ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 4, 2014

ASYMPTOTIC BEHAVIOR OF
A PLANAR DYNAMIC SYSTEM

GRO HOVHANNISYAN

ABSTRACT. We investigate the asymptotic solutions of
the planar dynamic systems and the second order equations
on a time scale by using a new version of Levinson’s as-
ymptotic theorem. In this version the error estimate is given
in terms of the characteristic (Riccati) functions which are
constructed from the phase functions of an asymptotic solu-
tion. It means that the improvement of the approximation
depends essentially on the asymptotic behavior of the Riccati
functions. We describe many different approximations using
the flexibility of this approach. As an application we derive
the analogue of D’Alembert’s formula for the one dimen-
sional wave equation in a discrete time.

1. Introduction. Consider the planar dynamic system

t) an(t)

1.1 Ay = A1), At) = an(t) - an . t>t
L) Ao =awe. am= () ol :

on a time scale T (an arbitrary nonempty closed subset of the real
numbers). Here ¢ (t) is the delta derivative on a time scale ([3, 17]).

The theory of asymptotic integration of systems of differential equa-
tions was developed in [10, 12, 16, 23, 26]. In 1948, Levinson ([23])
discovered a powerful and simple method of finding asymptotic so-
lutions. This method is based on splitting matrix A(¢) into a sum
of diagonal and perturbation matrices. Levinson proved that, if the
Lqi-norm of perturbation matrix is bounded, then the diagonal ma-
trix gives the asymptotic solution of the system. Levinson’s result
was further developed in [12, 14, 15] by using diagonalization. This
theory was extended for difference equations in [2, 3, 11, 25]. The
theory of asymptotic solutions (based on Levinson’s asymptotic theo-
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rem) of dynamic systems on a time scale had been developed in papers
[5, 4, 6, 9, 13, 24].

In [18, 20], generalizing Levinson’s method, the author suggested
splitting the matrix A(t) into two matrices: A(t) = S(t) + P(t), where
S(t) = ®2(t)®~1(t) is the solvable matrix (®(¢) is an unknown approx-
imate fundamental matrix that is constructed from some phase func-
tions 601,0s), and P(t) is a perturbation matrix. The key new formula
(see (5.8) below) in our approach is that the perturbation P(t) could be
written in terms of the characteristic (Riccati) functions (see (2.1) be-
low). Using this formula, we show that the error of the approximation
is small if the weighted L;-norm of the Riccati functions is bounded
(see [18, 20] or Theorem 2.2 below). This estimate shows that the
improvement of the approximation depends essentially on the behavior
of the Riccati functions. The advantage of our approach in compari-
son to Levinson’s theorem is that we obtain asymptotic representations
not only for the solutions (position functions in physics applications),
but for the derivatives (velocities) as well, and we don’t use the di-
agonal structure of the fundamental matrix ®(¢) or diagonalization at
all. Since the formulas for the n-dimensional non-autonomous systems
are complicated, we consider only the planar dynamic system, which
includes important second order non-autonomous discrete and contin-
uous dynamic equation. Consideration of more involved n-dimensional
non-autonomous systems may be a topic for future study. Note that
it could be shown (see [21]) that the error of asymptotic solutions of
three dimensional non-autonomous systems depends on characteristic
(Weierstrass) functions, which are very hard to study since they are
highly non-linear.

In [18, 19, 20] the Riccati function approach was used for the study
of stability. In [22], we applied this method to study asymptotic
solutions of non-autonomous Dirac system. Note that the Riccati
function approach is essential in oscillation theory as well (see [21]).

Example 1.1. Consider the Cauchy problem for the one dimensional
difference-differential wave equation

(1.2) uﬁA(as) = (a% + bp)Unze () + Cpne(x), n=1,2,...,

(1.3) ui(x) = fx),  ua(z) =w(z),
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for x € R,, where AA is the second forward difference operator by the
time variable ¢ = n, R, is the set of real numbers, wu,,(z) is the first
derivative of u,, (z) by x variable, w,.. () is the second derivative by x,
a is a positive number (speed of the wave), b,, ¢, are given sequences,
f(z) is a tempered distribution, that is, f(x) € S'(R,) and S(R,) is
Schwartz’s space.

Using Fourier transformation by =z,
(1.4) Flun(@)] = () = [ e"uno) do.

we get from (1.2) the difference dynamic equation
(1.5) 2 (€) + (€20 + €2 + ien )i (€) = 0,
W) =16, wE =

It is known that Fourier transformation and its inverse map S’'(R;)
onto S’(R;), and we are assuming u,, € S’(R,). If

(1.6) it <00, Y el < o0,
k=1 k=1

then solutions of (1.5) have asymptotic representations
(1.7)
u(t, §) = [C1(8) + e1n(§)] singg(n) + [C2(£) + 2n(§)] cosag (1),
(1.8)
Uy (€) = a€[Crn(€) + €10 ()] cosag (1) + af[Con (€) + €2, (€)] singg (n),

(1.9) nl;ngo €jn(§) =0, uniformly for all e Re, j=1,2,...,

(see Theorem 3.3 below). Here Cy 2 € S'(R,) are arbitrary functions,
singe(n) and cosqe(n) are trigonometric functions (see [7]) on a discrete
time scale Z.

Using inverse Fourier transformation, one can derive from (1.7) the
discrete time analogue of D’Alembert’s formula:

(1.10) un(2) i/mfwmamMMmme

T o oo

nlingo ean(§) = 0.
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Similar asymptotic representations may be written for the multi-
dimensional wave equation. The usefulness of such asymptotic rep-
resentations for the study of the behavior of solutions of dynamic
equations of mathematical physics ([22]) is well known, but there are
no results for non-autonomous multidimensional difference-differential
equations.

If condition (1.6) fails, then asymptotic behavior of solutions of (1.2)
may be totally different, which is why in this paper we discuss many
different asymptotic solutions.

This example shows that, using the error estimate described here,
one can obtain an asymptotic representation for solutions of multi-
dimensional equations of mathematical physics for discrete or continu-
ous time.

In this paper we will show how to find different asymptotic repre-
sentations of solutions of (1.1) by using the Riccati function approach.
Note that some asymptotic approximations described here are new even
for differential equations (see, for example, Theorem 2.4 and Theo-
rem 3.5 below).

Recall some basic definitions from the theory of time scales [7, 17].

If the time scale T has a left-scattered minimum m, then T* =
T — {m}; otherwise, T¥ = T. Here we consider the time scales with
t > tg, and sup T = oo.

For t € T, we define the forward jump operator
(1.11) o(t) =inf{s € T, s > t}.
The forward graininess function p : T — [0, 00) is defined by

(1.12) u(t) = o(t) —t.

If o(t) > t, we say that ¢ is right-scattered. If ¢t < oo and o(t) = t, then
t is called right-dense.

For f: T — R and t € T define the delta (see [2]) derivative f2(t)
to be the number (provided it exists) with the property that, for given
any € > 0, there exist a § > 0 and a neighborhood U = (¢t —6,t4+§)NT
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of ¢ such that
(1.13) £7(8) = f(s) = FA@)(0(t) — 8)| < elo(t) — s,

for all s € U,

(1.14) fot) = fo().

The set of rd-continuous functions in To = T )(tg,00) is denoted
by C,q. Let C},d be a set of delta differentiable functions in T( such
that their delta derivatives are C,4 functions. We assume that A(¢) is
2 x 2 matrix function from C},. We say that a function f: To — R is
regressive if 1+ u(t) f(¢) # 0 for all t € Ty.

2. Asymptotic solutions of the dynamic systems in terms of
the phase functions. Introduce characteristic (Riccati) function of
system (1.1)

(2.1)

CAg(t) = CA(Or)
af. 9k —all A
=12 (9,3 — 0, Tr(A) + det(A) + a12(1 + pby) () ),
ai2 ai2
and auxiliary function

_ CAy(t) — CAs(t)

2.2 HA(t
(2.2) (t) 6, 0, ;
or
(2.3) HA®) =2 ;991
0 o afy A A
+ 207 - Tr(A) - @(1 + pasz) + p(07 —aiy),

where we suppressed the time variable ¢, and 0 = o(t) is the forward
jump operator,
01(t) —
(2.4) o(t) = w
(2.5)
Tr (A(t)) = an(t) + CLQQ(t)7 det(A(t)) = all(t)agg(t) — alg(t)agl(t)7
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(2.6) Wlai,a12] = au(t)alAQ(t) - aﬁ (t)ai2(t).

Asymptotic behavior of solutions of system (1.1) could be described
in terms of phase and characteristic functions by using representation
of the fundamental matrix ®(t)

o 1 1 61(t) 0
27) () = (Ul (1 U2<t>) ( 0 62(75)) ’
_0i) —an(t) .
Uj(t) = Tan®) J=12,
where
(2.8)
e;(t) = eq, (t,t0) = exp/t i Log 1 +ZWMS, j=12...,

are exponential functions on a time scale ([7, 17]). Phase functions
0;, 7 =1,2,..., may be found as asymptotic solutions of characteristic
equations C'A;(t) = CA(9;) = 0.

Note that the diagonal fundamental matrix

(el(gt) ez?t))

is used in Levinson’s asymptotic theorem.

We introduce the 2 x 2 matrix function
(2.9) K(t) = (27(1)) " (A(H)D(t) — 22(1)),

with Euclidean norm

(2.10) K@) =

Theorem 2.1 ([19]). Assume there exists a matriz-function ® € C},
such that ®7(t) is invertible and || K (t)|| € Crq. Then every solution of
(1.1) may be represented in the form

(2.11) p(t) = 2()[C + ()],
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where

(2.12) Il < lc] ( e | h ||K<s>||As).

Using the structure of fundamental matrix (2.7), one can prove the
following theorem.

Theorem 2.2. [20] Assume aia(t) # 0, A € C}, and there exist
regressive phase functions 612 € C}; such that ®7(t) is invertible, that
18,

(2.13) 9"(15);;2((2))65(75) ’ 40,
0(t) = w t > to,
and
(2.14) M(t) € Cpq, /Oo M(s)As < 0o, t>to,
where
_ arz(o(t))e; (H)CA; (1)
(2.15) M = 00, | 00 (0)er(o (1)) ‘

Then every solution of (1.1) may be represented in the form (2.7),
(2.11), where

(2.16) le@)| < €] ( —1+exp /too cM(s)As).

To apply Theorem 2.2, one needs to find out the asymptotic funda-
mental matrix ®, with phase functions ¢; . To show how to do that
consider the simple second order equation:

(2.17) YA 4+ Q(t)(t) =0, teT, t>ty>0.

To find phase functions, one can solve approximately the characteristic
equation (see (3.5) below) of equation (2.17):

CL(61) = 07 (£)01(t) + 07 (t) + Q(t) = 0

for unknown phase functions 6, » considering the following basic cases.
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1. Bernoulli’s approximation: @(t) is small when ¢ — oo,
1
CL(61) = 07 (1)01(t) + 07 (1) + Q(t) ~ 6761 + 67 =0, 61(t) = "

2. Trigonometric function approximation: when t — oo, Q(t) — m?,

m is a positive number,

CL(6,) = 03(t) +m* =0, 6, =im, Oy = —im.

3. Linear equation approximation: 6 (¢)¢1(¢) is small when ¢t — oo,
t
CLO) =020 + Q) =0, ()=~ [ Q).
to

4. Eigenvalue first approximation: 65 (14-u6;) is small when ¢ — oo,
CL(y) = 01(t) + Q(t) =0, 01(t) =iV Q(1), ba(t) = —i/Q(1).

5. Eigenvalue second (JWKB) approximation:

015(0) = £iV/Q0 - 0

6. Eigenvalue third (Hartman-Wintner) approximation: 6;(t) =

iA(t)\/Q(t), A® is small when ¢ — oco.

By using Bernoulli’s approximation phase functions:

(218) B =AW, 0=~ P
Jo =T
where
(219)  PO()+ Pilt) = ~Tr(A() ~ plt)ad ()
aA
- S+ aaa(o)
(220)  R()= Q) PA() - PR),
7, de ail 4
Q) = = 21223(”) - a‘i’Q(t)(aug;) ’

from Theorem 2.2, we deduce the following theorem.
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Theorem 2.3. Assume aia(t) # 0, A(t) € C};, ai2(t) € C?,;, phase
functions 6012 given by (2.18) are regressive, conditions (2.13) and
(2.14) are satisfied, where

_ e Wane)RE 70 As
(221) M(t) - J:%}é a12(t)(1 + M(t)e] (t)) /to 1— Pl(S)M(S) )
(2.22) ot) = 2] = 01(1)

[EYOMO)

Then every solution of (1.1) may be represented in the form (2.7),
(2.11), (2.18), with the error estimate (2.16).

Example 2.1. From Theorem 2.3, it follows that if

(2.23) / T to(0|QM)|AL < oo,

to
then solutions of dynamic equation (2.17) may be written in the form
(2:24) ult) = [Cr+ a2 +Cateal®), wA(0) = 014;7051(15)
where
(2.25) lim g;(t) =0, j=1,2,....

t—o0

For the discrete case (T = Z), from the same theorem it follows that
if

(2.26) > k(k+ 1)Qk < oo,
k=1

then solutions of the forward second difference equation

(2.27) VRt Quin =0, n 21,

have asymptotic representation

(2.28) = (C1+e1n)n + C2 + €20, Vp =Cr+em, n>1,
where

(2.29) lim ¢;, =0, j=1,2

n—oo
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Note that condition (2.23) is stronger than the well-known condition
(see [9])

(2.30) / a(t)|Q(t)|At < oo
to
of asymptotic representation of solutions of (2.17) in the form

¢(t) =Cit+Cy+ 0(1), t — oo,

but under condition (2.23) we get asymptotic representation for the
first derivatives as well.

By using the linear equation approximation phase functions

(2.31) 0, (t) = —/t % — Pi(t),
O2(t) = 01(t) + — eA(tl,a(s)As ’

to 1—p(s)[Pf (s)+P1(s)+67 (s)]

01+ 09 (t) + PP (t) + Pu(t)
T 11— u)[PE(t) + Pi(t) + 05 (t)]

from Theorem 2.2 we deduce the following theorem.

(2.32) A()

Theorem 2.4. Assume aia(t) # 0, A(t) € Cl;, a2(t) € C2,, the
phase functions 01 2 given by (2.31) are regressive, and conditions

(2.33) L u(OPi(1) £0,
@1(Heal?) 40, t>t
a (t) ft ep(t,o(s)As ’ 0s
12 to 1—p(s)[Py (s)+P1(s)+67 (s)]

(2.14) are satisfied, where

(2.34)
afy(t)eg ' (t)

20(t)a12()[1 + p(t)6; ()]

b R(s)As 7 R(s)As
. / 1= u(s)Pr(s) / 1= p(s)Pr(s)

M(t) = max

b
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(2.35)

q(t) = b — b

1+6ip

1
- t  R(s)As t ea(t,o(s)As ‘
(1=nO PO =n(t) [, 28555 ) T e R

Then every solution of (1.1) may be represented in the form (2.7), (2.11)
(2.31), with the error estimate (2.16).

Example 2.2. For equation (2.17) with
Qt)y=1t*, plt)=0, -3<a<-25,

condition (2.14) is satisfied, and Theorem 2.4 is applicable, but Theo-
rem 2.3 is not, since (2.23) fails.

Remark 2.1. If, for a given function P(t), we define

_ ftto e—2/u(t,s) 2P;L(€3)AS> u(t) # 0,
(2.36) Pi(t) = {P(t), u(t) = 0.
then
(2.37) Py (t) 4+ Pi(t) = 2P(t).

3. Asymptotic solutions of the second order dynamic equa-
tions. Consider the second order equation on a time scale

(3.1) Lly] = ¢22(t) + (P (t) + Po(8))$> () + Q(1)v(t) = 0, t > to,
with complex valued coefficients P (t) and Q(t). Denote
(3:2) R(t) = Q(t) = PL(t) = P (1),

Note that, in continuous time scale T = R, the function R(t) is
invariant of the transformation ¥ (t) — wu(t)w(t).

The functions u;(t) are called asymptotic solutions of (3.1) if the
solutions 1 (t) of (3.1) may be represented in the form

P(t) = (C1 +e1(t))ui(t) + (C2 + e2(t))ua (t),
(3.3) PA() = (C + e1(£))ud (t) + (Cy 4 e2(8))ud(t),
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where

(3.4) lim g;(t) =0, j=1,2,....

t—o0

Define the characteristic functions CL;(t) = CL(6;), j =1,2,..., of
equation (3.1), and the auxiliary function HL(t)

oy - 22t
=02 (t) + 07 (1)6; () + (P7(t) + Pi(t))0;(t) + Q(1),
(3.5)  HL(t) = 9122 — Z%)(t)

Theorem 3.1. Assume P,,Q € C,q, and there exist regressive
complez-valued functions 0 2 € Ct . Such that the conditions

ot) = 01(t) — 02(t)

(36) |9(t)€1 (t,to)@g(t, t0)| 7’5 0, 5 ,  t>to,
(3.7 M(t) € Cpq, /OO M(s)As < o0, t > to,
are satisfied with
_ e (t)CL;(t)
(38) M) = 2%, 15570 + ()0 D)en® |

Then every solution of equation (3.1) may be represented in form (3.3),
(3.4), where

(39) uk(t) = ek(t) = egk (t, to), k = 1, 27

and error estimate (2.16) is true with the function M(s) given by (3.8).

Using Bernoulli’s approximation, we deduce from Theorem 3.1 the
following theorem.

Theorem 3.2. Assume P; € C’}d, Q € C,q, functions

</tt 1_?:;@)) - Pi(t),
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—Py(t) are regressive, and conditions (3.6) and (3.7) are satisfied with
01(t) = —Pi(1),

1
(3.10) b)) = —— L p,
fto 1— Pl(S)H( )

j‘to 1— Pl(S

Mlo) = | 1+u<>9k<> ’

k
_ (- Pl(lﬁ)u(t))f1

j;&o 1—Pi( s)u(s)

(3.11) q(t)

)

and R(t) is defined in (3.2). Then every solution of the equation (3.1)
may be represented in the form (3.3), (3.9), (3.10), and error estimate
(2.16) is satisfied with the function M(s) given by (3.11).

Using the trigonometric function approximation, we deduce from
Theorem 3.1 the following theorem.

Theorem 3.3. Assume Py € Cl;, Q € Cyq, —Pi(t) is regressive, and
conditions (3.6) and (3.7) are satisfied, where

(312) 01 (t) =1im — Pl (t), 02(15) = —im — P1 (t),

(3.13) q(t) =

Then every solution of (3.1) may be represented in the form (3.3), (3.9),
(3.12), and error estimate (2.16) is true with the function M(t) given
by (3.13).

Using the eigenvalue first approximation, we deduce from Theo-
rem 3.1 the following theorem.
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Theorem 3.4. Assume P, € C?;, Q € C},, conditions (3.6) and (3.7)
are satisfied, where

61(t) = iv/R(D) — Py(0),

(3.14) 6, = —i\/R(t) — Pi(t)
—2i/R({)
q(t)

EEIGI2I0)

(3.15) M(t) = max

eXl(t) | R
2D (1 + ul(0)6; (1)) (1 Ra<t>>

(1 OV - w171 (0)

and functions 01 and 05 are regressive. Then every solution of (3.1) may
be represented in form (3.3), (3.9), (3.14) and error estimate (2.16) is
satisfied with the function M(s) given by (3.15).

Using linear equation approximation, we deduce from Theorem 3.1
the following theorem.

Theorem 3.5. Assume Py € C};, Q € C,q, and conditions (3.6), (3.7)
are satisfied, where

B16) 00 =~ [ [t )

eg(t) =0 (t) + t eA(t],.U(s))As ?
to 1—pu(s)[07 (s)+2P(s)]
e (1)
20()(1 + p(t)0,(t))
7 R(s))As ' R(s))As
- / 1 —Pi(s)u(s) /to 1= Pi(s)u(s)|
_BO-00) o 00+ 2P
T+ (D01 (1) = W07 (6) — 2P (D)’

and functions 61 and 0y are regressive. Then every solution of (3.1) may

(3.17) M(t) = ‘

(3.18)  q(t)
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be represented in the form (3.3), (3.9), (3.16), and the error estimate
(2.16) is true with the function M(s) given by (3.17).

Using the Hartman-Wintner approximation, we deduce from Theo-
rem 3.1 the following theorem.

Theorem 3.6. Assume P, € C3,, Q € C2,, conditions (3.6) and (3.7)
are satisfied, where

(319)  fr2(t) = =iv/RE) (VGO P20 — p(t) ) — Pu(D),

w0=(7)

ef]tlAjA(l — Py + pAjVR) '
2(1 + pbi) /(G2 = p?)°

(1 — Pip)G*RA —2i\/R(G? — p?)

2R2(1+ G2 1T T 1tue,
(321) ALQ = 7p:|:Z.\/ G2 7])2,
and functions 01 and 6 are regressive. Then every solution of (3.1)

may be represented in the form (3.3), (3.9), (3.19), and error estimate
(2.16) is satisfied with the function M(t) given by (3.20).

(3.20) M(t) =

= max
k,j=1,2

Remark 3.1. For (3.1) with P;(t) = 0, on a continuous time scale
(1(t) = 0), Theorem 3.6 turns to the new version of classical Hartman-
Wintner theorem:

Theorem 3.7 ([16]). Assume Q(t) is a complex valued function,
Q#0,QeC! and

(3.22) /‘d(gg(ﬂ)‘mo, y=tim Lo AL

T

and expressions

(3.23) exp i /Tt \/Q(S) - (fé((i)))st
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are bounded for t — oco. Then every solution of ¥"(t) + Q(t) = 0
could be written in the form (3.3), (3.4) with

(3.24)  wia(t) = Q Y4exp (ii/; \/Q(s) - <f&‘3>2d5).

Note that, in our version of this theorem, condition (3.23) is included
in condition (3.7), and we have the additional error estimate (2.16) as
well.

4. Asymptotic solutions of the self-adjoint second order
equations. Consider the selfadjoint second order equation

(4.1) F() = (a(t)p® (1)) (t) + b(t)e7 (t) =0, te Ty

with complex valued coefficients a(t),b(t). This equation could be
deduced from (3.1) by letting

a®(t) + b(t)u(t)

()
b(t). _F@)
a7 (1)’ |

(4.2) PY(t) + Pi(t) =

Qt) =

Introducing auxiliary exponential functions
(4.3) ex(t, o) :enk/a(t7t0)7 k=1,2,...,

define characteristic functions CFy(t) = CF(ny), k = 1,2, of equation
(4.1) as

aF (e, /a)
Cnk/a
= a(t)n () + 17 () (t) + a(£)b(t) + p(t)b(t)ne(t).

(4.4) CFy(t) =

Theorem 4.1. Assume a,b € Cq, and there exist complex valued
functions n,(t),n2(t) € C}, such that conditions

(4.5) a(t) + pE)ne(t) #0, k=1,2,...,

(4.6) ‘W‘ £0, n(t) = m(t) —n2(t) t> 1o,

t 2 ’
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(47) Ml(t) S Crda /Oo Ml(S)AS < oo, t>t,
are satisfied with
(4.8)
C e e (t)CF;(t) ) = 20 —m()
M0 = |t @ O = 2t e

Then every solution of the equation (4.1) may be represented in the
form (3.3) where

(49) uk(t) = é}(t, to) = t’ink_/a(t,lfo)7 k= ].7 2, ey

and error estimate (2.16) is satisfied with the function M(t) = M (t)
given by (4.8).

Taking
410) @ =1 &) =elt),
_ 1 _ b))
R T E0)

from Theorem 4.1 we deduce following theorem.

Theorem 4.2. Assume that real functions a,b € C.q(T,00) satisfy the
following conditions

(4.11) a(t) >0, a(t) —b(t) () >0, t>tg,
(4.12) /T T Mt dt < oo,

— max |et! 7 eq, (t,s)As
(4.13) Ma(t) = max |21 (£)b(1) /t e,

Then, for arbitrary constants Cy,Cs, there exists a solution of (4.1)
that can be written in the form (3.3) with uy(t) = 1, ua(t) = e (t), and
error estimate (2.16) is satisfied with the function M(t) = Mas(t) given
by (4.13).
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Remark 4.1. If

t
t,s)A

(4.14) a(t)/ (b 9)As —to, >ty >0,

to a(s)
then

t—to
(415) 1< er(t,to) < 61/(t_t0)(t,t0) = o , t>19>0.
5. Proofs.

Proof of Theorem 2.1. The substitution ¢(t) = ®(t)u(t) transforms
(1.1) into

(5.1) u®(t) = K(t)u(t),

where K (t) is defined in (2.9). By integration, we get

b
(5.2) u(t) =C — / K(s)u(s)As, t<s<b,
b
(5.3) lu@I < IC +/t ()] fluls)]|As.

Applying Gronwall’s lemma, we have
(5.4) lu@®I < 1Clleyx o (b; 1),

where from the definition of an exponential function on a time scale we
have

o Log (1 K A
euKu(bvt)zexp/ i Los L+ m|K(s)[)As
t mN\u(s) m

From (2.11) and (5.2), we get the following representation

b
(5.5) et) =0 tp(t) —C =u(t) - C = —/t K(s)u(s)As,
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and the estimate
(5.6) le(t ||</ [EK ()]l - [[u(s)]|As

< el / 1K (3)lley o | (b 5)As
le(®) ] < 1CI=1 + ey (b)),
or (2.12). O

Proof of Theorem 2.2. Invertibility of ®¢ is followed, from (2.13):

el €3

(5.7) det(®7) = — 7 (U —UY) = et L,

eJUY e3U5 asy
By direct calculations,
_CLy —exClLy
(58) (I)il(A(I) - (I)A) = 616251 2C€i2 )
2620 260
(5.9) K= (®71)7(A0 — 0%)
o e1CLq esCL
_ —af,t 2023 596632
01290 - eé@elg/l e;OeLQ ,
(5.10) K@ < CM(®),
L;
b0 = g [SAUOCLAD)|
ki=12| a12(t)07 (t)eg(t)

From condition M € C,q4, we have || K| € Cr4. From Theorem 2.1, it
follows that (2.12) is satisfied and, in view of (5.10), (2.16) is satisfied
as well if

(5.11) CL; =C4,, j=12.

To prove (5.11), we will show that, by the differentiation system, (1.1)
could be transformed to the second order equation (3.1).

Indeed, from system (1.1), we have

(5.12) oT = a1101 + 12602,
(5.13) 502A = ag1p1 + ag2p2.
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To eliminate @2, we find, from (5.12),

A
(5.14) o = L —AUIPL
a12

and, by substitution into (5.13), we get
A A A
Y1 — 4111 — anyi
(1@) = 40101 +az (M)
a2 a12

or

AA AA A o
$1 A12 — P71 a79 ai Af Q11
> — Y1l — -V | —
ajo12 a2 ai2

A
—a
— 2101 + a2 (M)

a12

a® agqal det(A a
(5.15) @PA—pf (a12+a‘1’1+ = 12>+s01a‘1’2<a( ) <“>A>—0’

12 a12 12 a12

or (3.1) with ¢ = ¢, and

A o
a 950

(5.16) PY(t) 4+ Pi(t) = —af, — 22 — d22%12
a2 a12

A

a

=-Tr(A) — ,ualAl — —au (1 + page),
12

(5.17) Q) = 29t o <““>A.

From (3.5), we get

(5.18)
CL(t) = 3(t) + (PY (1) + Pr(t)0k(t) + Q(t) + 07 (1) (1 + u(t)0x (1)),
k=1,2

g Ly ooy
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A o
CLi = 62 — 6y <a12 +af, + “22“12>
a2 a2
a, det(A a A
¢ e dett) a‘b( “) + 05 (1 + pbh)
a2 ai2
A A
=02 g, <a” +Tr(A) + pa® + ’m”al?)
a2 a12
af, det(A a A
g et o <“> + 05 (1+ i)
a12 a12
or, in view of (2.1), and
0 = a12UL + aq1, 9kA :alAQUk—l—a‘fQUkA—i—aﬁ

we get (5.11):
07 —0,Tr(A)+det(A)]

a12

(5.19) CL;, = atl +aSy(14p0p ) US =CA,. O

From (2.2), (3.5) and (5.18)

L, —CL
(5.20) HA(t) = HL(t) = %
0% +6 64
:u9f+T+91+7—29“
+ Plo. + P17
we get (2.3):
07 + 6 64
HA(t)=HL(t) = 7 01+ i 207 —Tr(A)
afy A A
— —=(1+ pasz) + p(07 — afy),
ai2
or
o A A o
(5.21) HL{) = o>+ 209 1 07 _gge _ g _ 012 _ 0f202
0 0 a1 ai

Proof of Remark 2.1. To prove (2.36), consider equation (2.37):
Py(t) + Py (t) = 2P(t).
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If p(t) = 0, this formula means P, = P. If u(t) # 0, from Py =
P+ uPlA, we get

_2P(t)  2Pi(1)

ft pult)

Solving this first order linear equation for P;, we get (2.36).

Indeed, it is known ([7]) that the solutions of the linear equation

y2(t) = p(t)y + f(t)

are given by the formula

y(t) = yo(t)ey (¢, o) + / ey(t,0(5)) F(5)As

to

Lemma 5.1. If 6 € C}; and

(5.22) 0.(t)
{ (t) f e_ou(t,o(T)) {%+ i (%)A _ Pl;:;-apl} (T)AT  u(t) # 0,

0(t) — g5k — Pr(1) u(t) =0,
R ea(t,o(s))As
(528 Sp0 = / W7 () + Pi(s) + Pr(s)
B20) A = RS 10 #0,
then

HA(t)=HL(t) =0, forallteTy.

Remark 5.1. By substitution,

&S —&

(5.25) 0;=¢& P, &= i=12
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one can simplify formulas (3.5) for characteristic function C'Ly(t) and
function HL:

(5.26) CLi(t) = &8 (1 — uPy) + €76, + R(t),
R(t) = Q(t) — PX(t) — PP(t), k=1.2,...,
e =S (1-8) v+ S
13 13 L™y

Indeed, formulas (5.23) and (5.24) turn into

(5.28) &(t)

A o
_[Prel et (345 (1) TR ar wro
L __ ["etole)As
(5.29) 26 /t T EE L 1+ u(t)A(t) # 0,
A(t) _ fl + gf

L —pu(&y +P1)

Further, from
CLy, = 070, + (P + P10 + Q + 05
= (& —P1)7 (& — P) + (P + PY) (& — P1)
+ R+ PY+ PP+ (& — P1)%,
we get
(5.30) CLy, = & + R+ (1 + &y — uPy).
or (5.26).

Remark 5.2. By another substitution,
(5.31) 0;=¢—P, j=1,2
characteristic function C'Lj, turns into
(5.32)  CL; = €5(1— uP) + &(&) — uP®) + Ry,
Ry =Q— P>~ P4+ uP?P, j=12,....
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Formulas (5.23) and (5.24) in turn give us

(5.33)  &(t)

¢
ea(t,o(s))As
— , 1+ puA#0,
e

Gt el + PP
1—péf — (2P = P7)u

Proof of Lemma 5.1. From (2.37) and (5.20), assuming p # 0, we
have

HL 09  (0°+60)6; 62 2P 2

635) e = et e T e T e
HL 6~ 6, 60, 176\ 6
. oo A Ay (2 Ay,
(5.36) T 9"+u90+u9 =05 +u9 ]
where
2 2P A 2 1/1\® 2P
. y, =22 _ T i
(5.87) TR LT u+u<9) po?

Solving HA =0, (HL)/u6° =0 or

01\ | 20:(t)
39 (53) s =70

for 01, we get (5.23) in the case p # 0. The case p = 0 is obvious.

Further, again from (5.20), we have

HL /JﬂlA 91 91 HA 2P
e A, 70,7 9420
A R N T T R

0, 9‘{+2P_(1)A

(5.39)

_hy
bt T e
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and, using the formula

A
1 1 1
(540) 97 = @ +,LL<9) ;

we get equation

A
HL 1 1

or

1\*  A®) 2
(5.42) (9(10) o) w067 () + 2P(t)pt) — 1
with solution

1 L 2ep(t,0(s))As 61 + 609 + 2P
4 _— - _— A t) = .
(543) 0(t) / 1—ubg —2Pu’ ®) 1—pbg —2Pu

From (3.5), we may consider the characteristic function formally as
an eigenvalue of an operator L:
(5.44) Leg(t, tg) = CL(0)egy(t, to).

Proof of Theorem 2.3. By choosing & = 0, we deduce Theorem 2.3

from Theorem 2.2. From (5.29), A = 0, and since 1 — Pjp # 0, from
(5.29), we get

1
(5.45) L=b-a=F—"F—:
fto 1— Pl(s n(s)
01 = —PF1,
1
02 . *Pl(t).

Jo =PRS

Using the Kronecker symbol
0 j=1,
0jo = { ]
L j=2,

(Sjg
JLAs/(1—Pip)’

we can rewrite

¢ = j=1,2.
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L+pby =1+ p& — Pip=1- Py,
"
t bl
Jyy As/(1 = Pip)

1+pbe=1—Pip+

/,L(Sjg 1 /U As
546) 1+ ub;=1—Pip+ y = = .
(346) 1446 H JoAs/(1=Pip)” & iy 1= P
From Lemma 5.1 and (5.26), we get
Condition (2.13) here means
(548) 96162 _ 56162 _ t€1 (t)eg(ﬁ) 7& 0
a12 a12 ay2(t) fto As/(1— Pip(s))

Using the circle product and Euler exponent rules [7]

P—q
5.49 Sg=p+qg+ ) ©q= )
(5.49) PO qg=p+q+ upq POI= T
€2
€2€1 = 691@92) - = 6029017
€1
we get
ea(t)
5.50) e4(t) = ,
( ) q() el(t)
0o (t) — 01(t) 1

"7 T 000 T W= Pinto) [ Ao/ Prowlo))

From (2.15), we obtain (2.20):

eE(t)R(t)agy(t) /" As
axz(t)(1+ p0;(t)) Jy, 1= Pi(s)u(s)|

M) =y

Proof of Theorem 2.4. Choosing linear equation approximation

CL ~ &1 —puP)+R=0,
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we have by using formula (5.29):
B " R(s)As
&1 __/to =P,
Lo =6 — (& — &)
_ " R(s)As 1
to L=nPr o [F(en(t,0(5)As) /(1 — u(Py+ 7))

_ 1 B " R(s)As
Jiy(en(t.0(s)As)/ (1= u(PL+€7)) S 1= 1P
where A is as in (5.29), and we have HL = 0 from Lemma 5.1.

Further,

_P17

CLy = CLy =& (1— pPy) + €6 + R=€7&,
eg(t) o 02_01 1

eql(t) = ) - = ’
q(t) e () q L+0in (14 6,p) :0%
_ e (DL
M(t) = max, a12(t)267 (t) (1 + p()0; (1))
afa(t)ez (1) /t R(s)As
= max
ara(1+ (1)) Sy, 1= p(s)Pr(s)

. ]

7 R(s)As boea(t,o(s))As
. / L 1= n(s)Pr(s) / 1= u(Py +€7)(5)

Proof of Theorem 3.1. Theorem 3.1 is a direct consequence of The-
orem 2.2 applied to the system:

(5.51) (ﬂ%)A = <_¢3(t) —Pl(t)l— Pf(t)) (ﬁ&)

with a2 = 1, ap = O, as1 = —Q(t), A22 = —Pl(t) — Pfr(t), and
fundamental matrix (2.7) with U;(t) = 6;(¢). Note that representation
(2.11) becomes (3.3). O
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Proof of Theorem 3.2. Theorem 3.2 follows from Theorem 3.1 by
choosing phase functions (3.10):

1
5.52) 601(t) = —Pi(t), 6a(t) = — ~ A,
(5.52) 61(t) 1(8), 6a(1) Jio (2A8)/(1 = Pi(s)p(s)) o
_ea(t)
(553) €q(t) = r(t)v
-0 1
IEYT (1— Pt ft (2As)/(1 —P1(S)H(5))'

From (3.8), (5.47) and (5.52), we get (3.11):
ex(t)CLi(t) ‘
t)e"( )L+ u(2)0;(1))

e (t)R(t) /U As

L5 1050 Sy 1= Pi(oa(s) |

]

Proof of Theorem 3.3. We deduce Theorem 3.3 from Theorem 3.1
by choosing

(5.54) & =im, & = —im, m = constant > 0.
Then

(5.55) & =1im, 01 =im — Py(t), 0y = —im — Py (t),
and, from (5.27),

(5.56) HL = 5: -2+ Py (1 - fg) +&7 + %051 =0.
From (5.30),
(5.57) CL1(t) = CLy(t) = & + R+ & (1 + péy — pPy) = R(t) —m?.
From (3.8),
(%59 e (O)(R(t) — m?)
M) = max, eﬂgzgg <L1kf/)wj> = @) |
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o 02 — 01 o —2tm

= = . O
4 1460 1+4+imp— Py

(5.59)

Proof of Theorem 3.4. We deduce Theorem 3.4 from Theorem 3.1
by choosing

(5.60) & =ivVR, & =—iVR,
0, =ivVR— Py, 0 = —ivVR— P,.

We have, from (5.30),

2L+ ply — puPr) + €+ R= VR (1+iVRu—pPy)

i(VRT = VR)(1 4 ivVRpu — pPy)
M )

CL, 1 IR .
(5.61) % = (1— RU)(HW\/R—;LH),

Ol = /B (i a—ppy) = - T = VOO R = Py)

(5.62) gif = —i (1 - @) (1 —ipVR — pPy).

From (3.8),

CLy

e;tl R \/»
5.63 Mig=|—2 (1—y/== )1 +iwvR - uPy)|,
(564) q 02 — 91 - —27,\/E 0

T 146 14+ ivVRu— P

Proof of Theorem 3.5. We deduce Theorem 3.5 from Theorem 3.1.
Choosing

605 G- [ Pl(];(;)(ff_l,
=86 — — !

Juo (enlt,0(5))As) /(g (s) + Pi(s)p(s) = 1)
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we get from (5.25) and (5.29)

(5.66) 0;(t) =¢&(t) —~(t), j=12,
1—pgy —Pip 1—pby —2Pp

Using (5.29),

1 1 T ea(t,o(s))As
20(t)  2£(t) &) —&(t) /to pe7 (s) + Pr(s)u(s) — 17
from Lemma 5.1 we get HL =0 and CL; = CLs.

From (5.26), we get

(5.68) CLy =CLy =601 — Pip) + €76+ R=£56,.

(5.67)

From (3.8), we get

(5.69) M(t) = max eqil(t)CLk(t)‘

SHORIOLN0 /t ea(t,o(s))As
L+p0i(t)  Ji, 1= ()67 (s) + Pu(s)] |

—1
en(t,o(s)As
_ 0o —04 . ( to 1—u(s)[€7 (SH‘PI(S)])
146 RAs '
Hou 1y (fto Prle — Pl(t))

(5.70) = max

Proof of Theorem 3.6. We deduce Theorem 3.6 from Theorem 3.1
by choosing Hartman-Wintner approximations of (3.1), that is,

R(1) 1/4
R"(t)> '

(5.71)  &(t) = AW)VRQD), G(t):(

In the case p # 0, we have
(5.72)
(\/E)Az\/ﬁ_\/ﬁ: R —R _ RA
7 VR(1++/R°/R) VER(1+G?)

and
AG2RA N AAVR
VR(1+ G?) G?

A
(5.73) (& =AVR + ASVRe =
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Further,

CLy =€76 + R+ £2(1— Prp)
(5.74)

= A“AVR°R+ R+ (1 - Plu)(

AG?R®  AMVR

\/E(1+G2)Jr G? )
AG?R®  AMVR

\/R(HG?)+ G? )

R
= (A2 +uAAA)@ +R+(1 Plu)<

or

R AA
(5:75)  CLi= <A2 +2pA+G* + ﬁ(l — P+ uA\/E))
where
(5.76) p— L= Pp)GRS

2R32(1+G?)

Choosing A for the solutions of a quadratic equation,

(5.77) A%+ 2pA+G? =0, Ao =—pEiV/G?2—p?,
we get
AR AV
(5.78) CL; = GQ\/E(l — P+ pA;VR).
Thus, we have
(5.79) & =AVR, &= AR,
€1 — & = (A — A))VR = 2i\/R(G? — p?),
(5.80) 01 = in/R(G2 — p?) —pVR — Py,
0y = —i\/R(G? — p?) —pVR - Py,
(5.81) CL; CL; _ AP - P+ pAiVR)
. & —&  2i/R(G? - p?) 2iG2,\/G? —p?)
_ _ 95 2 _ 2
(5.82) Oy —0, 2i\/R(G? — p?)

T w0 T 1= P+ i /R(GE —p2) — ipV R
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efIHCLk
269 (1 + /thj)
eéd\/RAjA(l — PIM + /.lAj\/E)
262(1+ u8,) /R (G = |

(5.83) M(t) = Jmax

= max
7j=1,2

or (3.20):

e A2 (1 — Pip+ pA;VR) ‘
21+ ;)\ (G2 = p?)7 |

In the case pu = 0, by similar calculations, we have

_ _ R _ o RO
GZla p_4R3/27 q__QZ R(l_p )7
CLy = R(A? 4+ 2pA+1+ AR™Y/?),

A1 =—ptiy/1-—p?

R .
£10=A12VR = 1R +ivR(1-p?),

MO = oy

)

and formulas (5.81)—(5.83) are true for the case p = 0 as well.

In the case (compare with Theorem 3.7)
p(t) =0, Py(t) =0,
we have

R(t) =Q(t),  G{)=1,

p= gg(/tQ)a q:_2l Q(l_p2)7

ralt) = £iVQU ) - 15, A= pEiVI- P,
AW
1—p?

M) = < )

Condition (3.23) means that
|eqi1(t)| < const,

and, under this condition, the expression for M (t) will be simpler.



A PLANAR DYNAMIC SYSTEM 1235

Proof of Example 2.1. For equation (2.17), we have

P(t) = Pi(t) =0,  R(t) = Q).
Choosing phase functions as in (3.10)

01 = 07 o = = q(t)a

t— 1t
to

u; = eg, =1, Uy = €9, = €1/(1—ty)(t, t0) =

and, taking ty > 0, we get

€0, (t)692 (t) ‘ _ t—to _ 1

_ — >,
2t —to) | 260(t—to) 2t

and condition (3.6) is satisfied.
From (3.11), we get

(o) = to)Q(t)ez " (¢ to)
L+ pu(t)6;(t)

M (t) = max

<CtoQ@)l. O

Lemma 5.2. If
a®(t) + b(t)u(t)

(5.84)  Py(t)+Po(t) =

then

(5.85) L[y] =

Proof of Lemma 5.2. Indeed,
Fly] _ a®y2 +a7¢22 + by?

a’® a"

a® +bu

_ ¢AA

— vt w L[],
since

(5.86)  L[Y] = ¢22(t) + (P + PY)Y2 () + Q(0)v(1) =0, > to,
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CLy(t) = Lleg, ] _ Flep, ] _ Fley, /a] _ CFi(t)

€, a’eq, a’en o a’a(t)

Lemma 5.3. Ifn € C!,; and

(5.87)
t |a—bu? (1 A

m(ty = " e {b ) +2- 2] e oyu(t.o(s)As  u(t) 0,

n(t) — S5 a6 =0,

v [fealbo(9)As
(5.88) m(t) —m() /t Pl
m +n7 +bu
o0 = LI ng) o

Then
(5.89) HE(t) = CF(t) — CFy(t) L) =0,

a?(£)(m (t) — n2(t))

Proof of Lemma 5.3. Denoting 112 = n1 — g, in view of g = 1y —2n,
we get

_ CL, — CLs

— _ CFR-CF, CF -CF

0, — 0y  aa(fy —0) a’(n — )
angy +nfm —ngnz + bum

a’mni2

nan12n”%bu>
n n
In the case p =0, from (5.87), we get HF = 0.

Assume p > 0. To solve equation HF = 0 for 5y, from

A
a”HF 1 o b
- a(> TR/ SERL/E R
" n) T 0

A A
1 2 b
:_a<> +#(m) L, e
n n n n

A A
1 2 b
:(blﬂ_a)(n> +M<m) +ﬂ_2+7'u:0

1 [(an®
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we get
A 2 A
2 - 1 2 b
(m) :_m+au<) L2_0
n wn H n Boon
with a solution (5.87).
Further, in view of 1/n” = 1/n + u(1/n)?, we have

A
a°HF 1 g b
~ :—a< ) _’_777}'+ﬂ_2_~_7/;
n n n

Ui

A
o 1 n{ +m1 + bp
:(buz‘f'?hﬂ—a)(n) +%—2

and HF = 0 is satisfied if

(1)Aﬂ2
7 noa—n7p—by?

with a solution (5.88). O

Proof of Theorem 4.1. We deduce Theorem 4.1 from Theorem 2.2
applied to the system

( wA(t) )A = ( g(t) aA(t)+1b(t)u(t)> < dJA(t) > )
VR e @ () w2(t)

which is equivalent to equation (4.1), with a characteristic function
(4.4). Since

aip = ]., CLk(t) = 0

all —
62(t) _ 6772/ ( ) — er(t), ’I"(t) — 772(t)4 771(t) ,
e(t)  en/alt) a(t) + p(t)m(t)
we get from (2.13) condition (4.6), and from formula (2.15) we have
M;(t) = M = max e]CLJ(t)‘
kj=1,2| 077
a"ejCLj
17 (1 + py./a)ex
e,jFlCFj
n7(a+ pk)

max
k,j=1,2

. O

= max
k,j=1,2
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Proof of Theorem 4.2. Theorem 4.2 is deduced from Theorem 4.1 by
choosing approximation

(5.90) m =0,

then, from Lemma 5.3, we get CFy = C'F; if we choose

1 1
(5.91) n2(t) = ft co, (Lo(s))As ft e, (t,5)As’
th a—bu? ty a(s)

o
N0 = = b

By this choice, regressivity condition (4.5) follows from (4.11). Further,

(5.92) CF(t) = CFy(t) = a()b(?),

(5.93)
Gl &) =e), =" _ . L :
A0 =erl0), ) a(t) a(t) [ (2eq, (t,5)As)/a(s)

Since n(t) = (m —n2)/2 = —(n2)/2 condition (4.6) of Theorem 4.1
becomes

er(t)ex(t)n(t)| _ r(t)e,(t)
= 0, t>t
a(t) 2 7& ) > 1o,
and is satisfied.
ilOF +1 b
My = M = max STt S X & 4
1% (a + pung a’r?(a + pardys)

- eﬂ<t>b<t>’
a (e (o) |

Proof of Remark 4.1. By definition of r(¢) condition (4.14) means

1
t— 1o

0<r(t) <

)

and (4.15) follows from the monotonicity of e, (%, o). O
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Proof of Example 1.1. Consider the more general Cauchy problem
for the one-dimensional wave equation for (¢,z) € Ty X R,

(5.94) uBB (L, x) = (a® + b(t))uge (t, ) + c(t)us,
u(t()vx) :f(x)a ’U,A(to7l‘) :Oa
where A is a delta derivative by the time variable.

Using Fourier transformation by the z variable from (5.94) we get
an ordinary dynamic equation on a time scale

(5.95) TR (1,€) + (202 + €2b(t) + ikc(t))a(t, &) = 0,
(to, &) = f(€),  @™(to,€) = 0.

Let us check that, under assumption,

(5.96) /t h |b$21|f)m < o0, /t T e@)IAL < oo,

the conditions of Theorem 3.3 are satisfied. Choosing 6,2 = +im,
m = af condition (3.6) is satisfied if & # 0. To check condition
(3.7), note that, from m = a& # 0, we have ¢ = (—2impu)/(1 + imp),
14+qu=1—imu)/(1+imp), |1 +qu| =1 and

leg(t,to)] = 1.

Indeed, if g = 0 this is trivial. If u(¢) > 0, then it follows from definition
leq(t.to)| = exp [} (Log|1 + qu|As)/u(s) = 1.

Further,
R(t) = €%a® + €2b(t) + ic(t), 6 = iak,
R —m? = b€? + ikc(t)
pge) = |G Bm)) e + el

m(1 + pby) alé)\/1 + p2e?

< |b¢?| + i€c(t)]

T a1+ 28 algly/1+ 2

or

argey < P01 1O
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Introducing trigonometric functions on a time scale

eig(t, to) + e (t, to)
2 9

61‘5 (t7 t()) — 6,1‘5 (t, to)
24 ’

from Theorem 3.3, the solutions of (5.94) may be written in the
asymptotic form:

a(ta f) = [Cl (5) + 51(t7 g)] Sina£ (t7 tO) + [02(5) + 2 (tv 5)] COSq¢ (tv tO)a
Ut (t,€) = a€[Cr(€)+e1(t, )] cosae(t, to) +a€[Ca (&) +ea(t, )] singe (t, to)
with the error estimate

le(t Ol < I (™ MO8 — 1),

cose(t, to) =

sin§ (t, to) =

Further, from initial conditions (assuming ¢;(t, &) = 0), we get

C1(§) +e1(to, &) = C1(§) =0, Ca(€) + 2(t0, €) = Ca(€) = f(€),

SO

~

a<t’§) = [f(g) + 52(t7£)] COSag(t,to) € S/(Rf)

Using inverse Fourier transformation, we get time scale analogue of
D’Alembert’s formula:

(597) U(t, LL') = % / 6_7;1;5 []/l‘\(é-) +e2 (tﬂ 5)] COSq¢ (ta tO) d§7
Jm e2(2,€) = 0.

o~

By using the formula for the Fourier transform for f(¢£) we can simplify
(5.97) as:

(5.98)

oo Lo (1+iagp)As Lo, (1—iatp)As
u(t,l’) — i/ ezi(y*x) (eftt(, g 14; w N @ftto g 1M w )
— 00

X [f(y) + 02(t, y)] dy dE.

Assuming that |a€u(t)| < 1/2 from the Taylor series

Log (1 + iaug) :a§< afp  ia*Ep’ +>

i+ —= -
apg

as 2 3
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we get a solution as a sum of two waves moving in opposite directions:

(5.99)  wu(t,z) = % /C><> et (y—o)Fiat(t—to)
7

t (1,262, 1036320 \As
X [f(y)+52(t,y)]efto(2 ECu—§a®p - )A dy de
+ i - e (y—z)—iag(t—to)
i J_ o

x [f(y) _|_52(t7y)]eftto(%0252#*%a3§3#2+'“)Asdy dc.

In the case Eu = 0, d2(t,y) = 0, we get the classical D’Alembert’s
formula

fla+alt —t)) + fz —alt —to))

(5.100) u(t,z) = 5
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