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CHARACTERIZATIONS OF LINEAR WEINGARTEN
SPACELIKE HYPERSURFACES IN LORENTZ SPACE

FORMS
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ABSTRACT. In this article, we deal with complete lin-
ear Weingarten spacelike hypersurfaces (that is, complete
spacelike hypersurfaces whose mean and scalar curvatures
are linearly related) immersed in a Lorentz space form. By
assuming that the mean curvature attains its maximum and
supposing appropriated restrictions on the norm of the trace-
less part of the second fundamental form, we apply Hopf’s
strong maximum principle in order to prove that such a
spacelike hypersurface must be either totally umbilical or
isometric to a hyperbolic cylinder of the ambient space.

1. Introduction and statements of the main results. Let Ln+1
1

be an (n + 1)-dimensional Lorentz space, that is, a semi-Riemannian
manifold of index 1. When the Lorentz space Ln+1

1 is simply connected
and has constant sectional curvature c, it is called a Lorentz space form,
and we will denote it by Ln+1

1 (c). The Lorentz-Minkowski space Ln+1,
the de Sitter space Sn+1

1 and the anti-de Sitter space Hn+1
1 are the

standard Lorentz space forms of constant sectional curvature 0, 1 and
−1, respectively. We also recall that a hypersurface Mn immersed in a
Lorentz space Ln+1

1 is said to be spacelike if the metric on Mn induced
from that of the ambient space Ln+1

1 is positive definite.

The last few decades have seen a steadily growing interest in the
study of spacelike hypersurfaces of Lorentz manifolds. Apart from
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physical motivations, from the mathematical point of view this is
mostly due to the fact that such hypersurfaces exhibit nice Bernstein-
type properties, and one can truly say that the first remarkable results
in this direction were the rigidity theorems of Calabi in [5] and Cheng
and Yau in [9], who showed (the former for n ≤ 4, and the latter for
general n) that the only maximal (that is, with zero mean curvature)
complete, noncompact, spacelike hypersurfaces of the Minkowski space
Ln+1 are the spacelike hyperplanes. Later on, Nishikawa [16] obtained
similar results for other Lorentz manifolds. For instance, he proved
that a complete maximal spacelike hypersurface in de Sitter space Sn+1

1

must be totally geodesic (that is, its second fundamental form vanishes
identically).

As for the case of the de Sitter space, Goddard [11] conjectured that
every complete spacelike hypersurface with constant mean curvature H
in Sn+1

1 should be totally umbilical. Although the conjecture turned out
to be false in its original statement, it motivated a great deal of work by
several authors trying to find a positive answer to the conjecture under
appropriate additional hypotheses. For instance, in [2] Akutagawa
showed that Goddard’s conjecture is true when H2 ≤ 1 in the case
n = 2, and when H2 < 4(n − 1)/n2 in the case n ≥ 3. Afterwards,
Montiel [15] solved Goddard’s problem in the compact case, proving
that the only closed spacelike hypersurfaces in Sn+1

1 with constant mean
curvature are the totally umbilical hypersurfaces.

Another Goddard-like problem is to study complete spacelike hy-
persurfaces immersed in a Lorentz space with constant scalar curva-
ture. Many authors, such as Brasil, Colares and Palmas [4], Camargo,
Chaves and Sousa Jr. [6], Caminha [7] and Hu, Scherfner and Zhai [13],
have worked on this direction.

More recently, Hou and Yang [12] have extended the ideas of
Li, Suh and Wei [14] in order to obtain characterization results for
linear Weingarten spacelike hypersurfaces into the de Sitter space Sn+1

1 ,
that is, spacelike hypersurfaces of Sn+1

1 whose mean curvature H and
normalized scalar curvature R satisfy the relation R = aH+b, for some
constants a, b ∈ R.

Here, motivated by the works above described, our aim is to estab-
lish characterization theorems concerning complete linear Weingarten
spacelike hypersurfaces immersed in a Lorentz space form Ln+1

1 (c) of
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constant sectional curvature c = 1, 0,−1. Under the assumption that
the mean curvature attains its maximum along such a spacelike hy-
persurface and, supposing appropriated restrictions on the norm of the
traceless part Φ of its second fundamental form, we prove the following
results:

Theorem 1.1. Let Mn be a complete linear Weingarten spacelike
hypersurface in Sn+1

1 , n ≥ 3, such that R = aH+b with b < 1. Suppose
that 0 < R < 1− 2

n . If H attains its maximum on Mn and

(1) sup
M

|Φ|2 ≤ n(n− 1)R2

(n− 2)((n− 2)− nR)
,

then

(i) either |Φ| ≡ 0 and Mn is totally umbilical;

(ii) or |Φ|2 ≡ n(n− 1)R2

(n− 2)((n− 2)− nR)
and Mn is isometric to a hy-

perbolic cylinder H1(c1) × Sn−1(c2), where c1 < 0, c2 > 0 and
1
c1

+ 1
c2

= 1.

Theorem 1.2. Let Mn be a complete linear Weingarten spacelike
hypersurface in Ln+1

1 (c), n ≥ 3, such that R = aH + b with b < c.
Suppose that R < 0, when c = 1 or c = 0, and that R < (1− 2

n )c, when
c = −1. If H attains its maximum on Mn and

(2) inf
M

|Φ|2 ≥ n(n− 1)R2

(n− 2)((n− 2)c− nR)
.

Then

|Φ|2 ≡ n(n− 1)R2

(n− 2)((n− 2)c− nR)

and Mn is isometric to:

(a) S1(c1) × Hn−1(c2), where c1 > 0, c2 < 0 and 1
c1

+ 1
c2

= 1, when
c = 1;

(b) R×Hn−1(c2), where c2 < 0, when c = 0;
(c) H1(c1)×Hn−1(c2), where c1 < 0, c2 < 0 and 1

c1
+ 1

c2
= −1, when

c = −1.
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The proofs of Theorems 1.1 and 1.2 are given in Section 3, jointly
with a corollary of Theorem 1.1 related to the compact case (cf.,
Corollary 3.4).

2. Preliminaries. In this section, we will introduce some basic facts
and notation that will appear in the paper. In what follows, we will
suppose that all spacelike hypersurfaces considered are connected.

Let Mn be an n-dimensional spacelike hypersurface immersed in
a Lorentz space form Ln+1

1 (c) with constant sectional curvature c ∈
{−1, 0, 1}. We choose a local field of semi-Riemannian orthonormal
frame {e1, . . . , en+1} in Ln+1

1 (c), with dual coframe {ω1, . . . , ωn+1},
such that, at each point of Mn, e1, . . . , en are tangent to Mn and en+1

is normal to Mn. We will use the following convention for the indices:

1 ≤ A,B,C, . . . ≤ n+ 1, 1 ≤ i, j, k, . . . ≤ n.

In this setting, the Lorentz metric of Ln+1
1 (c) is given by

ds2 =
∑
A

ϵA ω2
A =

∑
i

ω2
i − ω2

n+1,

where ϵi = 1 and ϵn+1 = −1. Denoting by {ωAB} the connection forms
of Ln+1

1 (c), we have that the structure equations of Ln+1
1 (c) are given

by:

(3) dωA =
∑
B

ϵB ωAB ∧ ωB, ωAB + ωBA = 0,

(4) dωAB =
∑
C

ϵC ωAC ∧ ωCB − 1

2

∑
C,D

KABCD ωC ∧ ωD,

where
KABCD = ϵAϵB c (δACδBD − δADδBC).

Next, we restrict all the tensors to Mn. First of all, ωn+1 = 0 on
Mn; so

∑
i ωn+1i∧ωi = dωn+1 = 0 and, by Cartan’s lemma [8] we can

write

(5) ωn+1i =
∑
j

hijωj , hij = hji.
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This gives the second fundamental form of Mn, B =
∑

ij hijωiωjen+1.

Furthermore, the mean curvature H of Mn is defined by H = 1
n

∑
i hii.

The structure equations of Mn are given by

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0,(6)

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,(7)

where Rijkl are the components of the curvature tensor of Mn. More-
over, using the previous structure equations, we obtain the Gauss equa-
tion

(8) Rijkl = c (δikδjl − δilδjk)− (hikhjl − hilhjk).

The Ricci curvature and the normalized scalar curvature of Mn are
given, respectively, by

(9) Rij = c(n− 1)δij − nHhij +
∑
k

hikhkj

and

(10) R =
1

n(n− 1)

∑
i

Rii.

From (9) and (10), we obtain

(11) |B|2 = n2H2 + n(n− 1)(R− c),

where |B|2 =
∑

i,j h
2
ij is the square of the length of the second

fundamental form B of Mn.

Set Φij = hij −Hδij . We will also consider the following symmetric
tensor

Φ =
∑
i,j

Φijωi ⊗ ωj .

Let |Φ|2 =
∑

i,j Φ
2
ij be the square of the length of Φ. It is easy to check

that Φ is traceless and, from (11), we get

(12) |Φ|2 = |B|2 − nH2 = n(n− 1)H2 + n(n− 1)(R− c).
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Moreover, with respect to a (local) orthonormal frame {e1, . . . , en}
on Mn such that hij = λiδij , we have that Φij = µiδij and, with a
straightforward computation, we verify that∑

i

µi = 0,∑
i

µ2
i = |Φ|2,(13) ∑

i

µ3
i =

∑
i

λ3
i − 3H|Φ|2 − nH3.

The components hijk of the covariant derivative ∇B satisfy

(14)
∑
k

hijkωk = dhij +
∑
k

hikωkj +
∑
k

hjkωki.

The Codazzi equation and the Ricci identity are, respectively, given
by

(15) hijk = hikj

and

(16) hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl,

where hijk and hijkl denote the first and the second covariant deriva-
tives of hij .

The Laplacian ∆hij of hij is defined by ∆hij =
∑

k hijkk. From
equations (15) and (16), we obtain that

(17) ∆hij =
∑
k

hkkij +
∑
k,l

hklRlijk +
∑
k,l

hliRlkjk.

Since

∆|B|2 = 2

(∑
i,j

hij∆hij +
∑
i,j,k

h2
ijk

)
,



LINEAR WEINGARTEN SPACELIKE HYPERSURFACES 19

from (17), we get

1

2
∆|B|2 = |∇B|2 +

∑
i,i,k

hijhkkij +
∑
i,j,k,l

hijhlkRlijk(18)

+
∑
i,j,k,l

hijhilRlkjk.(19)

Consequently, taking a (local) orthonormal frame {e1, . . . , en} on
Mn such that hij = λiδij , from equation (18), we obtain the following
Simons-type formula

(20)
1

2
∆|B|2 = |∇B|2 +

∑
i

λi(nH),ii +
1

2

∑
i,j

Rijij(λi − λj)
2.

Now, let ϕ =
∑

i,j ϕijωi ⊗ ωj be a symmetric tensor on Mn defined
by

ϕij = nHδij − hij .

Following Cheng and Yau [10], we introduce an operator � associated
to ϕ acting on any smooth function f by

(21) �f =
∑
i,j

ϕijfij =
∑
i,j

(nHδij − hij)fij .

Since ϕij is divergence-free, it follows from [10] that the operator �
is self-adjoint relative to the L2 inner product of Mn, that is,

∫
M

f�g =

∫
M

g�f,

for any smooth functions f and g on Mn.

Setting f = nH in (21) and taking a local frame field {e1, . . . , en} on
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Mn such that hij = λiδij , from equation (11), we obtain the following:

�(nH) = nH∆(nH)−
∑
i

λi(nH),ii

=
1

2
∆(nH)2 −

∑
i

(nH)2,i −
∑
i

λi(nH),ii

=
1

2
∆|B|2 − n(n− 1)

2
∆R− n2|∇H|2

−
∑
i

λi(nH),ii.

Consequently, taking into account equation (20), we get

�(nH) = |∇B|2 − n2|∇H|2 − n(n− 1)

2
∆R(22)

+
1

2

∑
i,j

Rijij(λi − λj)
2.

3. Proofs of Theorems 1.1 and 1.2. In order to prove our results,
we will need some auxiliary lemmas. The first one is a classic algebraic
lemma due to Okumura in [17], and completed with the analysis of the
equality case on paper [3] due to Alencar and do Carmo.

Lemma 3.1. Let µ1, . . . , µn be real numbers such that
∑

i
µi = 0 and∑

i
µ2
i = β2, with β ≥ 0. Then, we have

(23) − (n− 2)√
n(n− 1)

β3 ≤
∑
i

µ3
i ≤ (n− 2)√

n(n− 1)
β3.

Moreover, equality holds in (23) if, and only if, either at least (n − 1)
of the numbers µi are equal.

To obtain the second lemma, we will reason as in the proof of Lemma
2.1 of [14].

Lemma 3.2. Let Mn be a linear Weingarten spacelike hypersurface in
a space form Ln+1

1 (c), such that R = aH+b for some a, b ∈ R. Suppose
that

(24) (n− 1)a2 + 4n(c− b) ≥ 0.
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Then

(25) |∇B|2 ≥ n2|∇H|2.

Moreover, if the inequality (24) is strict and the equality holds in (25)
on Mn, then H is constant on Mn.

Proof. Since we are supposing that R = aH+ b, from equation (11),
we get

2
∑
i,j

hijhijk =
(
2n2H + n(n− 1)a

)
H,k.

Thus,

4
∑
k

(∑
i,j

hijhijk

)2

=
(
2n2H + n(n− 1)a

)2 |∇H|2.

Consequently, using the Cauchy-Schwartz inequality, we obtain that

4|B|2|∇B|2 = 4

(∑
i,j

h2
ij

)(∑
i,j,k

h2
ijk

)
(26)

≥ 4
∑
k

(∑
i,j

hijhijk

)2

=

(
2n2H + n(n− 1)a

)2

|∇H|2.

On the other hand, since R = aH + b, from equation (11), we easily
see that(
2n2H + n(n− 1)a

)2
= n2(n− 1)

(
(n− 1)a2 + 4n(c− b)

)
+ 4n2|B|2.

Consequently, from (26), we have

|B|2|∇B|2 ≥ n2|B|2|∇H|2.

Therefore, we obtain either |B| = 0 and |∇B|2 = n2|∇H|2 or |∇B|2 ≥
n2|∇H|2. Moreover, if (n − 1)a2 + 4n(c − b) > 0, from the previous
identity we get that (2n2H + n(n− 1)a)2 > 4n2|B|2. Consequently, if
|∇B|2 = n2|∇H|2 holds on Mn, from (26) we conclude that ∇H = 0
on Mn and, hence, H is constant on Mn. �
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In what follows, we will consider Cheng and Yau’s modified operator

(27) L = �+
n− 1

2
a∆.

Related to such an operator, we have the following sufficient criteria
of ellipticity for the L operator.

Lemma 3.3. Let Mn be a linear Weingarten spacelike hypersurface
immersed in a Lorentzian space form Ln+1

1 (c), such that R = aH + b
with b < c. Then, L is elliptic.

Proof. From equation (11), since R = aH + b with b < c, we easily
see that H cannot vanish on Mn and, by choosing the appropriate
Gauss mapping, we may assume that H > 0 on Mn.

Let us consider the case that a = 0. Since R = b < c, from equation
(11), if we choose a (local) orthonormal frame {e1, . . . , en} on Mn such
that hij = λiδij , we have that

∑
i<j λiλj > 0. Consequently,

n2H2 =
∑
i

λ2
i + 2

∑
i<j

λiλj > λ2
i

for every i ∈ {1, . . . , n} and, hence, we have that nH−λi > 0 for every
i. Therefore, in this case, we conclude that L is elliptic.

Now, suppose that a ̸= 0. From equation (11), we get that

a =
1

n(n− 1)H

(
|B|2 − n2H2 + n(n− 1)(c− b)

)
.

Consequently, for every i ∈ {1, . . . , n}, with a straightforward algebraic
computation, we verify that

nH − λi +
n− 1

2
a

= nH − λi +
1

2nH

(
|B|2 − n2H2 + n(n− 1)(c− b)

)
=

1

2nH

(∑
j ̸=i

λ2
j + (

∑
j ̸=i

λj)
2 + n(n− 1)(c− b)

)
.

Therefore, since b<c, we also conclude in this case that L is elliptic. �
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In what follows, we present some computations which are common
for the proofs of Theorems 1.1 and 1.2. At this point, we assume that
Mn is a complete linear Weingarten spacelike hypersurface immersed
in a Lorentzian space form Ln+1

1 (c), n ≥ 3, such that R = aH + b with
(n− 1)a2 + 4n(c− b) ≥ 0.

In this setting, let us choose a (local) orthonormal frame {e1, . . . , en}
on Mn such that hij = λiδij . Since R = aH + b, from (22) and (27),
we have that

(28) L(nH) = |∇B|2 − n2|∇H|2 + 1

2

∑
i,j

Rijij(λi − λj)
2.

Thus, since from Gauss equation (8) we have that Rijij = (c−λiλj)(1−
δij), we can rewrite equation (28) in the following way

(29) L(nH) = |∇B|2−n2|∇H|2+nc(|B|2−nH2)+ |B|4−nH
∑
i

λ3
i .

Consequently, taking into account (13), from (29), we get

L(nH) = |∇B|2 − n2|∇H|2 − nH
∑
i

µ3
i(30)

+ |Φ|2(|Φ|2 − nH2 + nc).

Thus, by applying Lemmas 3.1 and 3.2, from (30), we have

(31) L(nH) ≥ |Φ|2
(
|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| − nH2 + nc

)
.

On the other hand, from (12), we obtain

(32) H2 =
1

n(n− 1)
|Φ|2 − (R− c).

As observed at the beginning of the proof of Lemma 3.3, we can assume
that H > 0 on Mn. Thus,

(33) H =
1√

n(n− 1)

√
|Φ|2 − n(n− 1)(R− c).

Hence, from (31), (32) and (33), we get

(34) L(H) ≥ 1

n(n− 1)
|Φ|2PR (|Φ|) ,
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where

(35) PR(x) = (n−2)x2−(n−2)x
√

x2 − n(n− 1)(R− c)+n(n−1)R.

Furthermore, we observe that PR(x) = 0 if, and only if,

(36) x2 =
n(n− 1)R2

(n− 2)((n− 2)c− nR)
.

Now, we proceed with the proof of Theorem 1.1:

Proof of Theorem 1.1.

Initially, since we are supposing that 0 < R < 1−2/n, from (35) and
(36), we obtain that PR(0) = n(n − 1)R > 0, and the function PR(x)
is strictly decreasing for x ≥ 0, with PR(x̃) = 0 at

x̃ = R

√
n(n− 1)

(n− 2)((n− 2)− nR)
> 0.

Thus, hypothesis (1) ensures that 0 ≤ |Φ| ≤ x̃ and PR(|Φ|) ≥ 0. Then,
from (34), we have

(37) L(H) ≥ 1

n(n− 1)
|Φ|2PR (|Φ|) ≥ 0.

Since we are supposing b < 1, Lemma 3.3 guarantees that L is elliptic.
So, since we are also assuming that H attains its maximum on Mn,
from (37) we can apply Hopf’s strong maximum principle in order to
conclude that H is constant on Mn.

If |Φ| < x̃, then from (37), we have that |Φ| = 0 and, hence, Mn is
totally umbilical.

If |Φ| = x̃, since the equality holds in (23) of Lemma 3.1, we con-
clude that Mn is either totally umbilical or an isoparametric spacelike
hypersurface with two distinct principal curvatures, one of which is
simple.

Therefore, by the classical congruence theorem due to Abe, Koike
and Yamaguchi (cf., [1, Theorem 5.1]) and, since we are supposing
R > 0, we conclude that either |Φ| = 0 and Mn is totally umbilical, or
|Φ| = x̃ and Mn is isometric to a hyperbolic cylinder H1(c1)×Sn−1(c2),
where c1 < 0, c2 > 0 and 1

c1
+ 1

c2
= 1. �
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Since the operator L is self-adjoint relative to the L2 inner product
of the spacelike hypersurface Mn, from inequality (37) and taking into
account the description of the totally umbilical spacelike hypersurfaces
of Sn+1

1 given by Montiel in [15, Example 1], we also get the following
result in the de Sitter space:

Corollary 3.4. Let Mn be a compact linear Weingarten spacelike
hypersurface in Sn+1

1 , n ≥ 3, such that R = aH + b with (n − 1)a2 +
4n(1− b) ≥ 0. Suppose that 0 < R < 1− 2

n . If

sup
M

|Φ|2 <
n(n− 1)R2

(n− 2)((n− 2)− nR)
,

then |Φ| ≡ 0 and Mn is isometric to Sn, up to scaling.

We conclude our paper by presenting the proof of Theorem 1.2.

Proof of Theorem 1.2. First, since we are assuming R < 0, we have
that PR(0) = n(n − 1)R < 0, and the function PR(x) is strictly
increasing for x ≥ 0, with PR(x̂) = 0 at

x̂ = −R

√
n(n− 1)

(n− 2)((n− 2)c− nR)
> 0.

Thus, the hypothesis (2) guarantees that |Φ| ≥ x̂ > 0 and PR(|Φ|) ≥ 0.
Hence, from (34), we obtain

(38) L(H) ≥ 1

n(n− 1)
|Φ|2PR (|Φ|) ≥ 0.

In a similar way as the proof of Theorem 1.1, since we are supposing
that b < c, we can apply Hopf’s strong maximum principle to guarantee
that H is constant on Mn. Moreover, since we are assuming that
|Φ| > 0, from (38), we obtain that L(H) ≥ 0 if, and only if, |Φ| = x̂.

Therefore, Lemma 3.1 assures that Mn is an isoparametric spacelike
hypersurface with two distinct principal curvatures, one of which is
simple and, hence, using again [1, Theorem 5.1] and taking into account
that R < 0, we conclude that |Φ| = x̂ and Mn must be isometric to:

(a) S1(c1) × Hn−1(c2), where c1 > 0, c2 < 0 and 1
c1

+ 1
c2

= 1, when
c = 1;
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(b) R×Hn−1(c2), where c2 < 0, when c = 0;
(c) H1(c1) ×Hn−1(c2), where c1 < 0, c2 < 0 and 1

c1
+ 1

c2
= −1, when

c = −1. �
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Email address: marco.velasquez@pq.cnpq.br


