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RIGIDITY OF HYPERSPACES

RODRIGO HERNÁNDEZ-GUTIÉRREZ, ALEJANDRO ILLANES

AND VERÓNICA MARTÍNEZ-DE-LA-VEGA

ABSTRACT. Given a metric continuum X, we consider
the following hyperspaces of X: 2X , Cn(X) and Fn(X) (n ∈
N). Let F1(X) = {{x} : x ∈ X}. A hyperspace K(X) of X
is said to be rigid, provided that for every homeomorphism
h : K(X) → K(X), we have h(F1(X)) = F1(X). In this
paper, we study conditions under which a continuum X
has a rigid hyperspace Cn(X). Among others, we consider
families of continua, such as dendroids, Peano continua,
hereditarily indecomposable continua and smooth fans.

1. Introduction. A continuum is a nondegenerate compact con-
nected metric space. Given a continuum X, with metric d, we consider
the following hyperspaces of X.

2X = {A ⊂ X : A is nonempty and closed in X},
Cn(X) = {A ∈ 2X : A has at most n components},
Fn(X) = {A ∈ 2X : A has at most n points},
C(X) = C1(X).

All hyperspaces are considered with the Hausdorff metric H [19,
Remark 0.4] defined as

H(A,B) = max{max{d(a,B) : a ∈ A},max{d(b, A) : b ∈ B}},

where d(a,B) = min{d(a, b) : b ∈ B}.
The hyperspace Fn(X) is known as the nth symmetric product of

X. The hyperspace F1(X) is an isometric copy of X embedded in each

2010 AMS Mathematics subject classification. Primary 54B20, Secondary
54F15.

Keywords and phrases. Cantor fan, continuum, dendroid, fan, hyperspace, inde-
composability, Lelek fan, Peano continuum, rigidity, smoothness, symmetric prod-
uct, unique hyperspace, wire.

Received by the editors on February 28, 2012, and in revised form on January 1,
2013.
DOI:10.1216/RMJ-2015-45-1-213 Copyright c⃝2015 Rocky Mountain Mathematics Consortium

213
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one of the hyperspaces. We extend the definition of Cn(X) by defining
C0(X) = ∅.

A hyperspace K(X) ∈ {2X , Cn(X), Fn(X)} is said to be rigid
provided that, for each homeomorphism h : K(X) → K(X), we
have h(F1(X)) = F1(X). The continuum X is said to have unique
hyperspace K(X) provided that the following implication holds: if Y
is a continuum such that K(X) is homeomorphic to K(Y ), then X is
homeomorphic to Y .

Uniqueness of hyperspaces has been widely studied (see [3, 8, 9,
10, 11, 15] for recent references). The paper [16] provides a detailed
survey of what is known about this topic. In the study of hyperspaces, a
useful technique is to find a topological property that characterizes the
elements of F1(X) in the hyperspace K(X). When it is possible to find
such a characterization, the hyperspace K(X) is rigid. This technique
has been used in studying uniqueness of hyperspaces, so both topics
are closely related. Moreover, the topic of this paper leads us to new
results on unique hyperspaces.

In this paper, we study rigidity of the hyperspaces Cn(X). In [10],
rigidity of the symmetric products Fn(X) is studied. In [8], rigidity
of hyperspaces Cn(X) for indecomposable continua such that all their
proper nondegenerate subcontinua are arcs is considered.

Among others, we consider families of continua, such as dendroids,
Peano continua, hereditarily indecomposable continua and smooth fans.

2. Definitions and conventions. A map is a continuous function.
Suppose that d is a metric for X. Given ε > 0, p ∈ X and A ∈ 2X ,
let B(ε, p) be the open ε-ball around p in X, N(ε,A) = {p ∈ X:
there exists a ∈ A such that d(p, a) < ε} and BH(ε,A) = {E ∈ 2X :
H(A,E) < ε} (we write BX(ε, p) and NX(ε,A) when the space X
needs to be mentioned). A simple n-od is a finite graph G that is
the union of n arcs emanating from a single point, v, and otherwise
disjoint from one another. The point v is called the vertex of G.
Simple 3-ods are called simple triods. Given subsets A1, . . . , Am of
X, let ⟨A1, . . . , Am⟩ = {B ∈ 2X : B ∩ Ai ̸= ∅ for each i ∈ {1, . . . ,m}
and B ⊂ A1 ∪ . . . ∪Am}.

We denote by S1 the unit circle in the Euclidean plane. A free arc
in the continuum X is an arc α with end points a and b such that
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α− {a, b} is open in X. A tail in a continuum X is an arc α with end
points a and b such that α− {a} is open in X. An end point in X is a
point p ∈ X such that p is an end point of every arc containing it.

Given a continuum X, let

G(X) = {p∈X : p has a neighborhood M in X

such that M is a finite graph},
and P(X) = X − G(X).

The continuum X is said to be almost meshed [9] provided that the
set G(X) is dense in X.

Proceeding as in [4, Lemma 2.1] and using Lemma 1.48 of [19], the
following lemma can be proved.

Lemma 2.1. Let X be a continuum, and let A be a connected subset
of 2X such that A ∩ Cn(X) ̸= ∅. Let A0 =

∪
{A : A ∈ A}. Then

(a) A0 has at most n components,
(b) if A is closed in 2X , then A0 ∈ Cn(X),
(c) for each A ∈ A, each component of A0 intersects A.

The continuum X is said to be indecomposable, provided that X
cannot be put as the union of two of its proper subcontinua. And X
is called hereditarily indecomposable, provided that each one of its sub-
continua is indecomposable. The simplest indecomposable continuum
is the so-called Buckethandle continuum which is described in [20].
The reader is referred to [20] where more examples of indecomposable
and hereditarily indecomposable continua can be found.

A wire in a continuum X is a subset α of X such that α is
homeomorphic to one of the spaces (0, 1), [0, 1), [0, 1] or S1 and α
is a component of an open subset of X. By [19, Theorem 20.3], if a
wire α in X is compact, then α = X. So, if a wire is homeomorphic
to [0, 1] or S1, then X is an arc or a simple closed curve. Given a
continuum X, let

W (X) =
∪

{α ⊂ X : α is a wire in X}.
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The continuum X is said to be wired provided that W (X) is dense
in X.

Notice that, if α is a free arc of a continuum X and p, q are the end
points of α, then α−{p, q} is a wire in X. Thus, a continuum for which
the union of its free arcs is dense is a wired continuum. Therefore, the
class of wired continua includes finite graphs, dendrites with a closed set
of end points, almost meshed continua [9], compactifications of the ray
[0,∞), compactifications of the real line and indecomposable continua
whose nondegenerate proper subcontinua are arcs, which will be called
indecomposable arc continua (see Lemma 2.2).

Lemma 2.2. Let X be an indecomposable arc continuum. Then X is
a wired continuum.

Proof. Let p ∈ X. Let U be an open subset of X such that
clX(U) ̸= X. Let D be the component of U containing p. By [19,
Theorem 20.3], clX(D) ∩ (X − U) ̸= ∅. Thus, D is not compact and
clX(D) is a proper nondegenerate subcontinuum of X. Hence, clX(D)
is an arc and D is a non compact connected subset of D. This implies
that D is homeomorphic to (0, 1) or [0, 1). Hence, D is a wire. �

3. Wired continua. In this section, we present some technical
results that will be used later for proving that some hyperspaces are
rigid.

Given a point p in a continuum X, let dimp[X] denote the inductive
dimension of the continuum X at the point p [20, Definition 13.53].
An m-od in a continuum X is a subcontinuum B of X for which there
exists A ∈ C(B) such that B − A has at least m components. By
[17, Theorem 70.1], a continuum X contains an m-od if and only if
C(X) contains an m-cell. Given A,B ∈ 2X such that A ( B, an order
arc from A to B is a continuous function α : [0, 1] → C(X) such that
α(0) = A, α(1) = B and α(s) ( α(t) if 0 ≤ s < t ≤ 1. It is known [19,
Theorem 1.25] that there exists an order arc from A to B if and only
if A ( B and each component of B intersects A.

Given a continuum X and n ∈ N, let

Wn(X) = {A ∈ Cn(X) : each component of A is contained in a

wire of X};
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and

Zn(X) = {A ∈ Wn(X) : there is a neighborhood M of A in Cn(X)

such that the component C of M that contains A

is a 2n-cell}

A continuum X is said to be n-wired preserving provided that, for each
homeomorphism h : Cn(X) → Cn(X), h(Wn(X)) = Wn(X).

Lemma 3.1. If X is a Peano continuum and n ≥ 1, then

Wn(X) = {A ∈ Cn(X) : dimA[Cn(X)] = 2n}.

Proof. By [18, Theorem 2.4], if X is either an arc or a simple closed
curve, then Wn(X) = Cn(X) = {A ∈ Cn(X) : dimA[Cn(X)] = 2n}.
Thus, we may assume that X is neither an arc nor a simple closed
curve. Let A ∈ Wn(X) and let C be a component of A. Then there
exists a wire W of X such that C ⊂ W . If W is a compact wire, by
[19, Theorem 20.3], W = X and X is an arc or a simple closed curve,
which is contrary to our assumption. Thus, W is homeomorphic either
to (0, 1) or [0, 1) and W is a component of an open set U of X. Since
X is a Peano continuum, W is open in X. Let B be an arc such that
C ⊂ intX(B) ⊂ B ⊂ W . Thus, each point of C has a neighborhood
in X that is an arc. Therefore, each point of A has a neighborhood in
X that is an arc. By [9, Theorem 4], dimA[Cn(X)] is finite, and there
exists a finite graph D contained in X such that A ⊂ intX(D). Thus,
Cn(D) is a neighborhood of A in Cn(X). Since each point of A has a
neighborhood in X that is an arc, A does not have ramification points
of D, so by [18, Theorem 2.4] 2n = dimA[Cn(D)] = dimA[Cn(X)].

Now, take A ∈ Cn(X) such that dimA[Cn(X)] = 2n. By [9,
Theorem 4], there exists a finite graph D contained in X such that
A ⊂ intX(D). Let R(D) be the set of ramification points of D. Notice
that dimA[Cn(D)] = dimA[Cn(X)] = 2n. Thus, A ∩R(D) = ∅ by [18,
Theorem 2.4]. Let C be a component of A. Then C is contained in an
edge J of D. Let W be the component of intX(D) ∩ (X −R(D)) that
contains C. Then W is a connected subset of J . Since J is either an
arc or a simple closed curve, W is a wire. Therefore, A ∈ Wn(X). �
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Lemma 3.2. Let X be a continuum, and let

V = {A ∈ Cn(X) : there exists a neighborhood M of A in Cn(X)

such that if C is the component of M containing A,

then dim[C] = 2n}.

Then

(a) Wn(X) ⊂ V,
(b) if X is a dendroid, then Wn(X) = V.

Proof. By [18, Theorem 2.4], if X is either an arc or a simple closed
curve, then Wn(X) = Cn(X) = V, and we are done. Thus, suppose
that X is neither an arc nor a simple closed curve.

(a) Let A ∈ Wn(X). Let A1, . . . , Am be the components of A, where
m ≤ n. For each i ∈ {1, . . . ,m}, let Ui be an open subset of X such
that the component Wi of Ui containing Ai is homeomorphic either
to (0, 1) or [0, 1). Let V1, . . . , Vm be open subsets of X such that
clX(V1), . . . , clX(Vm) are pairwise disjoint and, for each i ∈ {1, . . . ,m},
Ai ⊂ Vi ⊂ Ui. Let Zi be the component of Vi containing Ai. Then Zi

is a nondegenerate connected subset of Wi. Thus, Zi is homeomorphic
either to (0, 1) or [0, 1). Let M = ⟨V1, . . . , Vm⟩ ∩ Cn(X), and let D
be the component of M containing A. Then M is a neighborhood
of A in Cn(X). We claim that D = ⟨Z1, . . . , Zm⟩ ∩ Cn(X). Let
C = ⟨Z1, . . . , Zm⟩ ∩ Cn(X). Note that A ∈ C. For each i ∈ {1, . . . ,m},
fix a point zi ∈ Zi. Let B ∈ C. For each i ∈ {1, . . . ,m}, (B∩Zi)∪{zi} =
(B ∩ clX(Vi)) ∪ {zi} is a compact subset of Zi, so there exists an
arc Li ⊂ Zi such that (B ∩ Zi) ∪ {zi} ⊂ Li. Let α be an order
arc from B to L = L1 ∪ · · · ∪ Lm, and let β be an order arc from
{z1, . . . , zm} to L. Then Imα∪ Imβ defines a path in C joining B and
{z1, . . . , zm}. This proves that C is a connected subset of M. Hence,
C ⊂ D. Let D =

∪
{E : E ∈ D}. Since A ∈ D, by Lemma 2.1, D has

at most m components, and each one of them intersects A. For each
i ∈ {1, . . . ,m}, let Di be the component of D containing Ai. Since
D ⊂ M, D ⊂ V1 ∪ · · · ∪ Vm, so Ai ⊂ Di ⊂ Vi. Thus, Di ⊂ Zi. This
proves that D ∈ C. Given E ∈ D, E ⊂ D and each component of D
intersects E. Thus, E ∈ ⟨Z1, . . . , Zm⟩ ∩ Cn(X) = C. We have shown
that D = ⟨Z1, . . . , Zm⟩ ∩ Cn(X).
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Let J1, . . . , Jm be subintervals of [0, 1] such that cl[0,1](J1), . . .,
cl[0,1](Jm) are pairwise disjoint and, for each i ∈ {1, . . . ,m}, there
exists a homeomorphism fi : Zi → Ji. Let f : D → ⟨J1, . . . , Jm⟩ ∩
Cn([0, 1]) be given by f(B) = f1(B ∩ Z1) ∪ · · · ∪ fm(B ∩ Zm). It
is easy to show that f is a homeomorphism. Thus, dimD[Cn(X)] =
dim⟨J1,...,Jm⟩∩Cn([0,1])[Cn([0, 1])]. By [18, Theorem 2.4], the dimension
of this set is equal to 2n. Hence, dim[D] = 2n. This ends the proof of
(a).

(b) Suppose that X is a dendroid. Let A ∈ Cn(X), and let M
be a neighborhood of A in Cn(X) such that, if C is the component
of M containing A, then dim[C] = 2n. Let A1, . . . , Am be the
components of A. Let ε > 0 be such that BH(2ε,A) ∩ Cn(X) ⊂ M
and the sets N(2ε,A1), . . . , N(2ε,Am) are pairwise disjoint. For each
i ∈ {1, . . . ,m}, let Di be the component of clX(N(ε,Ai)) containing
Ai. Let D = D1 ∪ · · · ∪ Dm ∈ Cn(X). Notice that H(A,D) < 2ε.
Let α : [0, 1] → Cn(X) be an order arc from A to D. Then, for each
t ∈ [0, 1], H(α(t), A) ≤ H(D,A) < 2ε. This implies that D ∈ C.

We claim that D does not contain simple triods. Suppose, to the
contrary, that there exists a simple triod T in D. Let v be the vertex
of T . For each i ∈ {1, . . . ,m}, Di is a dendroid. Then Di is a
limit of its subtrees. Thus, there exists a tree Si ⊂ Di such that,
if S = S1 ∪ . . . ∪ Sm, then T ⊂ S and H(D,S) < 2ε. Using an
order arc from S to D, we conclude that S ∈ C. Since X is arcwise
connected, we can join the different components of S by arcs and obtain
a finite graph G ⊂ X such that S ⊂ G. Since Cn(G) is locally
connected, there exists a compact connected neighborhood N of S
in Cn(G) such that N ⊂ M. Thus, N ⊂ C. By [18, Theorem 2.4],
2n < dimS [Cn(G)] = dimS [N ] ≤ dimS [C] ≤ dim[C]. This contradicts
the choice of M and proves that D does not contain a simple triod.

Using that each arc in a dendroid is contained in a maximal one
with respect to the inclusion (this follows from [21, Theorem 3.3]), it
is possible to prove that a dendroid without simple triods is an arc.
Thus, D1, . . . , Dm are arcs. For each i ∈ {1, . . . ,m}, let Wi be the
component of N(ε,Ai) containing Ai. Then Wi is a nondegenerate
connected subset of Di. Thus, Wi is a wire. Hence, A ∈ Wn(X). This
completes the proof of (b). �

Lemmas 3.1 and 3.2 give topological characterizations of Wn(X)
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for the cases when X is a Peano continuum or a dendroid. As a
consequence, we have the following theorem.

Theorem 3.3. Continua that are in one of the following classes are
n-wired preserving continua for every n ∈ N.

(a) Peano continua,
(b) dendroids.

The following example shows that arcwise connectedness is not
enough to conclude that a continuum is 1-wired preserving.

Example 3.4. Let X be the Warzaw circle.

.We will see that X is not a 1-wired preserving continuum. Let L be
the limit arc of X. By [17, Theorem 7.4], C(X) is homeomorphic to
Cone (X) (the topological cone over X). Let h : C(X) → Cone (X) be
a homeomorphism. Let M be a subcontinuum of X such that L (M ,
and let N be an arc in X such that L ∩ N = ∅. It is easy to see
that L and M have neighborhoods L and M, respectively, in C(X)
such that L and M are 2-cells and L (respectively, M) belongs to the
manifold interior of L (respectively, M). Clearly, for any two points p, q
in Cone (X) that have neighborhoods with these characteristics (2-cells
having the point in its manifold interior) there exists a homeomorphism
h : Cone (X) → Cone (X) such that h(p) = q. Hence, there exists a
homeomorphism g : C(X) → C(X) such that g(M) = N . However,
M /∈ W1(X) and L ∈ W1(X). This proves that X is not a 1-wired
preserving continuum. �

We finish this section by generalizing results that have been used in
studying uniqueness of hyperspaces in other papers (see [9] for the more
recent development). Here we consider components of neighborhoods
instead of neighborhoods, in this way, we can use our results for more
general continua.

Theorem 3.5. Let X be a continuum. Then

(a) Wn(X) ∩ (Cn(X)− Cn−1(X)) ⊂ Zn(X),
(b) if n ≥ 3, then Wn(X) ∩ (Cn(X)− Cn−1(X)) = Zn(X).
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Proof. (a) In the case that n = 1 and X is either an arc or a simple
closed curve, C(X) is a 2-cell, so Wn(X) = C(X) = Zn(X). Thus,
we assume that n > 1 or X is neither an arc nor a simple closed
curve. Take A ∈ Wn(X)∩ (Cn(X)−Cn−1(X)). Let A1, . . . , An be the
components of A. For each i ∈ {1, . . . , n}, let Wi be an open subset of
X such that Ai ⊂ Wi, and the component Ci of Wi containing Ai is
homeomorphic either to (0, 1) or [0, 1). For each i ∈ {1, . . . , n}, let Vi
be an open subset of X such that Ai ⊂ Vi ⊂ clX(Vi) ⊂Wi and the sets
clX(V1), . . . , clX(Vn) are pairwise disjoint. Let Di be the component of
clX(Vi) containing Ai. ThenDi is a nondegenerate subcontinuum of Ci.
Hence, Di is an arc. Let M =⟨clX(V1), . . . , clX(Vn)⟩ ∩Cn(X) and C =
⟨D1, . . . , Dn⟩∩Cn(X). Then M is a neighborhood of A in Cn(X) and C
is compact and connected. In fact, the map φ : C(D1)× . . .×C(Dn) →
C given by φ(B1, . . . , Bn) = B1∪ . . .∪Bn is a homeomorphism. Hence,
C is a 2n-cell [17, Example 5.1]. We claim that C is a component of
M. Since C is connected, we can take the component D of M that
contains A. Then C ⊂ D. Let E =

∪
{F : F ∈ D}. By Lemma 2.1,

E ∈ Cn(X). Notice that A ⊂ E ⊂ clX(V1)∪· · ·∪clX(Vn). This implies
that E has exactly n components, in fact, the components of E are
E1 = E∩ clX(V1), . . . , En = E∩ clX(Vn). Since A1 ⊂ E1, . . . , An ⊂ En

and D1 ∪ · · · ∪Dn ∈ C ⊂ D, we have E1 = D1, . . . , En = Dn. Hence,
for each G ∈ D, G ⊂ E and, by Lemma 2.1, each Ei intersects G, so
G ∈ M and G ∩ clX(V1) ⊂ D1, . . . , G ∩ clX(Vn) ⊂ Dn. This implies
that G ∈ C. We have shown that C = D. Therefore, A ∈ Zn(X).

(b) Let A ∈ Zn(X), and let M be a neighborhood of A in Cn(X)
such that the component C of M that contains A is a 2n-cell. Let
A1, . . . , Am be the components of A. For each i ∈ {1, . . . ,m}, let Wi

be an open subset of X such that Ai ⊂ Wi, ⟨Wi, . . . ,Wm⟩ ⊂ M and
the component Ci of Wi containing Ai is homeomorphic either to (0, 1)
or [0, 1) (or [0, 1] or S1 in the case that X is either an arc or a simple
closed curve). Let ε > 0 be such that BH(3ε,A)∩Cn(X) ⊂ M, the sets
N(3ε,A1), . . . , N(3ε,Am) are pairwise disjoint and N(3ε,Ai) ⊂Wi for
each i ∈ {1, . . . ,m}.

We need to show that m = n. Suppose to the contrary that m < n.
In the case that m < n − 1, if X is neither an arc nor a simple closed
curve, since A1 ̸= C1, there exist subarcs Am−1, . . . , An−1 of C1 such
that A1, . . . , An−1 are pairwise disjoint. Let B = A1∪· · ·∪An−1. Then
B ∈ M and B ∈ C. If A = X and X is either an arc or a simple closed
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curve, then it is easy to find pairwise disjoint subarcs A1, . . . , An−1 such
that the set B = A1 ∪ · · · ∪ An−1 ∈ M and B ∈ C. In the case that
m = n − 1, define B = A. In any case, changing A for B if necessary,
we can assume that A has exactly n−1 components (and then A ̸= X).

For each i ∈ {1, . . . , n−1}, letDi be the component of clX(N(2ε,Ai))
that containsAi. SinceDi ⊂ Ci,Di is an arc. Let E = ⟨D1, . . . , Dn−1⟩∩
Cn(X). For each i ∈ {1, . . . , n − 1}, let φi : C(D1) × . . . × C(Di−1) ×
C2(Di)×C(Di+1)×. . .×C(Dn−1) → E be given by φi(E1, . . . , En−1) =
E1 ∪ · · · ∪ En−1. Since C2([0, 1]) is a 4-cell [14, Lemma 2.2], C([0, 1])
is a 2-cell and φi is an embedding, Imφi is a 2n-cell. Notice that E =
Imφ1∪. . .∪Imφn−1 and Imφi∩Imφj = ⟨D1, . . . , Dn−1⟩∩Cn−1(X), if
i ̸= j. Let E0 = ⟨D1, . . . , Dn−1⟩ ∩Cn−1(X). Then E0 is a 2(n− 1)-cell.

Let F be the component of clCn(X)(B
H(ε,A) ∩ Cn(X)) ∩ C such

that A ∈ F . Let F =
∪
{G : G ∈ F}. Since A ∈ F , F has at

most n − 1 components (Lemma 1) and F ∩ N(2ε,Ai) ̸= ∅ for each
i ∈ {1, . . . , n − 1}. This implies that F has exactly n − 1 components
and they are F1 = F ∩N(2ε,A1), . . . , Fn−1 = F ∩N(2ε,An−1). Thus,
F1 ⊂ D1, . . . , Fn−1 ⊂ Dn−1. Given G ∈ F , H(G,A) < 2ε. This
implies that G ∩ N(2ε,Ai) ̸= ∅ for each i ∈ {1, . . . , n − 1}. Since
G ⊂ F ⊂ D1 ∪ · · · ∪Dn−1 and by Lemma 2.1 (c), G ∩Di ̸= ∅ for each
i ∈ {1, . . . , n− 1}, so we conclude that G ∈ E .

We have shown that F ⊂ E . Since F is a neighborhood of A in the
2n-cell C, there exists a 2n-cell K such that A ∈ intC(K) ⊂ K ⊂ F .
Let δ > 0 be such that δ < ε and BH(δ,A) ∩ Cn(X) ∩ C ⊂ K.
Since A1 ⊂ C1 and A ̸= X, there exists an arc α1 in C1 such that
diameter(α1) < δ and α1 ∩A1 is a one-point set. Then L = {A ∪ {x} :
x ∈ α1} is a connected subset of M containing A. Thus, L ⊂ C and
L ⊂ BH(δ,A)∩Cn(X). Hence, L ⊂ K. Fix a point p1 ∈ α1 −A. Then
A ∪ {p1} ∈ Imφ1 − E0. This proves that K ∩ Imφ1 − E0 is nonempty.
Similarly, K∩ Imφ2 − E0 is nonempty (here, we are using that n ≥ 3).
Since K ⊂ E = Imφ1 ∪ · · · ∪ Imφn−1 and Imφi ∩ Imφj = E0, if i ̸= j,
we have that K ∩ Imφ1 − E0 and K ∩ Imφ2 − E0 are separated by
K ∩ E0. This contradicts [12, Theorem IV 4] since K is a 2n-cell and
dim[K ∩ E0] ≤ 2n− 2. Therefore, m = n. This completes the proof of
the theorem. �
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Theorem 3.6. Let X be a continuum, and let n ≥ 3. Then

W1(X) = {A ∈ Wn(X)−Zn(X) : A has a basis B of neighborhoods

of A in Cn(X) such that for each U ∈ B, if C is the

component of U that contains A, then C ∩ Zn(X)

is connected}.

Proof. By Theorem 3.5, Zn(X) = Wn(X) ∩ (Cn(X)− Cn−1(X)).

(⊂). Let A ∈ W1(X). If A = X, then X is either an arc
or a simple closed curve. Thus, Wn(X) = Cn(X) and Zn(X) =
Cn(X) − Cn−1(X). Hence, A ∈ Wn(X) − Zn(X) and since A = X
is homeomorphic to [0, 1] or S1, it is easy to show that, for each
ε > 0, BH(ε,A) ∩ Cn(X) is a connected neighborhood of A with
the property that BH(ε,A) ∩ Cn(X) ∩ Zn(X) is connected. So, we
may assume that A ̸= X. Then A is connected and there exists an
open set W of X such that the component C of W containing A
is homeomorphic to one of the spaces (0, 1) or [0, 1). By Theorem
3.5 (b), A ∈ Wn(X) − Zn(X). Let ε > 0 be such that N(ε,A) ⊂ W .
Let B = {BH(δ,A) ∩ Cn(X) : 0 < δ < ε}. Then B is a basis of
neighborhoods of A in Cn(X). Let δ > 0 be such that δ < ε, and let
U = BH(δ,A) ∩ Cn(X). Let D be the component of U that contains
A. Let T =

∪
{E : E ∈ D}. By Lemma 1, T is a connected subset of

X. Since A ⊂ T ⊂ N(ε,A), T ⊂ C. Hence, T is a connected subset of
C ∩N(δ,A). Hence, T is homeomorphic to an interval in the real line.

Given K,L ∈ D ∩ Zn(X), we have K ∪ L ⊂ T . Let J be an
arc such that K ∪ L ⊂ J ⊂ T . Then J ⊂ C ∩ N(δ,A). Since
H(A,K) < δ, H(A,L) < δ and J ⊂ N(δ,A), every element Q ∈ Cn(X)
such that K ⊂ Q ⊂ J (or L ⊂ Q ⊂ J) has the property that
H(Q,A) < δ. In particular, H(J,A) < δ. Let η > 0 be such that
η < δ − H(J,A). Then BH(η, J) ∩ Cn(X) ⊂ BH(δ,A) ∩ Cn(X). Let
φ : [0, 1] → J be a homeomorphism. Then there exists ξ > 0 such that
if W ∈ Cn([0, 1]) − Cn−1([0, 1]) and λ([0, 1] −W ) < ξ, then φ(W ) ∈
BH(η, J)∩Cn(X), where λ is the Lebesgue measure in [0, 1]. It is easy
to show that R = {R ∈ Cn([0, 1]) − Cn−1([0, 1]) : λ([0, 1] − R) ≤ ξ}
is pathwise connected. Now, we can describe a path joining K and L
in D ∩ Zn(X). Recall that Zn(X) = Wn(X) ∩ (Cn(X) − Cn−1(X)).
Since K and L have exactly n components, φ−1(K) and φ−1(L) have
exactly n components. Then we can give paths α1, α2 : [0, 1] →
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Cn([0, 1]) − Cn−1([0, 1]) such that α1(0) = K, α2(0) = L, for each
i ∈ {1, 2}, λ[0, 1]− αi(1) ≤ ξ; and if 0 ≤ s ≤ t ≤ 1, then αi(s) ⊂ αi(t).
Let α3 : [0, 1] → Cn([0, 1])− Cn−1([0, 1]) be a path in R joining α1(1)
and α2(1). Then, combining the paths φ ◦ α1, φ ◦ α2 and φ ◦ α3, we
obtain a path joining K and L in D ∩ Zn(X).

(⊃). Now, take A ∈ Wn(X)− Zn(X) such that there exists a basis
B of neighborhoods of A in Cn(X) such that, for each U ∈ B, if C is
the component of U that contains A, then C ∩ Zn(X) is connected.
In order to prove that A ∈ W1(X), we only need to show that
A is connected. Suppose to the contrary that A has at least two
components. Let A = A1 ∪ · · · ∪ Am, where the sets A1, . . . , Am

are the different components of A. Since A /∈ Zn(X), by Theorem
7 (b), 1 < m < n. Since A ∈ Wn(X), for each i ∈ {1, . . . ,m}
there exists an open subset Ui of X such that Ai ⊂ Ui and the
component Ci of Ui containing Ai is homeomorphic to (0, 1) or [0, 1).
Since A is not connected, A ̸= X. So we may assume that Ui ̸= X
and then Ui is homeomorphic either to (0, 1) or [0, 1). Let δ > 0
be such that, for each i ∈ {1, . . . ,m}, N(δ,Ai) ⊂ Ui and the sets
clX(N(δ,A1)), . . . , clX(N(δ,Am)) are pairwise disjoint. Let U ∈ B be
such that U ⊂ BH(δ,A) ∩ Cn(X), and let C be the component of U
that contains A. Then C ∩ Zn(X) is connected.

Let ε > 0 be such that BH(ε,A) ∩ Cn(X) ⊂ U and ε < δ. Since
A1 ⊂ C1, A1 is an arc or a one-point set. Then there exists a path
α : [0, 1] → Cn(X) such that α(0) = A1, α(t) has exactly n −m + 1
components, α(t) ⊂ C1 and H(A1, α(t)) < ε for each t > 0. Thus,
the function β : [0, 1] → Cn(X) given by β(t) = α(t) ∪ A2 ∪ · · · ∪ Am

is continuous and H(A, β(t)) < ε for each t ∈ [0, 1]. Hence, β(1) ∈
C − Cn−1(X). By Theorem 3.5 (b), β(1) ∈ C ∩ Zn(X). Let B = β(1).
In a similar way, it is possible to construct an element D ∈ C ∩ Zn(X)
of the form D = A1 ∪ D1 ∪ A3 ∪ . . . ∪ Am, where D1 ⊂ C2 and D1

has exactly n − m + 1 components. Let K = {E ∈ C ∩ Zn(X) :
E ∩ clX(N(δ,Ai)) is connected for each i ∈ {2, . . . ,m}} and L = {E ∈
C ∩ Zn(X) : E ∩ clX(N(δ,A1)) has at most n−m components}.

It is easy to show that C ∩ Zn(X) = K ∪ L, K and L are closed in
C ∩ Zn(X), B ∈ K and D ∈ L. By the connectedness of C ∩ Zn(X),
there exists an element E ∈ K∩L. Thus, E has most n−1 components.
This contradicts the fact that the elements of Zn(X) have exactly n
components (Theorem 3.5 (b)). This contradictions proves that A is
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connected and completes the proof of the theorem. �

4. Peano continua. Let X be a continuum with metric d. A closed
subset A of X is said to be a Z-set in X provided that, for each ε > 0,
there is a map f : X → X−A such that d(x, f(x)) < ε for each x ∈ X.

Theorem 4.1. Let X be a Peano continuum that is not almost meshed
and n ∈ N. Then Cn(X) is not rigid.

Proof. Let P denote the set of points x ∈ X such that no neighbor-
hood of x in X is a finite graph, and let Cn(X,P ) = {A ∈ Cn(X) :
A∩P ̸= ∅}. Note that P is closed in X. By [9, Theorem 16], Cn(X,P )
is homeomorphic to the Hilbert cube. By hypothesis, there exist an
open set U ⊂ P and a point p ∈ U . Choose a nondegenerate subcon-
tinuum T of X such that p ∈ T ⊂ U .

Let A = bdCn(X)(Cn(X,P )) and B = {{p}, T}. Notice that A and
B are disjoint closed subsets of Cn(X,P ). By [9, Claim 1, Theorem 20]
A is a Z-set of Cn(X,P ) and, since B is a finite subset of the Hilbert
cube Cn(X,P ), it is a Z-set of Cn(X,P ) as well. Then A ∪ B is a
Z-set of Cn(X,P ) [17, Exercise 9.4]. Consider the homeomorphism
h : A ∪ B → A∪ B that is the identity restricted to A and satisfies
h({p}) = T .

By Anderson’s homogeneity theorem (see [17, 11.9.1]), there exists
a homeomorphism g : Cn(X,P ) → Cn(X,P ) that extends h. Thus, we
can extend g to a homeomorphism f : Cn(X) → Cn(X) by defining f
as the identity on Cn(X)−Cn(X,P ). Since f({p}) = T , Cn(X) is not
rigid. �

Lemma 4.2. Let X be a Peano continuum with no tails. Then

(a) if p ∈ α−{a, b} for some free arc α with end points a and b, α ⊂ X
and h : C(X) → C(X) is a homeomorphism, then h({p}) ∈ F1(X),

(b) if X is almost meshed, then C(X) is rigid.

Proof. (a) If X is a simple closed curve, then C(X) is a 2-cell such
that its manifold boundary is F1(X). This implies that h(F1(X)) =
F1(X). Hence, we may assume that X is not a simple closed curve.
Since X does not contain tails, we have that X is not an arc. Let
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A = h({p}). Let U = ⟨α−{a, b}⟩∩C(X). Then U is an open subset of
C(X) containing {p}. By [17, Example 5.1], there is a homeomorphism
from U to the space C = [0, 1) × [0, 1) that takes {p} to the point
(0, 0). Hence, A has a neighborhood M in C(X) such that M is a
2-cell and A belongs to the manifold boundary of M. In particular,
dimA[C(X)] = 2.

By Lemma 3.1, A ∈ W1(X). Thus, there exists an open subset U
of X such that the component B of U containing A is homeomorphic
either to (0, 1) or [0, 1). By local connectedness of X, B is open in X.
If there exists a homeomorphism f : [0, 1) → B, then f([0, 12 ]) is an arc

such that f([0, 12 )) = B− f([ 12 , 1]) is open in X. Thus f([0, 12 ]) is a tail
in X, contrary to the hypothesis. This proves that B is homeomorphic
to (0, 1). Since A ⊂ B, A is either an arc or a one-point set. If A
is an arc, by [17, Example 5.1], A is in the manifold interior of a 2-
cell D ⊂ C(X). We may assume that D ⊂ M. This contradicts the
invariance of domain theorem and proves that A is not an arc. Hence,
A ∈ F1(X) and (a) is proved.

(b) is immediate from (a) and the fact that in meshed continua the
set of points p satisfying the conditions described in (a) is dense in
X. �

Corollary 4.3. Let X be an almost meshed Peano continuum. Then
C(X) is rigid if and only if X contains no tails.

Proof. Let α, a and b be as in the definition of a tail. We may
assume that α ̸= X. Then a is a cut point of X, so E = X − (α−{a})
is a subcontinuum of X. Let ∆ be the solid triangle in the Euclidean
plane R2 with vertices (0, 0), (0, 1) and (1, 1). Given two different
points p, q ∈ R2, let pq denote the convex segment joining them. By
[17, Example 5.1], there exists a homeomorphism f : C(α) → ∆ such
that f({A ∈ C(α) : a ∈ A}) = (0, 0)(0, 1) and f({{x} : x ∈ α}) =
(0, 0)(1, 1). Let k : ∆ → ∆ be a homeomorphism such that k|(0, 0)(0, 1)
is the identity map and k( 12 ,

1
2 ) = ( 12 , 1). Let h : C(X) → C(X) be

given by

h(A) =

{
A, if A ∩ E ̸= ∅,
f−1(k(f(A))), if A ∈ C(α).

Clearly, h is a homeomorphism and h(F1(X)) * F1(X). �
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Theorem 4.4. If X is an almost meshed Peano continuum with no
tails, then Cn(X) is rigid for every n ̸= 2.

Proof. By Lemma 4.2 (b), we consider only the case n ≥ 3. Let
h : Cn(X) → Cn(X) be a homeomorphism. By Theorem 3.3 (a),
h(Wn(X)) = Wn(X). This implies that h(Zn(X)) = Zn(X). By
Theorem 3.6, h(W1(X)) = W1(X). Proceeding as in the proof of
Lemma 4.2 (a), it is possible to prove that if p ∈ X is such that
p ∈ α − {a, b} for some free arc α ⊂ X with endpoints a and b,
then h({p}) ∈ F1(X). Since X is almost meshed, we conclude that
h(F1(X)) = F1(X) and Cn(X) is rigid. �

Question 4.5. Is C3([0, 1]) rigid?

Question 4.6. Let X be a finite graph and n ≥ 3. Is Cn(X) rigid?

Question 4.7. Let X be an almost meshed Peano continua such that
X contains a tail, and let n ≥ 3. Can Cn(X) be rigid?

Lemma 4.8. If n ≥ 3 and h : Cn([0, 1]) → Cn([0, 1]) is a homeomor-
phism, then h(Cn−1([0, 1])) = Cn−1([0, 1]).

Proof. By definition, Wn([0, 1]) = Cn([0, 1]). Then h(Zn([0, 1])) =
Zn([0, 1]). By Theorem 3.5, h(Cn([0, 1]) − Cn−1([0, 1])) = Cn([0, 1]) −
Cn−1([0, 1]). Hence, h(Cn−1([0, 1])) = Cn−1([0, 1]). �

As a consequence of Lemma 4.8, we have the following.

Theorem 4.9. C3([0, 1]) is rigid if and only if Cn([0, 1]) is rigid for
each n ≥ 3.

Theorem 4.10. If X contains a free arc, then C2(X) is not rigid.

Proof. Let α be a free arc in X with end points a and b. Fix a point
p ∈ α−{a, b} and let ε > 0 be such that B(ε, p) ⊂ α−{a, b}. Let M =
C2(α). By [14, Lemma 2.2],M is a 4-cell. Let U = BH(ε, {p})∩C2(X).
Then U is an open subset of C2(X) such that U ⊂ M. From the
construction in [14, Lemma 2.2], it can be seen that F1(α) is an arc
in the manifold boundary ∂M of M. Since int∂M(F1(α)) = ∅, there
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exists a homeomorphism g : M → M such that g({p}) /∈ F1(α), and g
is the identity in M−U . Let h : C2(X) → C2(X) be given by

h(A) =

{
g(A), if A ∈ M,
A if A ∈ C2(X)− U .

Clearly, g is a homeomorphism and h({p}) /∈ F1(X). Therefore,
C2(X) is not rigid. �

Next, we summarize the results of this section.

Remark 4.11. Let X be a Peano continuum. Then

(a) if X is not almost meshed, then Cn(X) is not rigid for all n ∈ N,
(b) C2(X) is not rigid,
(c) if X is almost meshed and contains no tails, then Cn(X) is rigid

for each n ̸= 2,
(d) if X is almost meshed, then X contains no tails if and only if C(X)

is rigid,
(e) C3([0, 1]) is rigid if and only if Cn([0, 1]) is rigid for each n ≥ 3,
(f) it is not known if C3([0, 1]) is rigid.

5. Smooth fans. Given a dendroid X and points p, q ∈ X, we
denote the unique arc joining p and q in X by pq if p ̸= q and pq = {p}
if p = q. A fan is a dendroid X with exactly one ramification point
v, called the vertex of X. The fan X, with vertex v, is said to be
smooth, provided that for each sequence {xi}∞i=1 converging to a point
x ∈ X, we have lim vxi = vx. It is known that the class of smooth
fans coincides with the class of subcontinua of the Cantor fan that are
not arcs [6, Corollary 4]. Given a smooth fan X, let E be the set
of end points of X. The Lelek fan (see [5]) is the unique smooth fan
such that E is dense in X. Eberhart and Nadler, in [7, Corollary 3.3],
proved that a smooth fan X has unique hyperspace C(X) in the class
of smooth fans. That is, if X and Y are smooth fans and C(X) is
homeomorphic to C(Y ), then X is homeomorphic to Y . This result
was extended by Acosta who proved that a smooth fan X has unique
hyperspace C(X) in the class of fans [1, Theorem 5.4]. The second-
named author showed Acosta’s result cannot be generalized to fans by
constructing a fan X such that X does not have unique hyperspace
C(X) in the class of fans [13]. As a consequence of Corollary 4.3, we
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have that if Y is a simple n-od, then the hyperspace C(X) is not rigid
(although it has unique hyperspace Cn(X) for each n ∈ N).

This subsection is devoted to characterizing smooth fansX for which
C(X) is rigid.

The following discussion is partially contained in [7, Sections 2, 3].

Throughout this section, X denotes a smooth fan with vertex v, set
of end points E and E0 = cl(E)− E.

Notice that E0 can be the empty set, as in the case when X is
homeomorphic to the cone over the Cantor set, and it is also possible
that E0 is dense X, as in the case of the Lelek fan. We assume that X
is contained in the cone over the Cantor set, where the Cantor set is
the usual middle third set constructed in [0, 1] × {0} in the plane and
its vertex is the point v = (0, 1). Consider the projection on the second
coordinate π : X → [0, 1]. Then π(v) = 1. Let

X0 = {v} ∪ clX
(∪

{vx : x ∈ E0}
)
.

Notice that X0 is a subcontinuum of X.

Define ψ : E → [0, 1] as ψ(e) = minπ(X0 ∩ ve). Notice that ψ is not
necessarily continuous.

Let V = {A ∈ C(X) : v ∈ A}. For each e ∈ E, let L(e) = {A ∈
C(X) : A ⊂ ve− {v}}. Notice that

C(X) = V ∪
(∪

{L(e) : e ∈ E}
)
.

Lemma 5.1. Let h : C(X) → C(X) be a homeomorphism. Then there
exists a bijection h0 : E → E (not necessarily continuous) such that

(a) h(V) = V,
(b) for each e ∈ E, h(L(e)) = L(h0(e)),
(c) h({v}) = {v},
(d) for each e ∈ E, h(F1(ve)) ⊂ F1(vh0(e)) ∪ {xh0(e) : x ∈ vh0(e)}

and h(ve) = vh0(e).

Proof. (a) If E is finite with m elements, then V = {A ∈ C(X) :
dimA C(X) = m} and, if E is infinite, V = {A ∈ C(X) : dimA C(X) =
∞}. This implies that h(V) = V.
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(b) The existence of h0 and (b) follow from the fact that the
components of C(X)− V are the elements of the set {L(e) : e ∈ E}.

(c) Notice that V ∩ (
∩
{clC(X)(L(e)) : e ∈ E}) = {{v}}. This

implies that h({v}) = {v}.
(d) By [17, Example 5.1], for each e ∈ E, L(e) is homeomorphic to

(0, 1)× [0, 1), and its manifold boundary is ∂L(e) = F1(ve−{v})∪{xe :
x ∈ ve− {v}}. Moreover, clC(X)(∂L(e)) is an arc with end points {v}
and ve and clC(X)(∂L(e)) − {{v}, ve} = ∂L(e). Thus, we conclude
that h(F1(ve)) ⊂ F1(vh0(e)) ∪ {xh0(e) : x ∈ vh0(e)}, and since
h({v}) = {v}, h(ve) = vh0(e). �

Lemma 20 limits the options for the image h({x}), for x ∈ ve,
when h : C(X) → C(X) is a homeomorphism. Since we are trying
to determine when C(X) is rigid, we are interested in determining
what conditions X must satisfy in order that singletons are mapped to
singletons. The following results will help us to do this.

Lemma 5.2. Let h : C(X) → C(X) be a homeomorphism. If x ∈ E0,
then:

(a) h({x}) ∈ F1(X),
(b) h(F1(vx)) ⊂ F1(X),
(c) h(F1(X0)) ⊂ F1(X).

Proof. Let e ∈ E be such that x ∈ ve. Suppose contrary to (a) that
h({x}) /∈ F1(X). By Lemma 5.1 (d), h({x}) = zh0(e), where h0 is as
in Lemma 5.1 and z ∈ vh0(e) − {h0(e)}. Let {em}∞m=1 be a sequence
in E such that lim em = x. We may assume that limh0(em) = u
for some u ∈ X. By the smoothness of X, lim vh0(em) = vu.
By continuity of h, limh({em}) = h({x}) = zh0(e). By Lemma
5.1 (b), for each m ∈ N, h({em}) ⊂ vh0(em), so zh0(e) ⊂ vu. Since
h0(e) ∈ E, we conclude that u = h0(e). Using smoothness of X again,
we have lim vem = vx, limh(vem) = h(vx) and (Lemma 5.1 (d))
limh(vem) = lim vh0(em) = vu = vh0(e) = h(ve). Thus, vx = ve.
Hence, x = e ∈ E, contrary to the hypothesis. This completes the
proof of (a).

(b) By Lemma 5.1 (d), h(F1(vx)) is an arc contained in the set
A = F1(vh0(e)) ∪ {xh0(e) : x ∈ vh0(e)}. Notice that A is an arc with
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end points {v} and vh0(e). Since {v} and {x} are the end points of the
arc F1(vx), we have h({v}) and h({x}) are the end points of the arc
h(F1(vx)). By (a) and Lemma 5.1 (c), h({v}) and h({x}) are in the
subarc F1(vh0(e)) of A. Hence, h(F1(vx)) ⊂ F1(vh0(e)) ⊂ F1(X).

(c) Is immediate from (b). �

Lemma 5.3. Let e0 ∈ E be such that E is locally compact at e0. Then
there exist an open subset W of X and t1 ∈ (0, 1) such that

(a) e0 ∈W ,
(b) W ∩ E is compact,
(c) W ∩X0 = ∅, and
(d) if e ∈W ∩ E, then π(e) < t1 < ψ(e).

Proof. Let d be the Euclidean metric for R2. Let U be an open
set of X such that e0 ∈ U and clX(U) ∩ E is compact. We claim
that e0 /∈ X0. Suppose to the contrary that there exist a sequence
{xm}∞m=1 in X and a sequence {zm}∞m=1 in E0 such that limxm = e0
and xm ∈ vzm for each m ∈ N. By the compactness of X, we may
suppose that lim zm = z for some z ∈ X. Given m ∈ N, there exists
em ∈ E such that d(em, zm) < 1

m . Then lim em = z. By the smoothness
of x, lim vem = lim vzm = vz. Since xm ∈ vzm for each m ∈ N, we
have e0 ∈ vz. Since e0 ∈ E, we obtain that e0 = z. Thus, there exists
m ∈ N such that zm ∈ U . Since zm ∈ clX(E)−E, zm = limwr for some
sequence {wr}∞r=1 in E∩U . Hence, {wr}∞r=1 is a sequence in clX(U)∩E
whose limit is not in clX(U) ∩ E. This shows that clX(U) ∩ E is not
compact, a contradiction. Hence, e0 /∈ X0. Therefore, there exists an
open set V of X such that e0 ⊂ V and clX(V ) ⊂ U − X0. Thus,
clX(V ) ∩ E is compact.

Since v /∈ E, it follows that E is totally disconnected. Thus,
clX(V )∩E is compact and totally disconnected and then clX(V )∩E is
0-dimensional. By the way we are considering the cone over the Cantor
set in R2, we can assume that there exists an open set Y ⊂ [0, 1]
and numbers s0, s1 ∈ (0, 1) such that V = X ∩ ({(0, 1)(y, 0) : y ∈
Y })∩ ([0, 1]× (s0, s1)), where (0, 1)(y, 0) is the convex segment joining
the points (0, 1) and (y, 0). Since e0 ∈ V , s0 < π(e0) < s1. Given
e ∈ V ∩ E, there exists y ∈ Y such that e ∈ (0, 1)(y, 0). Let p be the
point in (0, 1)(y, 0) such that π(p) = s1. Then (ep − {p}) ⊂ V . This
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implies that (ep−{p})∩X0 = ∅. Notice that if w ∈ X0, then vw ⊂ X0.
Hence, ψ(e) ≥ s1.

Since clX(V ) ∩ E is 0-dimensional, there exists an open and closed
subset R of clX(V ) ∩ E such that e0 ∈ R and R ⊂ V ∩ E. Let W
be an open subset of X such that R = W ∩ clX(V ) ∩ E and W ⊂ V .
Notice that e0 ∈ W , W ∩ E = R is compact, W ∩ X0 = ∅. Let
t1 ∈ (max{π(e) : e ∈W ∩ E}, s1). Clearly, t1 satisfies (d). �

Theorem 5.4. The following are equivalent :

(a) C(X) is rigid,
(b) X = X0,
(c) E has no points of local compactness.

Proof. (b) ⇒ (a) is immediate from Lemma 5.2 (c) applied to h and
h−1.

(c) ⇒ (b). Suppose that X ̸= X0. Take x ∈ X −X0, and let e ∈ E
be such that x ∈ ve. If e ∈ X0, since v ∈ X0 and X0 is a subcontinuum
of X, then x ∈ ev ⊂ X0, a contradiction. Thus, e /∈ X0. Let U be
an open subset of X such that e ∈ U and clX(U) ∩X0 = ∅. We now
prove that clX(U) ∩ E is a compact neighborhood of e in E. Since X
is compact, it is enough to prove that, for any sequence {em}∞m=1 in
clX(U)∩E that converges to a point z ∈ clX(U), it follows that z ∈ E.
Since E0 ⊂ X0, z /∈ E0. Since z ∈ clX(E) and z /∈ E0, we have that
z ∈ E. Thus, E is locally compact at e.

(a) ⇒ (c). Suppose that E has a point e0 of local compactness.
Let W be an open subset of X and t1 ∈ (0, 1) satisfying properties
(a)–(d) of Lemma 5.3. For each e ∈ E ∩ W , let xe ∈ ve be such
that π(xe) = t1. Notice that the map e → xe is continuous. Let
Z =

∪
{exe ⊂ X : e ∈ W ∩ E}. Let g : (W ∩ E)× [0, 1] → Z be given

by g(e, s) = s ·e+(1−s) ·xe. Clearly, g is a continuous one-to-one onto
map. Since W ∩ E is compact, g is a homeomorphism. In particular,
we have that Z and Z0 = {xe ∈ X : e ∈ W ∩ E} are compact subsets
of X.

We claim that Z0 is the boundary of Z (in X). Since, for each
e ∈W ∩E, π(e) < t1 < 1, Z0 ⊂ bdX(Z). Now, let x ∈ Z∩clX(X−Z),
and let {xm}∞m=1 be a sequence ofX−Z such that limxm = x. For each
m ∈ N, let em ∈ E be such that xm ∈ vem, and let e ∈W ∩E be such



RIGIDITY OF HYPERSPACES 233

that x ∈ exe. We may suppose that lim em = x0 for some x0 ∈ X. Since
x ∈ Z, π(x) ≤ t1, so x ̸= v. By the smoothness of X, lim vem = vx0,
so x ∈ vx0 ∩ (ve − {v}). This implies that vx0 ⊂ ve. If x0 ̸= e, then
x0 ∈ E0 and x0 ∈ X0. By Lemma 5.3 (d), t1 < ψ(e) = minπ(X0 ∩ ve).
Thus, t1 < π(x0). Since x ∈ vx0, π(x0) ≤ π(x). This contradicts the
fact that x ∈ Z and proves that x0 = e. Hence, x0 ∈ W . Since W
is open, there exists M ∈ N such that, for each m ≥ M , em ∈ W .
Given m ≥ M , since em ∈ W ∩ E and xm ∈ (X − Z) ∩ vem, we have
that π(xm) > t1. Hence, π(x) ≥ t1. Since x ∈ Z, we conclude that
π(x) = t1. Thus, x = xe ∈ Z0. This completes the proof that Z0 =
bdX(Z).

Define
L =

∪
{C(exe) ⊂ C(X) : e ∈W ∩ E}.

Since L = {A ∈ C(X) : A ⊂ Z}, L is closed in C(X).

Using the geometric model for C([0, 1]) [17, Example 5.1], it is
possible to define a homeomorphism f : C([0, 1]) → C([0, 1]) such that:
f(A) = A for each A ∈ C([0, 1]), 0 ∈ A and f({1}) = [ 12 , 1].

Let hC : L → L be given by hC(A) = (g ◦ (idW∩E × f) ◦ g−1)(A).

It is easy to show that hC is a homeomorphism with the following
properties:

(1) if A ∈ L and xe ∈ A for some e ∈ E ∩W , then hC(A) = A,
(2) if e ∈ E ∩W , then hC({e}) /∈ F1(X).

We extend hC to a homeomorphism h : C(X) → C(X) given by

h(A) =

{
hC(A), if A ∈ L,
A, if A ∩ clX(X − Z) ̸= ∅.

By (1) and the equality Z0 = bdX(Z), h is a well-defined continuous
function. It is easy to check that h is one-to-one and surjective. By
(2), we conclude that C(X) is not rigid. �

Theorem 5.5. If C(X) is rigid, then Cn(X) is rigid for each n ̸= 2.

Proof. Let n ≥ 3, and let h : Cn(X) → Cn(X) be a homeomorphism.
By Theorem 3.3, h(Wn(X)) = Wn(X). Then h(Zn(X)) = Zn(X), and
by Theorem 3.6, h(W1(X)) = W1(X). Notice that W1(X) = {A ∈
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C(X) : v /∈ A}. Let v, V, E and for each e ∈ E, L(e) be defined as at the
beginning of this section. By [7, Theorem 3.1 (3)] V is homeomorphic
to the Hilbert cube. Let A =clCn(X)(W1(X)). Then h(A) = A and
h(A−W1(X)) = A−W1(X). Clearly, A = {A ∈ C(X) : there
exists e ∈ E such that A ⊂ L(e)} and A−W1(X) = V ∩ A. Hence,
h(V ∩ A) = V ∩ A. By [7, Theorem 3.1 (2)], V ∩ A is a Z-set of V.
By [17, 11.9.1], the homeomorphism h|V ∩ A : V ∩ A → V ∩A can be
extended to a homeomorphism g : V → V. Let f : V ∪ A → V ∪ A be
given by

f(A) =

{
g(A), if A ∈ V,
h(A), if A ∈ A.

Then f is a homeomorphism. Notice that V ∪ A = C(X). Since
C(X) is rigid, f(F1(X)) = F1(X). Given p ∈ X − {v}, {p} ∈ W1(X).
Thus, h({p}) = f({p}) ∈ F1(X). Since X − {v} is dense in X, we
conclude that h(F1(X)) ⊂ F1(X). Similarly, h−1(F1(X)) ⊂ F1(X).
Hence, h(F1(X)) = F1(X). Therefore, Cn(X) is rigid. �

Corollary 5.6. The following are equivalent :

(a) C(X) is rigid,
(b) X = X0,
(c) E has no points of local compactness,
(d) Cn(X) is rigid for every n ̸= 2.

Related to Question 4.5 and Corollary 5.6, we can pose the following
problem.

Problem 5.7. Letting Z be a continuum, is it true that if C(Z) is
rigid, then C3(Z) is rigid?

Example 5.8. Another smooth fan Y for which C(Y ) is rigid.

.Recall that the Lelek fan is characterized as the unique smooth fan
X such that the set of end points of X is dense in X. Given p ∈
X − (E(X)∪{v}), p ∈ E0 ⊂ X0. Thus, X = clX(X − (E(X)∪{v})) ⊂
X0. By Theorem 23, C(X) is rigid. Another smooth fan Y with this
property can be constructed as follows. Let Z be the cone over the
Cantor set C. Suppose X ⊂ Z and v is the vertex of X and Z. Let
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g : C × [0, 1] → Z be the natural quotient map such that g(c, 1) = v
for each c ∈ C. Let Q = C × [0, 2]. Let P = (C × [1, 2]) ∪ g−1(X), and
let Y be the quotient space that results from P by identifying the set
C×{2} to a point. It is easy to check that Y is a smooth fan, Y is not
homeomorphic to the Lelek fan and C(Y ) is rigid. �

Question 5.9. Supposing that C2(X) is rigid, does it follow that C(X)
is rigid?

6. Hereditarily indecomposable continua.

Theorem 6.1. If X is hereditarily indecomposable, then 2X and
Cn(X) are rigid for each n ∈ N.

Proof. This theorem was proved in Claim 4 of Theorem 4.4 of
[15]. �
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México, A.P. 61-3, Xangari, Morelia, Michoacán, 58089, México
Email address: rod@matmor.unam.mx
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