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ABSTRACT. In previous works, Jones and Roberts and
Pauli and Roblot have studied finite extensions of the p-adic
numbers Qp. This paper focuses on results for local fields
of characteristic p. In particular, we are able to produce
analogous results to Jones and Roberts in the case that
the characteristic does not divide the degree of the field
extension. Also, in this case, following from the work of
Pauli and Roblot, we prove that the defining polynomials of
these extensions can be written in a simple form amenable to
computation. Finally, if p is the degree of the extension, we
show there are infinitely many extensions of this degree and
thus these cannot be classified in the same manner.

1. Introduction. Classifying extensions of Qp has been of interest
for many years. Pauli and Roblot [11] describe a method for computing
defining polynomials for all extensions of Qp of a given degree. Jones
and Roberts [8] constructed an online database that identifies degree n
extensions of Qp for small values of p and n. They describe how to
compute various invariants for each extension, including the Galois
group.

In a similar fashion, we extend these results to characteristic p local
fields, focusing on the unramified, totally tamely ramified and totally
wildly ramified cases. We begin by introducing the reader to essential
background topics.

Given a characteristic p local field F and an integer n relatively prime
to p, we classify all degree n extensions of F . We recall the result that,
for each f | n, there is a unique unramified extension K of degree f .
We then turn our attention to totally tamely ramified extensions of
K degree e = n/f . We follow the work of Jones and Roberts [8] to
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compute a class of defining polynomials for these extensions, namely, a
specific type of Eisenstein polynomial.

We next consider the totally wildly ramified case when n = p.
Our results for degree p extensions are not analogous to the case of
characteristic zero local fields, as there are infinitely many degree p
extensions.

We conclude by classifying all degree 10 extensions of Fp((T ))
where p ≡ ±3 (mod 10). In particular, in the case that p = 3, we
give specific defining polynomials for each extension. This illustrates
computationally how one handles a specific degree and characteristic.

2. Background.

2.1. Local fields. This paper will be concerned with extensions of
local fields. We refer the reader to [5, 14] for more details on local
fields.

Let F be a local field. Let πF denote a uniformizer of F , and write
OF for the valuation ring of F , MF = (πF ) for the maximal ideal,
and residue field OF /MF . We normalize the valuation on F so that
νF (πF ) = 1.

Throughout this paper, L/F will always refer to a finite extension of
local fields. Given L/F of degree n one has πF = πe

L for some integer
e ≥ 1 with e | n. We call e the ramification index of L/F and f = n/e
the inertia degree of L/F . We say L/F is unramified if e = 1 and
totally ramified if e = n. If OF /MF has characteristic p, we say L/F
is tamely ramified if p - e and wildly ramified if p | e.

One knows that the compositum of unramified extensions is again
unramified, so one can form a maximal unramified extension F ur of F .
Given an extension L/F of local fields, we set K = L ∩ F ur. Clearly
K is the maximal unramified extension of F in L. Note the extension
L/K is necessarily totally ramified.

2.2. The field of formal Laurent series. We will be interested in
finite extensions of the field of formal Laurent series. We now introduce
this field.

Let Fp[T ] be the polynomial ring with coefficients in Fp and Fp(T )
its fraction field.



THE FIELD OF FORMAL LAURENT SERIES 117

Definition 2.1. Given x ∈ Fp(T ), write x as T r( gh ) with g, h ∈ Fp[T ],
T - gh. We define a valuation νT by:

νT

(
T r g

h

)
= r

with νT (0) = ∞.

Note that we can define νf for any irreducible polynomial in
Fp[T ] analogously. As the valuations arising in this manner are non-
Archimedean, they give the characteristic p valuations analogous to the
p-adic valuations on Q. Moreover, one can define a valuation with re-
spect to 1/T to obtain the characteristic p valuation analogous to the
usual absolute value on Q. As we will only be interested in the case
f = T , we restrict to that case.

We can now complete Fp(T ) with respect to νT to obtain the field
of formal Laurent series over Fp.

Definition 2.2. A formal Laurent series f(T ) is an infinite series of
the form

∞∑
i=−m

aiT
i

with m, i ∈ Z, ai ∈ Fp for all i. We denote the set of such series by
Fp((T )).

An equivalent expression for the valuation defined above is

νT (x) = νT

( ∞∑
i=−m

aiT
i

)
= −m.

We also define an absolute value | · |T such that |T r( gh )|T = p−r.

Note that Fp((T )) is a non-Archimedean local field with characteris-
tic p. As we will only discuss the valuation on Fp((T )), we will be using
the notation ν(x) rather than νT (x) to denote this specific valuation for
the remainder of the paper unless otherwise specified. Given an exten-
sion L/Fp((T )), we denote the valuation on L obtained by extending ν
by νL.
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For the rest of the paper all our fields will be extensions of Fp((T ))
for some prime p. In particular, F will be fixed to be a finite extension
of Fp((T )).

2.3. Ramification groups. Let L/F be a Galois extension of local
fields with Galois group G. We define the ramification groups of L/F
by

Gi = {σ ∈ G : νL(σ(x)− x) ≥ i+ 1 for all x ∈ OL}

where i ≥ −1. The ramification groups make up a chain of subgroups
of the Galois group that are eventually trivial. These Gi may not be
distinct for all i.

Definition 2.3. In the subgroup chain of ramification groups, a ram-
ification break is defined to occur at i ≥ 0 such that Gi ̸= Gi+1.

Depending on the Galois group and ramification groups themselves,
this break may be unique. Note that the chain of ramification groups
is an invariant of the field, so distinct chains give distinct fields.

3. Unramified extensions. Unramified extensions of characteris-
tic p fields are similar to their characteristic zero counterparts. We
have the following theorem in this regard.

Theorem 3.1. [7, page 167]. Let F be a local field and f a positive
integer. Then F has a unique unramified extension of degree f . This
extension is obtained by adjoining a primitive (pf − 1)st root of unity
to F .

In particular, we see that if we wish to classify extensions of degree n
of a local field F , it is enough to classify all the totally ramified
extensions of degree e for each e | n.

4. Totally ramified extensions. As noted in the previous section,
unramified extensions are already well understood. Thus, when we
build up our degree n extension of F , we focus on building totally
ramified extensions of degree e for each e | n.
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Definition 4.1. Let g(x) ∈ OF [x] be a monic polynomial:

g(x) = xe + ae−1x
e−1 + · · ·+ a0.

If ν(ai) ≥ 1 for each i = 0, . . . , e − 1, and ν(a0) = 1, then g(x) is said
to be Eisenstein.

The following is a well-known theorem, which describes how to
construct totally ramified extensions.

Theorem 4.2. [5, page 54]. A finite extension L/K of a non-
Archimedean local field is totally ramified if and only if L = K[α],
with α a root of an Eisenstein polynomial.

4.1. Totally tamely ramified extensions. Using the work of Pauli
and Roblot [11], we can show exactly what the totally tamely ramified
extensions look like, but first we need some theorems adapted from
Pauli [12]. We let K/F be an unramified extension of degree f and
consider totally tamely ramified extensions L/K of degree e. We define
|MK |K := |πK |K .

Definition 4.3. Let L/K be a degree e Galois extension with Galois
group G. Let (δ1, . . . , δe) be an integral basis of L/K. Write G =
{σ1, . . . , σe}. Then

disc (L/K) = (det(σl(δk))1≤k≤e,1≤l≤e)
2

is the discriminant of L/K.

The discriminant of the field generated by an Eisenstein polynomial
is exactly the discriminant of the polynomial.

Lemma 4.4. Let L = K(α)/K be a finite Galois extension of degree e
with basis elements 1, x, x2, . . . , xe−1 and g be the minimal polynomial
over K with roots α1, . . . , αe where α = α1. Then disc (L/K) = disc (g)
and νK(disc (g)) = eνK(g′(α)).

Proof. Define σi ∈ Gal (L/K) such that σi(α) = αi for i ∈
{1, . . . , e}. Then σi(x

j) = αj
i for 0 ≤ j ≤ e − 1. Note disc (L/K)
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is the square of the determinant of the matrix

A =


1 x1 · · · xe−1

1

1 x2 · · · xe−1
2

...
...

...
1 xe · · · xe−1

e

 .

Since A is a Vandermonde matrix, detA =
∏

i<j(αi−αj), and it follows

that disc (L/K) = disc (g). On the other hand, for any y ∈ L, we can
write g(y) = (y − α1) · · · (y − αn), so we have

g′(αi) =
∑
k

∏
j ̸=k

(αi − αj).

However, only the k = i term is non-zero. Hence,

g′(αi) =
∏
j ̸=i

(αi − αj),

so it follows that

disc (g) =
e∏

i=1

g′(αi).

Therefore,

νK(disc (g)) = νK

( e∏
i=1

g′(αi)

)
= eνK(g′(αi)). �

Lemma 4.5. If x0, · · · , xe−1 ∈ K where |xi|K ̸= |xj |K for i ̸= j, then∣∣∣∣ e−1∑
i=0

xi

∣∣∣∣
K

= max
0≤i≤e−1

{|xi|K}.

Theorem 4.6 (Ore’s conditions). For each e | n, there exists a totally
ramified extension L/K of degree e and discriminant Me−1

K .

Proof. By Theorem 4.2, every totally ramified extension L of K of
degree e can be generated by adjoining a root α of an Eisenstein polyno-
mial g(x) = xe+ae−1x

e−1+ · · ·+a0. We have disc (L/K) = disc (g(x))
and since g(x) is Eisenstein, we can write νK(disc (g(x)))/e = νK(g′(α))
because g(x) is irreducible. Since α is a uniformizer in L, νK(α) = 1/e.
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The valuations of iaiα
i−1 for 1 ≤ i < e and eαe−1 are all different and

so, by Lemma 4.5, we get

νK(g′(α)) = νK(eαe−1 + (e− 1)ae−1α
e−1 + · · ·+ a1)

= min
1≤i≤e−1

{
νK(e) +

e− 1

e
, νK(i) + νK(ai) +

i− 1

e

}
.

Note that νK(x) = 0 for all x ∈ Z and νK(ai) ≥ 1 for all 1 ≤ i ≤ e− 1,
so

νK(g′(α)) = min
1≤i≤e−1

{
e− 1

e
, νK(ai) +

i− 1

e

}
=

e− 1

e
.

Thus, since g(x) is irreducible and νK(disc (g(x))) = eνK(g′(α)) = e−1,
it is clear that we can construct an Eisenstein polynomial g(x) such that
disc (g(x)) = Me−1

K . �

4.2. Construction of generating polynomials. Let Le denote the
set of all totally ramified extensions L/K of degree e and discriminant
Me−1

K . In this section, we use the work of [11, 12] to construct a
finite set of polynomials that will generate all the extensions in Le.
As above, we let K/F be an unramified extension of degree f and
L/K a totally ramified extension of degree e. Let H be the Galois
group of the extension K/F , and let R1,2 be a fixed H-stable system
of representatives of the quotient M1

K/M2
K . We denote R∗

1,2 to be the
subset of R1,2 whose elements have νK-valuation 1.

Let Ω be the set of e-tuples (ω0, . . . , ωe−1) ∈ Ke which satisfy the
following conditions:

(1) ωi ∈
{

R∗
1,2 if i = 0,

R1,2 if 1 ≤ i ≤ e− 1.

To each element ω = (ω0, . . . , ωe−1) ∈ Ω we associate the polynomial
Aω(x) ∈ OK [x] given by

Aω(x) = xe + ωe−1x
e−1 + · · ·+ ω1x+ ω0.

Lemma 4.7. The polynomials Aω are Eisenstein polynomials of dis-
criminant Me−1

K .
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Proof. By construction, νK(ωi) ≥ 1 for all i and νK(ω0) = 1. So Aω

is an Eisenstein polynomial.

Let α be a root of Aω. Since the discriminant of Aω is the norm
from K(α) to K of A′

w(α), we have

νK(A′
w(α)) =

e− 1

e

as seen in Theorem 4.6. It follows that νK(disc (Aω)) = e − 1 and
disc (Aω) = Me−1

K as claimed. �

Lemma 4.8. Let ω be an element of Ω, and let α be a root of Aω(x).
The extension K(α)/K is a totally ramified extension of degree e and
discriminant Me−1

K . Conversely, if L/K is a totally ramified extension

of degree e and discriminant Me−1
K , then there exists ω ∈ Ω and a root

α of Aω(x) such that L = K(α).

Proof. The statement is a special case of the characteristic zero result
[11, Corollary 5.3]. In particular, one specializes to j = 0 and c = 2.
The proof there works for characteristic p as well. �

Theorem 4.9. Let q be the order of the residue field of K. Then the
number of totally ramified extensions of K of degree e and discriminant
Me−1

K is
#Le = e.

Proof. To see this, one combines Lemma 6.2 and Lemma 6.3 of [11]
and observes the proofs carry over verbatim to characteristic p. �

Pauli and Roblot have calculated convenient polynomials that gen-
erate totally tamely ramified extensions of unramified extensions of Qp.
Their proof carries over to the positive characteristic case as well. We
include the proof for the convenience of the reader.

Theorem 4.10. Let ζ be a primitive (pf −1)st root of unity contained
in K, and let g = gcd(pf − 1, e). Set m = e/g. There are exactly e
totally and tamely ramified extensions of K of degree e. Furthermore,
these extensions can be split into g classes of m K-isomorphic exten-
sions, all extensions in the same class being generated over K by the
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roots of the polynomials

fr(x) = xe − ζrπK

for r = 0, . . . , g − 1.

Proof. Consider the set R∗
1,2 = {ζiπK with 0 ≤ i ≤ pf − 2} and

R1,2 = R∗
1,2∪{0}. The roots of the polynomials xe+ωe−1x

e−1+· · ·+ω0,
where ωi ∈ R1,2 for 1 ≤ i ≤ e − 1 and ω0 ∈ R∗

1,2, generate all totally

tamely ramified extensions of discriminant Me−1
K by Lemma 4.8.

Consider extensions of K generated by roots of the polynomials
fi(x) = xe − ζiπK so that ωj = 0 for 1 ≤ j ≤ e − 1. Let α be a
root of fi(x). Note that, since ζ ∈ K, we have ζhα generates the same
extension of K as α for any integer h. If we choose h so that eh+ i ≡ r
(mod pf − 1) with 0 ≤ r < g, then the minimal polynomial of ζhα is
feh+i(x), since

(ζhα)e + ζeh+iπK = ζehαe + ζeh+iπK

= ζeh(αe + ζiπK).

Hence, we only need to consider the polynomials fr(x) for 0 ≤ r ≤ g−1.
This polynomial is Eisenstein and, by Theorem 4.2, it will define a
totally tamely ramified extension.

Let fr(x) and fr′(x) be two of these polynomials which generate a
totally tamely ramified extension where 0 ≤ r, r′ ≤ g − 1 and r ̸= r′.
Let α and α′ be roots of fr(x) and fr′(x), respectively. Suppose that α
and α′ generate the same field L. Then this field contains an eth root
of ζr−r′ . To see this, consider the following: If we assume α ∈ L if and
only if α′ ∈ L, then fr(α) = 0 = fr′(α

′). Thus,

αe − (α′)e = ζr
′
πK − ζrπK

= πK(ζr
′
− ζr)

= ζr
′
πK(1− ζr−r′).

Thus, this field contains an eth root of ζr−r′ which contradicts our
assumption that the field only contains the (pf − 1)st roots of unity as
r− r′ is never a multiple of e modulo pf − 1. Therefore, α and α′ must
generate two distinct extensions of K.



124 BROWN ET AL.

Let ρ be a primitive eth root of unity in the algebraic closure of

Fp((T )) such that for m, ρm = ζ(p
f−1)/g. The conjugates of α over K

are α, ρα, . . . , ρe−1α. Thus, α, ρmα, . . . , ρ(g−1)mα all generate the same
field, but α, ρα, . . . , ρm−1α all generate distinct isomorphic extensions.
More specifically, the roots of the polynomial fr(x) generate g classes
of m distinct isomorphic extensions. Thus, there are e total extensions
generated by the roots of these polynomials. By Theorem 4.9, there are
exactly e totally ramified extensions of degree e of K, which proves that
all totally tamely ramified extensions of degree e of K are generated
by the roots of the polynomials fr(x), as claimed. �

Thus, we have shown that the polynomials calculated in [11] to
generate totally tamely ramified extensions of K of degree e where
p - e also work in the case of char(K) = p.

4.3. Totally wildly ramified extensions of degree p. In this
section we discuss wildly ramified extensions L/F of degree p. We show
that the characteristic p theory differs significantly from characteristic
zero theory, and thus it is not possible to classify such extensions as in
some characteristic zero cases [1, 2, 3]. Artin-Schreier theory provides
the results needed for these extensions. From this theory, the Galois
group G = Gal (L/F ) will be cyclic, namely, Z/pZ. Because of that
fact, the ramification groups will either be G or {1} causing there to be
a single, unique ramification break. For more on Artin-Schreier theory,
see [5, pages 67–78].

Note also that, in this section, the group Ui, which corresponds to
the ramification group Gi, will be written as either 1+(πi

L) or 1+Mi
L.

Definition 4.11. For F a field of characteristic p, an Artin-Schreier
polynomial is a polynomial of the form ℘(x) = xp − x− α for α ∈ F×.

The following is a well-known result that leads to our next theorem.

Lemma 4.12 (Hilbert’s Theorem 90, Additive Form). Let L/F be a
cyclic Galois extension with degree n and Galois group G. Let σ be a
generator of G, and let β ∈ L. Then TrL/F (β) is equal to 0 if and only
if there exists α ∈ F such that β = α− σ(α).
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Theorem 4.13. [9, page 290]. Any Galois extension of F of degree p
is the splitting field of an Artin-Schreier polynomial.

Proof. Let L/F be a Galois extension of degree p. Then TrL/F (−1) =
p(−1) = 0 since F has characteristic p. Let σ be a generator of G. By
Hilbert’s Theorem 90, there exists α ∈ L such that σ(α)−α = 1. Thus,
σ(α) = α+ 1 and σi(α) = α+ i for i = 1, . . . , p. Since α has p distinct
conjugates, [F (α) : F ] ≥ p. It follows that L = F (α). Note that

σ(αp − α) = σ(α)p − σ(α) = (α+ 1)p − (α+ 1) = αp − α.

Since αp − α is fixed by σ, the generator of G, it is fixed by every
element of G. Hence, αp − α ∈ F . Let a = αp − α. Then α satisfies
the equation xp − x− a = 0 and L/F is the splitting field of an Artin-
Schreier polynomial. �

Theorem 4.14. There are infinitely many wildly ramified extensions
of degree p of F .

Proof. Let L be the splitting field of the polynomial ℘(x) = xp−x−
π−m
F ∈ F [x] with m ∈ Z. Suppose L/F is a wildly ramified extension of

degree p with νL a discrete valuation on L and G the Galois group. Let
πL ∈ L be a uniformizer. It suffices to show that there are an infinite
number of values at which the unique ramification break can occur.

Consider

νL(σ(πL)− πL) = 1 + νL

(
σ(πL)

πL
− 1

)
.

With this equality, in Gi we can look at

νL

(
σ(x)

x
− 1

)
≥ i

rather than νL(σ(x)−x) ≥ i+1. It can be found in [14, page 67] that
[σ(πL)]/πL ∈ UL. Thus, [σ(πL)]/πL = u for some unit u ∈ UL. Let
u = uFw for uF ∈ UF and w ∈ 1 +ML. Then, we have

σ

(
σ(πL)

πL

)
· σ(πL)

πL
= σ(uFw) · uFw = u2

Fw · σ(w).

Continue this process of multiplying by [σ(πL)]/πL = σ(uFw) on each
side until, on the left hand side, the term is equal to [σp(πL)]/πL.
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Because this is a degree p extension with cyclic Galois group,

1 =
σp(πL)

πL
= up

Fwσ(w) · · ·σ
p−1(w)

where wσ(w) · · ·σp−1(w) ∈ 1 +ML.

Divide by wσ(w) · · ·σp−1(w) to see up
F ∈ 1 + ML. This implies

uF ∈ 1 +ML and uF ∈ 1 +MF . Then, [σ(πL)]/πL ∈ 1 +ML. This
gives [σ(πL)]/πL = 1+uLπ

s
L for some uL ∈ UL and s ≥ 1, where s does

not depend on the choice of uniformizer. From [14, pages 66–67],

σ(u)

u
≡ 1 (mod πs+1

L ) for u ∈ UL.

We can conclude, for any λ ∈ L×, [σ(λ)]/λ ∈ 1 + πs
LUL. To see this,

let λ = uLπ
a
L with p - a. Then

σ(λ)

λ
=

σ(uLπ
a
L)

uLπa
L

=
σ(uL)

uL

(
σ(πL)

πL

)a

∈ 1 + πs
LUL.

Thus, νL(σ(λ)/λ− 1) = s. This implies that G = Gs and Gs+1 = {1}.
Therefore, the unique ramification break occurs at i = s.

Now suppose λ is a root of ℘(x) = xp − x − α, where α = π−m
F .

Then,
α = λ(λ+ 1) · · · (λ+ (p− 1))

because, if λ is a root, then λ+ j for j ∈ Z/pZ is a root. In the above
product, (λ+1), . . . , (λ+(p−1)) are units, so νF (α) = νL(λ). Therefore,
νF (α) = s. For α = π−m

F , −m = s. Because there are infinitely many
choices for m, there are infinitely many possible ramification breaks,
thus extensions, of degree p. �

Note that, when given two Artin-Schreier polynomials ℘1(x) =
xp − x − a and ℘2(x) = xp − x − b for a, b ∈ F , ν(a) = ν(b) does
not imply the extensions generated by ℘1 and ℘2 are isomorphic. If
the constant terms a and b differ by a function of the form cp − c for
c ∈ F , then ℘1 and ℘2 will generate isomorphic extensions.

5. Example. We utilize the results proven in the paper to classify
all degree n = 10 field extensions L/F where F = Fp((T )) with p ≡ ±3
(mod 10). We have L/F is necessarily one of the following:
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(1) a degree 10 unramified extension,
(2) a degree 2 totally tamely ramified extension of a degree 5

unramified extension,
(3) a degree 5 totally tamely ramified extension of a degree 2

unramified extension,
(4) or a degree 10 totally tamely ramified extension.

From Theorem 3.1, the unramified portion of each case is unique.
These extensions are formed by adjoining a root of the cyclotomic

polynomial xpf − x and have Galois group isomorphic to Z/fZ. To
compute a defining polynomial for these extensions, see [4, page 587]
which uses an algorithm to find irreducible polynomials in the ring
Fp[x] that can be applied to the polynomial ring over Fp((T )).

For the totally tamely ramified portion of the extensions, it is
necessary to use a formula similar to the one for the characteristic zero
case outlined in [11]. By Theorem 4.9, there are e distinct, but not
necessarily non-isomorphic, degree e extensions. By Theorem 4.10 for
g = gcd(e, pf − 1) there are g non-isomorphic totally tamely ramified
extensions of degree e, and the defining polynomials are in the form
xe − ζrπF for 0 ≤ r ≤ g − 1. Thus, for case (1) there is one unique
extension, and there are gcd (2, p5 − 1) = 2, gcd (5, p2 − 1) = 1,
gcd (10, p1 − 1) = 2, non-isomorphic extensions for cases (2), (3) and
(4), respectively. In total, there are six non-isomorphic extensions of
degree 10 for such p.

To calculate the Galois group of each of these extensions, it is
necessary to use a lemma found in [14, pages 66–67]:

Lemma 5.1. Let F be a field of characteristic p. Let L/F be a Galois
extension with Galois group G, and let ML denote the maximal ideal
of the integers in L. For i ≥ −1, let Gi be the ith ramification group.
Let U0 be the units in L, and for i ≥ 1, let Ui = 1 + (πi

L), where πL is
the generator of ML.

(a) For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.
(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the

group of roots of unity in the residue field of L. Its order is prime
to p.

(c) The quotients Gi/Gi+1 for i ≥ 1 are abelian groups and are direct
products of cyclic groups of order p. The group G1 is a p-group.
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(d) The group G0 is the semi-direct product of a cyclic group of order
prime to p with a normal subgroup whose order is a power of p.

(e) The groups G0 and G are both solvable.

The GAP package [6] in Sage [13] can be used to find possible Galois
groups as described for extensions of Qp in [1, 2, 3]. For small degrees,
the online L-functions and Modular Forms Database (LMFDB) [10]
can also be used to find possible Galois groups with the necessary
properties. The same technique in finding the Galois group for the
p-adic case can be applied to the function field case. Consider one of
the case (2) extensions. As mentioned above, one can use the methods
described in [4, page 587] to efficiently find a defining polynomial for
K/F . For example, we find that x5+2x+1 is a defining polynomial for
K/F in the case p = 3. By Theorem 4.10 defining polynomials for the
two non-isomorphic case (2) extensions are given by x2−T and x2−ζT
where T is a uniformizer in F and consequently a uniformizer for K/F
and ζ is a primitive p5 − 1st root of unity. We will use Lemma 5.1 to
discuss the properties of the Galois group and find the Galois group for
a case (2) extension with x2 − T being a defining polynomial for L/K.

The Galois group of L/K is a solvable subgroup of Sn, or in this case
S10. There are 24 solvable subgroups of S10. The Galois group will have
a subfield corresponding to G/G0, the Galois group of the unramified
intermediate extension. This G/G0 must be isomorphic to Z/5Z since
the Galois group of an unramified extension is always isomorphic to
Z/fZ. From Lemma 5.1 (a), G0/G1 is isomorphic to Aut (L/K) which
is necessarily isomorphic to Z/2Z since L/K is a degree two extension.
Note that Z/2Z is cyclic and of order prime to 5. In this particular
case, since Gi is isomorphic to the trivial group for i ≥ 1, G0

∼= G0/G1.
Thus, the Galois group must have a normal subgroup isomorphic to
Z/2Z. The only group which fits these criteria is Z/10Z. Below is a
table listing the Galois groups for all six degree 10 extensions:

Case e f Gal (L/F )

1 1 10 Z/10Z
2 2 5 Z/10Z
2 2 5 Z/10Z
3 5 2 F5

4 10 1 F5 × Z/2Z
4 10 1 F5 × Z/2Z
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Note that F5 is the Frobenius group of order 20 which is isomorphic
to a semidirect product Z/5Z n Z/4Z ∼= Z/5Z nAut (Z/5Z).

The same methods of finding the Galois group of L/F can be applied
to intermediate extensions. The following table contains information
about the intermediate unramified and totally tamely ramified exten-
sions in the case that p = 3.

Case e f Gal (K/F ) Polynomial Gal (L/K) Polynomial
for K/F for L/K

1 1 10 Z/10Z x10 + 2x2 + 1
2 2 5 Z/5Z x5 + 2x+ 1 Z/2Z x2 − T
2 2 5 Z/5Z x5 + 2x4 + 2x+ 2 Z/2Z x2 − ζ242T
3 5 2 Z/2Z x2 + x+ 2 F5 x5 − T

4 10 1 F5 × Z/2Z x10 − T
4 10 1 F5 × Z/2Z x10 − ζ2T
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