ∈ R and k ∈ N, and for any t ≥ 0,
F (t, µ1, µ2) ≥ F (t, ν1, ν2) ≥ 0 where β ≥ ν2 ≥ µ1 ≥ α and
γ ≥ µ1 ≥ ν1 ≥ 0.
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If

(37)

∫ ∞

τ

∫ ∞

t

Q(s)

r(t)B(t, s)
ds dt < ∞

for some τ ≥ 0, where

Q(t) = max {F (t, γ, β), F (t, γ, α)} ,

then the system (9)–(10) has an eventually positive solution x such that
α ≤ x(t) ≤ β and 0 ≤ x′(t) ≤ γ eventually. Furthermore, if

(38) F (t, µ1, µ2) > 0,

where γ ≥ µ1 ≥ 0, β ≥ µ2 > 0 and almost every t ≥ 0, then x′(t) > 0
eventually.

Proof. Let ε1 = γ and

ε0 = min

{
β

M0
− 1

m0
α,

m0

M0
(m0β −M0α)

}
.

In view of (37), there exists T ∈ Υ such that T > τ ,∫ ∞

t

Q(s)

r(t)B(t, s)
ds < ε1

and ∫ ∞

t

∫ ∞

s

Q(v)

r(s)B(s, v)
dvds < ε0 for t ≥ T.(39)

We define a function

(40) Γk(µ) =

{
I(1)k(µ)

µ if µ ̸= 0,

b∗k if µ = 0
for µ ∈ R.

Clearly, Γk(µ) > 0 for µ ∈ R and k ∈ N. Given y ∈ PC([T,∞), [0,∞)),
let

(41) D1(y)(s, t) =

{ ∏
s≤tk<t Γk (y(tk)) if [s, t) ∩Υ ̸= ∅

1 if [s, t) ∩Υ = ∅

for t ≥ s ≥ T . Then D1(y)(s, t) > 0 for t ≥ s ≥ T . For

y ∈ PC([T,∞), [0,∞)), we define an operator S̃ in PC([T,∞), [0,∞))
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by

S̃(y)(t) =
1

r(t)

∫ ∞

t

F (s, w1(y)(s), w0(y)(s))

D1(y)(t, s)
ds

for t ≥ T where w0(y)(t) and w1(y)(t) are functions on [rT ,∞). Assume
that condition (i) holds. By induction, we can define

v1(y)(k) = D0(y)(T, tk)
α

m0
+

∫ tk

T

D0(y)(s, tk)y(s) ds

and

D0(y)(s, t) =

{ ∏
s≤tk<t

I(0)k(v1(y)(k))

v1(y)(k)
if [s, t) ∩Υ ̸= ∅,

1 if [s, t) ∩Υ = ∅

where t ≥ s ≥ T and tk ≥ T for y ∈ PC([T,∞), [0,∞)). Let

V1(y)(t) = D0(y)(T, t)
α

m0
+

∫ t

T

D0(y)(s, t)y(s) ds,

where t ≥ T for y ∈ PC([T,∞), [0,∞)). For any y ∈ PC([T,∞), [0,∞)),
we note that v1(y)(k) > 0 for tk ≥ T . So D0(y)(s, t) is well-defined.
We further note that V1(y)(tk) = v1(y)(k). Let us define

Y1 = {y ∈ PC([T,∞), [0,∞)) : 0 ≤ y(t) ≤ γ

and α ≤ V1(y)(t) ≤ β for t ≥ T} .

In view of (A6), we see that α ≤ V1(0)(t) ≤ β for t ≥ 0, which implies
0 ∈ Y1. So Y1 is nonempty. Clearly, with this ordering, Y1 is a complete
lattice. Let

w0(y)(t) =

{
y(g0(t)) if g0(t) > T,
α if g0(t) ≤ T,

and

w1(y)(t) =

{
V1(y)(g1(t)) if g1(t) > T,
0 if g1(t) ≤ T,

for t ≥ rT . In order to use the Knaster-Tarski fixed point theorem,

we need to show that S̃(Y1) ⊆ Y1 and S̃ is increasing in Y1. For
any y ∈ PC([T,∞), [0,∞)), by (A6) and assumption, we note that
D0(y)(s, t) ≤ M0 and I(1)k(y(tk)) ≥ bky(tk) where t ≥ s ≥ T and
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tk ≥ T . It follows that D1(y)(s, t) ≥ B(s, t) where t ≥ s ≥ T for
y ∈ PC([T,∞), [0,∞)). Given y ∈ Y1, it is obvious that

0 ≤ w1(y)(t) ≤ γ and α ≤ w0(y)(t) ≤ β

where t ≥ T . We have

F (t, w1(y)(t), w0(y)(t)) ≤ F (t, γ, β) ≤ Q(t)

where t ≥ T . In view of (A6), we may see that

0 ≤ S̃(y)(t) ≤ 1

r(t)

∫ ∞

t

Q(s)

B(t, s)
ds ≤ γ

and

α ≤ V1(S̃(y))(t) ≤ M0

(
α

m0
+

∫ t

T

S̃(y)(s) ds

)
≤ M0α

m0
+M0

∫ ∞

T

∫ ∞

s

Q(v)

r(s)B(s, v)
dv ds

≤ M0α

m0
+M0ε0 ≤ β

for t ≥ T . So S̃(Y1) ⊆ Y1. Given y1, y2 ∈ Y1 with y1 ≤ y2, by (36)
and (40), we see that D0(y1)(s, t) ≤ D0(y2)(s, t) and D1(y1)(s, t) ≥
D1(y2)(s, t) for t ≥ s ≥ T . So V1(y1) ≤ V1(y2),

0 ≤ w1(y1)(t) ≤ w1(y2)(t) ≤ γ

and
α ≤ w0(y1)(t) ≤ w0(y2)(t) ≤ β,

where t ≥ T, from which it follows that

F (t, w1(y1)(t), w0(y1)(t)) ≤ F (t, w1(y2)(t), w0(y2)(t))

for t ≥ T . So we see that S̃(y1) ≤ S̃(y2), which implies that S̃ is
increasing in Y1. By the Knaster-Tarski fixed point theorem, there

exists z̃1 ∈ Y1 such that S̃(z̃1) = z̃1. Let

x̃1(t) =

{
V1(z̃1)(t) if t > T,
α if rT ≤ t ≤ T.

We assert that x̃1 is an eventually positive solution of system (9)–(10)
such that α ≤ x̃1(t) ≤ β and 0 ≤ x̃′

1(t) ≤ γ eventually. Indeed, let
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T1 > T such that rT1 > T . Clearly, x̃1 ∈ PC(2)([T1,∞), [α, β]) and

0 ≤ x̃′
1(t) = z̃1(t) ≤ γ

for t ≥ T1. Furthermore,

x̃′
1(g1(t)) = z̃1(g1(t)) = w1(z̃1)(t)

where t ≥ T1. Then

(42) x̃′
1(t) = z̃1(t) =

1

r(t)

∫ ∞

t

F (s, x̃′
1(g1(s)), x̃1(g0(s)))

D1(z̃1)(t, s)
ds

for t ≥ T1. It follows that

(r(t)x̃′
1(t))

′
= −F (t, x̃′

1(g1(t)), x̃1(g0(t)))

for almost every t ≥ T1. We assert that

x̃
(i)
1 (t+k ) = I(i)k(x̃

(i)
1 (tk)) for t ≥ T1 and i ∈ N1.

Indeed, we note that

x̃1(t
+
k ) = V1(z̃1)(t

+
k ) =

I(0)k(v1(z̃1)(k))

v1(z̃1)(k)
V1(z̃1)(tk)(43)

= I(0)k(V0(z̃1)(tk)) = I(0)k(x̃1(tk))

for tk ≥ T1. Given tk ≥ T1. If z̃1(tk) = 0, we see that x̃′
1(tk) = z̃1(tk) =

0 and

x̃′
1(t

+
k ) = z̃1(t

+
k ) = Γk (z̃1(tk)) z̃1(tk) = 0 = Ik(x̃

′
1(tk)).

If z̃1(tk) = 0, we see that

x̃′
1(t

+
k ) = z̃1(t

+
k ) =

I(1)k(z̃1(tk))

z̃1(tk)
z̃1(tk) = I(1)k(x̃

′
1(tk)).

So we have verified our assertion. Therefore, x̃1(t) is an eventually
positive solution of system (9)–(10) such that α ≤ x̃1(t) ≤ β and
0 ≤ x̃′

1(t) ≤ γ eventually. Assume that (38) holds. Since x̃1(g0(t)) > 0

for t ≥ T1, by (42), we note that z̃1(t) = S̃(z̃1)(t) > 0 for t ≥ T1. It
follows that x̃′

1(t) = z̃1(t) > 0 for t ≥ T1.

Assume that condition (ii) holds. By induction, we can define

V2(y)(k) = A0(T, t)
β

M0
−
∫ ∞

t

y(s)

A0(y)(T, t)
ds
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where t ≥ T for y ∈ PC([T,∞), [0,∞)). Let us define a set

Y2 = {y ∈ PC([T,∞), [0,∞)) : 0 ≤ y(t) ≤ γ

and α ≤ V2(y)(t) ≤ β for t ≥ T} .

In view of (A6), we see that α ≤ V2(0)(t) ≤ β, which implies 0 ∈ Y2.
So Y2 is nonempty. Clearly, with this ordering, Y2 is a complete lattice.
Let

w0(y)(t) =

{
y(g0(t)) if g0(t) > T,
α if g0(t) ≤ T,

and

w1(y)(t) =

{
V2(y)(gi(t)) if g1(t) > T ,
0 if g1(t) ≤ T,

for t ≥ rT . In order to use the Knaster-Tarski fixed point theorem, we

need to show that S̃(Y2) ⊆ Y2 and S̃ is increasing in Y2. We have

F (t, w1(y)(t), w0(y)(t)) ≤ F (t, γ, α) ≤ Q(t),

0 ≤ S̃(y)(t) ≤ γ,

and

β ≥ V2(S̃(y))(t) ≥
m0β

M0
− 1

m0

∫ ∞

T

∫ ∞

s

Q(v)

r(s)B(s, v)
dv ds ≥ α,

where t ≥ T . So S̃(Y2) ⊆ Y2. Given y1, y2 ∈ Y2 with y1 ≤ y2, by (36)
and (40), we see that D1(y1)(s, t) ≥ D1(y2)(s, t) > 0 for t ≥ s ≥ T . So
V2(y1) ≥ V2(y2),

0 ≤ w1(y1)(t) ≤ w1(y2)(t) ≤ γ

and
α ≤ w0(y2)(t) ≤ w0(y1)(t) ≤ β

where t ≥ T , from which it follows that S̃(y1) ≤ S̃(y2), which implies

that S̃ is increasing in Y2. By the Knaster-Tarski fixed point theorem,

there exists z̃2 ∈ Y2 such that S̃(z̃2) = z̃2. Let

x̃2(t) =

{
V2(z̃2)(t) if t > T,
α if rT ≤ t ≤ T.
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Similarly, we can verify that x̃2(t) is an eventually positive of system
(9)–(10) such that α ≤ x̃2(t) ≤ β and 0 ≤ x̃′

2(t) ≤ γ eventually. Hence,
x′
2(t) > 0 eventually if (38) holds. �

By Theorems 2.1 and 2.3, it is easy to see that the condition (14) or
(24) is a necessary as well as sufficient condition for special impulsive
delay systems. Therefore, our previous results are sharp.

Corollary 2.5. Assume that (A1)–(A7) and (A) hold and I(i)k(µ) =

a(i)kµ for µ ∈ R, i ∈ Nn−1 and k ∈ N. Let α > 0, β > 0 and
γi > 0 for i ∈ Nn−1 such that β > M0/(m0α). Assume that there
exist ρ ∈ PC([0,∞), [0,∞)) with ρ(t) ̸= 0 for almost every t ≥ 0, and
continuous function f defined on Rn such that f(µ1, µ2, . . . , µn) > 0
where (−1)i+1µi ≥ 0 and µn > 0 for i ∈ Nn such that

F (t, µ1, µ2, . . . , µn) = ρ(t)f(µ1, µ2, . . . , µn)

where t ≥ 0 and µi ∈ R for i ∈ Nn.

(i) If n is even and one of the conditions (1-1) or (1-2) in Theo-
rem 2.3 holds, then

(44)

∫ ∞

τ

∫ ∞

s0

∫ ∞

s1

· · ·
∫ ∞

sn−3

∫ ∞

sn−2

ρ(sn−1)

r(sn−2)An−1(sn−2, sn−1)
dsn−1 dsn−2 · · · ds0 < ∞

for some τ ≥ 0 if, and only if, the system (9)–(10) has an
eventually positive solution x(t) such that α ≤ x(t) ≤ β and
0 < (−1)i+1x(i)(t) ≤ γi eventually for i ∈ Nn−1.

(ii) If n is odd and one of the conditions (2-1) or (2-2) in Theorem 2.3
holds, then (44) holds if, and only if, the system (9)–(10) has
an eventually positive solution x(t) such that α ≤ x(t) ≤ β and
0 < (−1)ix(i)(t) ≤ γi eventually for i ∈ Nn−1.

Similarly, by Theorems 2.1 and 2.4, we have the following conclusion.

Corollary 2.6. Assume that n = 2 and that (A1)–(A6) and (36) hold,
bk ≤ I(1)k(µ)/µ ≤ b∗k for µ ̸= 0 and k ∈ N, and δB(t, s) ≥ B∗(t, s)
where t ≥ s ≥ 0 for some δ > 0. Let α > 0, β > 0 and γ > 0 be
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such that β > M0/(m0α). Assume that F (t, µ1, µ2) = ρ(t)f(µ1, µ2) for
t ≥ 0, and µ1, µ2 ∈ R where ρ and f satisfy the following assumptions:

(i) ρ ∈ PC([0,∞), [0,∞)) such that ρ(t) ̸= 0 for almost every t ≥ 0;
(ii) f is a continuous function on R2 such that f(µ1, µ2) > 0 for

µ1 ≥ 0 and µ2 > 0;
(iii) f(µ1, µ2) ≥ f(ν1, ν2) for γ ≥ µ1 ≥ ν1 ≥ 0 and β ≥ µ2 ≥ ν2 ≥ α.

Then

(45)

∫ ∞

τ

∫ ∞

t

ρ(s)

r(t)B(t, s)
ds dt < ∞

for some τ ≥ 0 if, and only if, the system (9)–(10) has an eventually
positive solution x(t) such that α ≤ x(t) ≤ β and 0 < x′(t) ≤ γ
eventually.

As an application, we show that Theorem 2.3 or Theorem 2.4 will
yield Theorem 2.4 in [12] for n = 2. For ease of discussion, we rewrite
Theorem 2.4 in [12] in the case where n = 2 as follows.

Theorem 2.7. ([12, Theorem 2.4]). Assume that n = 2 and (D1)–
(D5) hold. If

(46)

∫ ∞

0

1

r(t)

∫ ∞

t

∑m
i=1 r(s)pi(s)

A(gi(s), s)
ds dt < ∞

where

(47) r(t) = exp

(∫ t

0

a(s) ds

)
,

then system

x′′(t) + a(t)x′(t) +
m∑
i=1

pi(t)x(gi(t)) = 0, t ∈ [0,∞)\Υ,(48)

x(i)(t+k ) = akx
(i)(tk), k ∈ N and i = 0, 1,(49)

has a bounded nonoscillatory solution x(t) such that |x(t)| has positive
lower bound.
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If we multiply (48), where n = 2, by r(t), the equation (1) can be
transformed into

(50) (r(t)x′(t))
′
+

m∑
j=1

r(t)pj(t)x(gj(t)) = 0, t ∈ [0,∞)\Υ.

We see easily that the system (48)–(49) is a special case of system (9)–
(10). Since condition (D3) holds, there exist m > 0 and M > 0 such
that m ≤ A(0, t) ≤ M for t ≥ 0. For any i ∈ Nm, then

(51) 0 <
m

M
≤ A(s, t) =

A(0, t)

A(0, s)
≤ M

m
,

for any t ≥ s ≥ 0. Let α = 1 and β = M2/m2. We may note that
condition (37) (or (24)) is equivalent to the condition

(52)

∫ ∞

τ

1

r(t)

∫ ∞

t

m∑
i=1

r(s)pi(s) ds dt < ∞.

In view of (51), condition (46) is equivalent to condition (52). There-
fore, we can utilize Theorem 2.3 or Theorem 2.4 to yield Theorem 2.4
in [12] in the case n = 2.

A partial converse of Theorem 2.4 in [12] is obtained by means of
Theorem 2.1.

Theorem 2.8. Assume that (D1)–(D5) hold and r(t) is defined by
(47). Let α > 0 and β > 0 be given, and let x(t) be a nonoscillatory
solution of system (48)–(49) such that α ≤ |x(t)| ≤ β and x(t)x′(t) > 0
eventually. Then condition (46) holds.

Proof. Since system (48)–(49) is linear, we can assume without
loss of generality that x(t) is an eventually positive solution. So
α ≤ x(t) ≤ β and x′(t) > 0 eventually. Assume that

∑m
i=1 pi(t) = 0 for

almost every t ≥ 0. Then (46) holds. Assume that
∑m

i=1 pi(t) > 0 for
almost every t ≥ 0. Then

r(t)
m∑
i=1

pi(t)µ ≥ r(t)
m∑
i=1

pi(t)α > 0

for almost every t ≥ 0 and µ ∈ [α, β]. So the condition (12) is satisfied.
By Theorem 2.1, (46) holds. �
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Remark 2.9. By studying the proof of Theorem 2.4 in [12], we may
find that an eventually positive and bounded solution x(t) also satisfies
x(t)x′(t) > 0 eventually. Therefore, our Theorem 2.8 is indeed the
true converse of Theorem 2.4 in [12] stated for the existence of such a
solution.

3. Examples. We illustrate our results by means of several exam-
ples.

Example 3.1. Let {ak}k∈N and {bk}k∈N be positive sequences such
that

(53) ak = bk =

{
0.5 if k is odd,
2 if k is even

for k ∈ N. Assume that the functions g0 and g1 satisfy condition (A2).
Let d1 > 0 and d2 > 0 be given. We consider the second order system

(54)
(
etx′(t)

)′
+

1

et − 1

(
(x′(g1(t)))

d1 + (x(g0(t)))
d2

)
= 0,

(55) x(t+k ) = akx(tk) and x′(t+k ) = bkx
′(tk),

where t ∈ [0,∞)\Υ and k ∈ N. Clearly,

0.5 ≤ A(s, t) ≤ 2 and
1

B(s, t)
≤ 2

for any t ≥ s ≥ 0. We integrate 1/(et − 1) from t to ∞, and then we
get ∫ ∞

t

1

es − 1
ds =

∫ ∞

et

1

u2 − u
du =

[
ln

∣∣∣∣u− 1

u

∣∣∣∣]∞
et

= ln

∣∣∣∣ et

et − 1

∣∣∣∣
for t ≥ 0. Clearly, ln |et/(et−1)| is decreasing for t > 0. For any τ > 0,
we have ∫ ∞

τ

1

es0

∫ ∞

s0

1

B(s0, s1)

1

es1 − 1
ds1 ds0

≤ 2

∫ ∞

τ

1

es0

∫ ∞

s0

1

es1 − 1
ds1 ds0

≤ 2

∫ ∞

τ

1

es0
ln

∣∣∣∣ es0

es0 − 1

∣∣∣∣ ds0
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≤ 2 ln

∣∣∣∣ eτ

eτ − 1

∣∣∣∣ ∫ ∞

τ

1

es
ds

= 2 ln

∣∣∣∣ eτ

eτ − 1

∣∣∣∣e−τ < ∞.

Thus (37) holds. We may take arbitrary α > 0, β > 4α and γ1 > 0.
So condition (i) in Theorem 2.4 holds. By Theorem 2.4, we see that
the system (54)–(55) has an eventually positive solution x(t) such that
α ≤ x(t) ≤ β and 0 < x′(t) ≤ γ1 eventually. If we change the equation
(54) into

(56)
(
etx′(t)

)′
+

1

et − 1

(
(x′(g1(t)))

d
+

x(g0(t))

x2(g0(t)) + 1

)
= 0

where d > 0. We may take α = 1, β = 4 and γ1 = 1. So condition (ii)
in Theorem 2.4 holds. By Theorem 2.4, we see that the system (56)–
(55) has an eventually positive solution x(t) such that 1 ≤ x(t) ≤ 4
and 0 < x′(t) ≤ 1 eventually.

Example 3.2. Let a(i)k > 0 for k ∈ N and i ∈ N2. Assume that gi(t)

satisfies condition (A2) for i ∈ N2 and that there exist M0 > 0 and
mi > 0 for i ∈ N2 such that M0 ≥ A0(s, t) ≥ m0 and Ai(s, t) ≥ mi for
i ∈ N2. We consider the third order system

(57)
(
e2tx′′(t)

)′
+

exp (x′′(g2(t)))

(1 + t)
2 − te−tx′(g1(t))+

e−tx(g0(t))

x2(g0(t)) + 1
= 0,

(58)
x(t+k ) = a(0)kx(tk), x′(t+k ) = a(1)kx

′(tk) and x′′(t+k ) = a(2)kx
′′(tk)

where t ∈ [0,∞)\Υ and k ∈ N. We let r(t) = e2t and

F (t, µ1, µ2, µ3) =
eµ1

(1 + t)
2 − te−tµ2 +

e−tµ3

µ2
3 + 1

for t ≥ 0, and µ1, µ2, µ3 ∈ R. Then∫ ∞

0

∫ ∞

t

1

r(s)

∫ ∞

s

1

A2(s, η)

(
1

(1 + η)2
− ηe−η + e−η

)
dη ds dt

≤
∫ ∞

0

∫ ∞

t

e−2s

∫ ∞

s

(
1

(1 + η)2
− ηe−η + e−η

)
dη ds dt
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=

∫ ∞

0

∫ ∞

t

e−2s

(
1

(1 + s)
− se−s

)
ds dt

≤
∫ ∞

0

∫ ∞

t

(
e−2s

(1 + t)
− se−3s

)
ds dt

=

∫ ∞

0

(
e−2t

2(1 + t)
−
(
t

3
− 1

9

)
e−3t

)
dt < ∞.

We note that the function
µ

µ2 + 1

is increasing on [0, 1] and is decreasing on [1,∞). We can take β > 1
such that β > M0/m0. By Theorem 2.3, the system (57)–(58) has
eventually positive solutions x(t) such that 1 ≤ x(t) ≤ β, x′(t) < 0
and x′′(t) > 0 eventually. If we can choose α, β ∈ (0, 1] such that
β > M0/m0α, by Theorem 2.3, we can also find an eventually positive
solution x̃(t) of system (57)–(58) such that α ≤ x(t) ≤ β eventually.

Example 3.3. Assume that F (µ) = −sgn (µ)eµ for µ ∈ R. Let
r(t) = exp(k/(mL)) for t ≥ 0. We consider the pendulum equation
with impulses

(r(t)θ′(t))
′
+ r(t)

g

L
sin(θ(t)) +

1

mL
r(t)F (θ(t− τ)) = 0,(59)

t ∈ R0\N,

θ(t+k ) = θ(tk), k ∈ N,(60)

θ′(t+k ) = Jk(θ
′(tk)), k ∈ N,(61)

where

Jk(µ) =

{
sgn (µ) {µ(2− µ)} if |µ| ≤ 1
µ if |µ| > 1,

k ∈ N.

We are interested in whether oscillatory motion may disappear (such
a disappearance corresponds to an ill-functioned pendulum). We let
bk = 1, b∗k = 2, Φ1(t) = 0, Φ2(t) = r(t)/(mL),

F1(t, µ1, µ2) =
g

L
r(t) sin(µ2) and F2(t, µ1, µ2) = sgn (µ2)

r(t)

mL
eµ2

for t ≥ 0, µ1, µ2 ∈ R and k ∈ N . Then

F1(t, µ1, µ2) ≥ Φ1(t) and F2(t, µ1, µ2) ≥ Φ2(t)
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for t ≥ 0, µ1 ≥ 0 and π ≥ µ2 > 0. By elementary analysis, we can see
that bk ≤ Jk(µ)/µ ≤ b∗k for µ ̸= 0 and k ∈ N . So B∗(t, s) ≤ 2s+1/2t

for s ≥ t ≥ 0. Then∫ ∞

ε

∫ ∞

t

1

B∗(t, s)
ds dt ≥

∫ ∞

ε

2t−1

∫ ∞

t

2−sds dt

=
1

2 ln 2

∫ ∞

ε

1 dt = ∞,

for any ε ≥ 0. It follows that∫ ∞

ε

∫ ∞

t

Φ1(s) + Φ2(s)

r(t)B∗(t, s)
ds dt =

1

mL

∫ ∞

ε

∫ ∞

t

1

B∗(t, s)
ds dt = ∞

for any ε ≥ 0. By Theorem 2.1, the system (59)–(61) cannot have a
solution θ(t) such that 0 < θ(t) ≤ π and θ′(t) < 0, eventually.

4. Discussion. In this section, we intend to point out the mistakes
of Lemmas 2.1 and 2.2 in [20]. Because the proof of the main theorem
in [20] needs these two results, it is reasonable to doubt the correctness
of the main theorem in [20]. More specifically, in [20], the authors
investigated the system

x′′(t) + r(t)x′(t) + (p(t)− q(t))x(t− τ) = 0, t ∈ [0,∞)\Υ,(62)

x(t+k ) = Ik(x(tk)), k ∈ N,(63)

x′(t+k ) = Jk(x
′(tk)), k ∈ N,(64)

under the following conditions:

(i) r(t), p(t) and q(t) are continuous function on [0,∞) such that
r(t) ≥ 1 and p(t) − q(t) > 0 for t ≥ 0. Furthermore, inft≥0

{Q(t)} > 0 where Q(t) =
∫ t

tj
q(s) ds;

(ii) For all k ∈ N, Ik and Jk are continuous functions on R, and there
exist positive numbers ak, a

∗
k, bk and b∗k such that ak ≤ Ik(µ)/µ ≤

a∗k and bk ≤ Jk(µ)/µ ≤ b∗k for µ ̸= 0; and
(iii)

lim
n→∞

n−1∑
m=1

n−1∏
k=m

m−1∏
l=0

a∗kbl

∫ tm

tm−1

exp

(∫ v

t0

r(s) ds

)
dv = ∞.
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We note that there is an obvious mistake in assumption (i). By the
definition of the function Q, it is impossible that inft≥0{Q(t)} > 0.
There are two more mistakes in Lemma 2.1 and Lemma 2.2 in [20].
For ease of discussion, we list Lemma 2.1 and Lemma 2.2 in [20] as
follows.

Lemma 2.1 [20]. Assume that x(t) is a solution of system (62)–
(64). Suppose that there exists T ≥ 0 such that x(t) > 0 for t ≥ T .
If (i), (ii) and (iii) are satisfied, then x′(tk) > 0 and x′(t) > 0 where
t ∈ [tk, tk+1) and k ∈ N.

Lemma 2.2 [20]. Let x(t) be a solution of system (62)–(64), b0 = 1
and bk ≤ 1 for k ∈ N. Assume that (i), (ii) and (iii) hold, and that for
all k ∈ N, x(t) > 0, and

r(t) +

∫ t

tk

q(s) ds+

∫ t

tk

r′(s) ds < 1

for t ∈ (tk, tk+1]. Then Z(t) > 0 and Z(t+k ) ≤ bkZ(tk) for k ∈ N where

Z(t) = x′(t)−
∫ t

0

q(s)x(s− τ) ds+

∫ t

0

r(s)x′(s) ds.

We give a counterexample to illustrate that Lemma 2.1 and Lemma
2.2 in [20] are incorrect. Let tk = k/10 for k ∈ N. Let r(t) = 0.8,
τ = 1, Ik(µ) = Jk(µ) = µ, p(t) = δ + 1 and q(t) = 1 for t ≥ t0, where
δ = 0.15e−0.5. So system (62)–(64) is:

x′′(t) + 0.8x′(t) + δx(t− 1) = 0, t ∈ [0,∞)\Υ,(65)

x(t+k ) = x(tk), k ∈ N,(66)

x′(t+k ) = x′(tk), k ∈ N.(67)

Then
p(t)− q(t) = δ ≡ 0.15e−0.5 > 0.

Let

ak = a∗k = bk = b∗k = 1 for all k ∈ N,

p(t) = δ + 1 and q(t) = 1 for t ≥ t0.
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Clearly, conditions (i), (ii) and (iii) hold. We note that x(t) = e−0.5t is
a positive solution of (65) and x′(t) < 0, eventually. So Lemma 2.1 in
[20] is not true. For any k ∈ N,

r(t) +

∫ t

tk

q(s) ds+

∫ t

tk

r′(s)ds = 0.8 + t− tk ≤ 0.9 < 1,

tk < t ≤ tk+1.

So all hypotheses of Lemma 2.2 in [20] hold. By definition of Z(t), we
see that

Z(t) = x′(t)−
∫ t

0

q(s)x(s− 1) ds+

∫ t

0

r(s)x′(s) ds

= −0.5e−0.5t −
∫ t

0

e−0.5(s−1)ds− 0.4

∫ t

0

e−0.5sds

= −0.5e−0.5t + 2e0.5
(
e−0.5t − 1

)
+ 0.8

(
e−0.5t − 1

)
=

(
2e0.5 + 0.3

)
e−0.5t − 0.8− 2e0.5.

Then Z(t) < 0 for all sufficiently large t. So Lemma 2.2 in [20] is not
true either.

However, we may utilize our Theorems 2.1 and 2.4 to obtain os-
cillatory results for the same system (62)–(64). We assume that

R(t) = exp(
∫ t

0
r(s) ds) for t ≥ 0. We multiply (62) by R(t), and then

the system (62)–(64) becomes

(R(t)x′(t))
′
+R(t) (p(t)− q(t))x(t− τ) = 0, t ∈ [0,∞)\Υ,(68)

x(t+k ) = Ik(x(tk)), k ∈ N,(69)

x′(t+k ) = Jk(x
′(tk)), k ∈ N.(70)

Assume that there exists m0 > 0 and M0 > 0 such that m0 ≤ A(s, t) ≤
M0 for t ≥ s ≥ 0.

(i) Assume that

(71)
Ik(µ)

µ
≤ Ik(ν)

ν
and

Jk(µ)

µ
≥ Jk(ν)

ν
if ν ≥ µ > 0

for k ∈ N. By Theorem 2.4, a sufficient condition such that
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system (68)–(70) has an eventually positive solution is:∫ ∞

τ

1

R(t)

∫ ∞

t

R(s) (p(s)− q(s))

B(t, s)
ds dt < ∞,

for some τ ≥ 0.
(ii) Assume that system (68)–(70) has a bounded and nonoscillatory

solution x(t) with x(t)x′(t) > 0 eventually. Since system (68)–(70)
is linear, we can assume without loss of generality that x(t) > 0
and x′(t) > 0 for t ≥ T and some T > 0. So we have

x(t) ≥ A(T, t)x(T ) ≥ m0x(T ) > 0 where t ≥ T.

By Theorem 2.1,

(72)

∫ ∞

τ

∫ ∞

t

R(s) (p(s)− q(s))

R(t)B∗(t, s)
ds dt < ∞.

Furthermore, we note that condition (72) implies the condition∫ ∞

τ

∫ ∞

t

p(s)− q(s)

B∗(t, s)
ds dt < ∞

because R′(t) = r(t)R(t) > 0 for t ≥ 0.
(iii) By the previous discussions, we may see that if there exists δ > 0

such that δB(t, s) ≥ B∗(t, s) for t ≥ s ≥ 0, then system (68)–
(70) has a bounded and eventually positive solution x(t) with
x(t)x′(t) > 0 eventually if, and only if, (72) holds. Furthermore,
if we replace condition (71) by

Ik(µ)

µ
≤ Ik(ν)

ν

and

Jk(µ)

µ
≥ Jk(ν)

ν
if |ν| ≥ |µ| > 0 and µν > 0

for k ∈ N, then the system (68)–(70) has a bounded and nonoscil-
latory solution x(t) with x(t)x′(t) > 0 eventually if, and only if,
(72) holds.
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