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POSITIVE, NEGATIVE AND MIXED-TYPE
SOLUTIONS FOR PERIODIC VECTOR

DIFFERENTIAL EQUATIONS

XIAO HAN AND JINCHAO JI

ABSTRACT. This paper is devoted to the study of peri-
odic solutions of the first-order vector differential equations
x′(t) + f(t, x(t)) = 0. We first introduce the concepts of pos-
itive, negative and mixed-type solutions. Then, by using a
fixed point theorem in cones, we obtain some existence and
multiplicity results of such solutions. Furthermore, we also
present some examples to illustrate our main results.

1. Introduction. Consider the periodic boundary value problem
(PBVP)

x′(t) + f(t, x(t)) = 0, almost everywhere t ∈ [0, T ],(1.1)

x(0) = x(T ),(1.2)

where T > 0 and f : [0, T ] × Rn → Rn is a Carathéodory function,
namely, f(t, x) satisfies the following Carathéodory conditions:

(C1) for all x ∈ Rn, f(·, x) is Lebesgue measurable;
(C2) for almost every t ∈ [0, T ], f(t, ·) is continuous.

By a solution of (1.1) we mean an absolutely continuous func-
tion x(t) = (x1(t), x2(t), . . . , xn(t))⊤ satisfying (1.1) almost ev-
erywhere. Furthermore, we say that a nonzero solution x(t) =
(x1(t), x2(t), . . ., xn(t))⊤ of (1.1) is a positive solution if xi(t) ≥ 0 for
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i = 1, 2, . . . , n; a negative solution if xi(t) ≤ 0 for i = 1, 2, . . . , n; and
a mixed-type solution if there exist I+ and I− satisfying I+ ∪ I− =
{1, 2, . . . , n} such that xi(t) ≥ 0 for i ∈ I+, xi(t) ≤ 0 for i ∈ I−.

In recent years, the PBVPs for differential equations have been
extensively studied: refer to [8, 17, 18, 19, 20, 21] for the method of
upper and lower solutions coupled with monotone iterative techniques;
to [1, 3, 7, 22] for the method of the fixed point theorem; to [2,
4, 16] for the method of calculus of variations and optimization; to
[2, 5, 10, 11, 12, 13, 14, 15] for related results on partial differential
equations. Different from the above works, in this paper, we consider
the first-order vector differential equations (1.1) with the periodic
boundary value conditions (1.2). We first introduce the concepts of
positive, negative and mixed-type solutions. Then, by using a fixed
point theorem in cones, we obtain some existence and multiplicity
results of such solutions. The result can be viewed as an extension
of our previous work [9], where the existence and multiplicity results
on positive solutions are obtained.

The outline of this paper is as follows. In Section 2, we introduce
some notation and preliminary results. Section 3 presents some exis-
tence results of positive solutions, negative solutions and mixed-type
solutions. The multiplicity results are given in Section 4. Finally, we
give some concluding remarks in Section 5.

2. Notation and preliminary results. Throughout this paper, xi

denotes the ith component of x, |x| = max{|xi|, i = 1, 2, . . . , n} denotes
the norm of x, CT denotes the Banach space of all continuous functions
x : [0, T ] → Rn endowed with the norm ∥x∥ = sup{|x(t)|, t ∈ [0, T ]},
L1[0, T ] denotes the set of all integrable functions from [0, T ] to R,
C(Rn,R) denotes the set of all continuous functions from Rn to R.

The following hypotheses are assumed in this paper:

(H1) there exist φ ∈ L1[0, T ] and ψ ∈ C(Rn,R) such that

|f(t, x)| ≤ φ(t)ψ(x), for almost every t ∈ [0, T ], x ∈ Rn;

(H2) there exists M(t) = diag (mi(t)) such that

Ef(t, x) ≤ EM(t)x, for almost every t ∈ [0, T ], Ex ≥ 0,
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where mi ∈ L1[0, T ] satisfies mi(t) ≥ 0 for almost every t ∈ [0, T ] and∫ T

0
mi(τ) dτ ̸= 0, E = diag (σi), σi = {−1, 1}, i = 1, 2, . . . , n.

We consider the first order linear PBVP

x′(t) +M(t)x(t) = h(t), a.e. t ∈ [0, T ],(2.1)

x(0) = x(T ),(2.2)

where h ∈ L1[0, T ] and M(t) is given in (H2).

Let

(2.3) U(t, s) = diag (ui(t, s)), (t, s) ∈ [0, T ]× [0, T ],

where ui(t, s) = (e−
∫ t
s
mi(τ) dτ )/(1− e−

∫ T
0

mi(τ) dτ ), i = 1, 2, . . . , n. It
is obvious that ui(t, s) is an absolutely continuous nonnegative function
on [0, T ]× [0, T ] and satisfies
(2.4)

1

1−e−
∫T
0 mi(τ) dτ

≤ ui(t, s) ≤ e
∫T
0 mi(τ) dτ

1−e−
∫T
0 mi(τ) dτ

, t < s;

ui(t, s) = 1

1−e−
∫T
0 mi(τ) dτ

, t = s;

e−
∫T
0 mi(τ) dτ

1−e−
∫T
0 mi(τ) dτ

≤ ui(t, s) ≤ 1

1−e−
∫T
0 mi(τ) dτ

, t > s.

We can easily claim that the following lemma holds.

Lemma 2.1. Assume that mi ∈ L1[0, T ] satisfies mi(t) ≥ 0 for

almost every t ∈ [0, T ] and
∫ T

0
mi(τ) dτ ̸= 0, i = 1, 2, . . . , n. Let

M(t) = diag (mi(t)). Then, for any h ∈ L1[0, T ], PBVP (2.1), (2.2)
has a unique solution

x(t) =

∫ t

0

U(t, s)h(s) ds+∆

∫ T

t

U(t, s)h(s) ds,

where ∆ = diag (δi), δi = e−
∫ T
0

mi(τ) dτ .

For the study of PBVP (1.1), (1.2) by utilizing the fixed point
theorem in cones, we consider the following auxiliary PBVP

x′(t) +M(t)x(t) =M(t)z(t)− f(t, z(t)), a.e. t ∈ [0, T ],(2.5)

x(0) = x(T ),(2.6)

where z ∈ CT .
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By Lemma 2.1, it is known that, for any z ∈ CT , PBVP (2.5), (2.6)
has a unique solution

xz(t) =

∫ t

0

U(t, s)hz(s) ds+∆

∫ T

t

U(t, s)hz(s) ds,

where hz(s) =M(s)z(s)− f(s, z(s)).

Let the operator T : CT → CT be defined by

T (z)(t) =

∫ t

0

U(t, s)hz(s) ds+∆

∫ T

t

U(t, s)hz(s) ds, t ∈ [0, T ].

Clearly, if T has a fixed point z ∈ CT , then z(t) is a solution of PBVP
(1.1), (1.2).

Let I+ = {i : σi = 1}, I− = {i : σi = −1}. Then I+ ∪ I− =
{1, 2, · · · , n}. Define a cone in CT by

K∆ = {x ∈ CT : xi(t) ≥ δi∥xi∥, i ∈ I+;

xi(t) ≤ −δi∥xi∥, i ∈ I−; t ∈ [0, T ]},

where ∥xi∥ = sup{|xi(t)|, t ∈ [0, T ]}, i = 1, 2, . . . , n.

Lemma 2.2. T (K∆) ⊂ K∆.

Proof. For any t ∈ [0, T ] and z ∈ K∆, let hiz(t) = mi(t)z
i(t) −

f i(t, z(t)). Then, when i ∈ I+, by (H2) and (2.4), we have

(T (z))i(t) =

∫ t

0

ui(t, s)h
i
z(s) ds+ δi

∫ T

t

ui(t, s)h
i
z(s) ds

≤ 1

1− e−
∫ T
0

mi(τ) dτ

∫ t

0

hiz(s) ds

+ δi
e
∫ T
0

mi(τ) dτ

1− e−
∫ T
0

mi(τ) dτ

∫ T

t

hiz(s) ds

=
1

1− e−
∫ T
0

mi(τ) dτ

∫ T

0

hiz(s) ds,

which implies

∥(T (z))i∥ ≤ 1

1− e−
∫ T
0

mi(τ) dτ

∫ T

0

hiz(s) ds.
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Thus,

(T (z))i(t) =

∫ t

0

ui(t, s)h
i
z(s) ds+ δi

∫ T

t

ui(t, s)h
i
z(s) ds

≥ e−
∫ T
0

mi(τ) dτ

1− e−
∫ T
0

mi(τ) dτ

∫ t

0

hiz(s) ds

+ δi
1

1− e−
∫ T
0

mi(τ) dτ

∫ T

t

hiz(s) ds

=
e−

∫ T
0

mi(τ) dτ

1− e−
∫ T
0

mi(τ) dτ

∫ T

0

hiz(s) ds

≥ δi∥(T (z))i∥.(2.7)

On the other hand, when i ∈ I−, by (H2) and (2.4), we have

(T (z))i(t) =

∫ t

0

ui(t, s)h
i
z(s) ds+ δi

∫ T

t

ui(t, s)h
i
z(s) ds

≥ 1

1− e−
∫ T
0

mi(τ) dτ

∫ t

0

hiz(s) ds

+ δi
e
∫ T
0

mi(τ) dτ

1− e−
∫ T
0

mi(τ) dτ

∫ T

t

hiz(s) ds

=
1

1− e−
∫ T
0

mi(τ) dτ

∫ T

0

hiz(s) ds,

which implies

−∥(T (z))i∥ ≥ 1

1− e−
∫ T
0

mi(τ) dτ

∫ T

0

hiz(s) ds.

Thus,

(T (z))i(t) =

∫ t

0

ui(t, s)h
i
z(s) ds+ δi

∫ T

t

ui(t, s)h
i
z(s) ds

≤ e−
∫ T
0

mi(τ) dτ

1− e−
∫ T
0

mi(τ) dτ

∫ T

0

hiz(s) ds

≤ −δi∥(T (z))i∥.(2.8)

Therefore, T (K∆) ⊂ K∆ follows from (2.7) and (2.8). �
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Lemma 2.3. Let η > 0, Ω = {x ∈ CT : ∥x∥ < η}. Then
T : K∆ ∩ Ω̄ → K∆ is completely continuous.

Note that f is a Carathéodory function and satisfies (H1). The proof
is easily obtained by using the Arzelà-Ascoli theorem and the Lebesgue
dominated convergence theorem. We omit it here.

In the following lemma, we recall the fixed point theorem in cones
(see [6]).

Lemma 2.4. Let K be a cone in a Banach space X and Ω1, Ω2

two bounded open sets in X such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let
T : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator such that
either :

(i) there exists z0 ∈ K \ {0} such that z−Tz ̸= λz0, z ∈ K ∩ ∂Ω2,
λ ≥ 0; Tz ̸= µz, z ∈ K ∩ ∂Ω1, µ ≥ 1, or

(ii) there exists z0 ∈ K \ {0} such that z−Tz ̸= λz0, z ∈ K ∩ ∂Ω1,
λ ≥ 0; Tz ̸= µz, z ∈ K ∩ ∂Ω2, µ ≥ 1.

Then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

3. Existence of solutions. Let

f(t, x)

x
=

(
f1(t, x)

x1
,
f2(t, x)

x2
, . . . ,

fn(t, x)

xn

)⊤

.

For convenience, we introduce the following notations:

f0 = lim sup
|x|→0

ess sup
t∈[0,T ]

f(t, x)

x
,

f
0
= lim inf

|x|→0
ess inf
t∈[0,T ]

f(t, x)

x
,

f∞ = lim sup
|x|→∞

ess sup
t∈[0,T ]

f(t, x)

x
,

f∞ = lim inf
|x|→∞

ess inf
t∈[0,T ]

f(t, x)

x
.

From now on, we denote δ = min{δi, i = 1, 2, . . . , n}, and x > 0
means xi > 0 for i = 1, 2, . . . , n.
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Theorem 3.1. Let f be a Carathéodory function satisfying (H1), (H2).
If

(H3) f
0
> 0, f∞ < 0; or

(H4) f∞ > 0, f0 < 0.

Then PBVP (1.1), (1.2) has at least one mixed-type solution x(t).
Moreover, xi(t) ≥ 0 for i ∈ I+ and xi(t) ≤ 0 for i ∈ I−.

Proof. At first, assume that (H3) holds. Then there exist ε > 0,
r1 > 0, R0 > 0 (ε and r1 are small enough, R0 is large enough) such
that

f i(t, x)

xi
≥ ε, almost everywhere t ∈ [0, T ],

0 < |x| ≤ r1, i = 1, 2, . . . , n,(3.1)

f i(t, x)

xi
≤ −ε, almost everywhere t ∈ [0, T ],

|x| ≥ R0, i = 1, 2, . . . , n.(3.2)

Let Ω1 = {x ∈ CT : ∥x∥ < r1}. We now prove that

(3.3) T (z) ̸= µz, for all z ∈ K∆ ∩ ∂Ω1, µ ≥ 1.

To this aim, we note that, for any z ∈ K∆ ∩ ∂Ω1, there exists
i0 ∈ {1, 2, . . . , n} such that ∥zi0∥ = r1. In addition, it is not difficult to
check that 0 < δr1 ≤ |z(t)| ≤ r1 for all t ∈ [0, T ]. By (3.1), we have

(3.4)
f i0(t, z(t))

zi0(t)
≥ ε, almost everywhere t ∈ [0, T ].

If i0 ∈ I+, (3.4) implies f i0(t, z(t)) ≥ εzi0(t) for almost every
t ∈ [0, T ]. Thus,

(T (z))i0(t) =

∫ t

0

ui0(t, s)h
i0
z (s) ds+ δi0

∫ T

t

ui0(t, s)h
i0
z (s) ds

≤ 1

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ t

0

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− εzi0(s)) ds
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+
e−

∫ T
0

mi0 (τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ T

t

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− εzi0(s)) ds

≤ ∥zi0∥
1− e−

∫ T
0

mi0 (τ) dτ
e−

∫ t
0
mi0 (τ) dτ{∫ t

0

e
∫ s
0
mi0 (τ) dτ (mi0(s)− ε) ds

+

∫ T

t

e−
∫ T
s

mi0 (τ) dτ (mi0(s)− ε) ds

}
.(3.5)

Integration by parts yields

(3.6)

∫ t

0

e
∫ s
0
mi0 (τ) dτmi0(s) ds

+

∫ T

t

e−
∫ T
s

mi0 (τ) dτmi0(s) ds

= e
∫ t
0
mi0 (τ) dτ − e−

∫ T
t

mi0 (τ) dτ .

In addition,

(3.7) e−
∫ t
0
mi0 (τ) dτ

∫ t

0

e
∫ s
0
mi0 (τ) dτ ds

+ e−
∫ t
0
mi0

(τ) dτ

∫ T

t

e−
∫ T
s

mi0
(τ) dτ ds

=

∫ t

0

e−
∫ t
s
mi0 (τ) dτ ds+ e−

∫ T
0

mi0 (τ) dτ

∫ T

t

e−
∫ t
s
mi0 (τ) dτ ds

≥ T e−
∫ T
0

mi0
(τ) dτ .

Combining (3.5), (3.6) and (3.7), we derive

(T (z))i0(t) ≤
(
1− εT

e
∫ T
0

mi0
(τ) dτ − 1

)
∥zi0∥ < ∥zi0∥.

If i0 ∈ I−, (3.4) implies f i0(t, z(t)) ≤ εzi0(t) for almost every t ∈ [0, T ].
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Thus,

(T (z))i0(t) =

∫ t

0

ui0(t, s)h
i0
z (s) ds+ δi0

∫ T

t

ui0(t, s)h
i0
z (s) ds

≥ 1

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ t

0

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− εzi0(s)) ds

+
e−

∫ T
0

mi0 (τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ T

t

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− εzi0(s)) ds

≥ −∥zi0∥
1− e−

∫ T
0

mi0 (τ) dτ
e−

∫ t
0
mi0 (τ) dτ

×
{∫ t

0

e
∫ s
0
mi0 (τ) dτ (mi0(s)− ε) ds

+

∫ T

t

e−
∫ T
s

mi0 (τ) dτ (mi0(s)− ε) ds

}
≥ −

(
1− εT

e
∫ T
0

mi0 (τ) dτ − 1

)
∥zi0∥ > −∥zi0∥.

Therefore, (3.3) is proved.

On the other hand, let r2 = R0/δ, Ω2 = {x ∈ CT : ∥x∥ < r2} and
z0 = (z10 , z

2
0 , . . . , z

n
0 )

⊤ with zi0 = σi, i = 1, 2, . . . , n. It is easy to see
that z0 ∈ K∆ \ {0}. We now prove that

(3.8) z − T (z) ̸= λz0, for all z ∈ K∆ ∩ ∂Ω2, λ ≥ 0.

Suppose on the contrary that there exists z ∈ K∆ ∩ ∂Ω2 such that
z − T (z) = λ0z0 for some λ0 ≥ 0. By z ∈ K∆ ∩ ∂Ω2, we know that
there exists i0 ∈ {1, 2, . . . , n} such that ∥zi0∥ = r2. In addition, it is
easy to check that |z(t)| ≥ δr2 = R0 for all t ∈ [0, T ]. By (3.2), we have

(3.9)
f i0(t, z(t))

zi0(t)
≤ −ε, for almost every t ∈ [0, T ].

If i0 ∈ I+, (3.9) implies f i0(t, z(t)) ≤ −εzi0(t) for almost every
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t ∈ [0, T ]. Taking into account that z ∈ K∆, it follows that zi0(t) ≥
δi0∥zi0∥ ≥ δr2 = R0 > 0. Let ξ = mint∈[0,T ] z

i0(t). Then ξ ≥ R0.
Thus,

zi0(t) =

∫ t

0

ui0(t, s)h
i0
z̄ (s) ds

+ δi0

∫ T

t

ui0(t, s)h
i0
z̄ (s) ds+ λ0

=
1

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ t

0

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− f i0(s, z(s))) ds

+
e−

∫ T
0

mi0 (τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ T

t

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− f i0(s, z(s))) ds+ λ0

≥ 1

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ t

0

e−
∫ t
s
mi0 (τ) dτ (mi0(s) + ε)z̄i0(s) ds

+
e−

∫ T
0

mi0 (τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ T

t

e−
∫ t
s
mi0 (τ) dτ (mi0(s) + ε)zi0(s) ds+ λ0

≥ ξe−
∫ t
0
mi0

(τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
(∫ t

0

e
∫ s
0
mi0

(τ) dτmi0(s) ds+

∫ T

t

e−
∫ T
s

mi0
(τ) dτmi0(s) ds

)
+

εξ

1− e−
∫ T
0

mi0 (τ) dτ

×
(∫ t

0

e−
∫ t
s
mi0 (τ) dτ ds+ e−

∫ T
0

mi0 (τ) dτ

∫ T

t

e−
∫ t
s
mi0 (τ) dτ ds

)
+ λ0.
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Then, by (3.6) and (3.7), we derive

z̄i0(t) ≥ ξ +
εξ

1− e−
∫ T
0

mi0 (τ) dτ
T e−

∫ T
0

mi0 (τ) dτ + λ0

=

(
1 +

εT

e
∫ T
0

mi0 (τ) dτ − 1

)
ξ + λ0.

Hence, ξ ≥ (1 + (εT )/(e
∫ T
0

mi0 (τ) dτ − 1))ξ + λ0 > ξ, which is a
contradiction.

If i0 ∈ I−, (3.9) yields f i0(t, z(t)) ≥ −εzi0(t) for almost every
t ∈ [0, T ]. In addition, z ∈ K∆ implies zi0(t) ≤ −δi0∥zi0∥ ≤ −δr2 =
−R0 < 0. Let ξ = maxt∈[0,T ] z

i0(t). Then ξ ≤ −R0. Thus,

zi0(t) =

∫ t

0

ui0(t, s)h
i0
z̄ (s) ds+ δi0

∫ T

t

ui0(t, s)h
i0
z̄ (s) ds− λ0

=
1

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ t

0

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− f i0(s, z(s))) ds

+
e−

∫ T
0

mi0 (τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ T

t

e−
∫ t
s
mi0 (τ) dτ (mi0(s)z

i0(s)− f i0(s, z(s))) ds− λ0

≤ 1

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ t

0

e−
∫ t
s
mi0

(τ) dτ (mi0(s) + ε)zi0(s) ds

+
e−

∫ T
0

mi0 (τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
∫ T

t

e−
∫ t
s
mi0 (τ) dτ (mi0(s) + ε)zi0(s) ds− λ0

≤ ξe−
∫ t
0
mi0 (τ) dτ

1− e−
∫ T
0

mi0 (τ) dτ

×
(∫ t

0

e
∫ s
0
mi0 (τ) dτmi0(s) ds+

∫ T

t

e−
∫ T
s

mi0 (τ) dτmi0(s) ds

)



1194 XIAO HAN AND JINCHAO JI

+
εξ

1− e−
∫ T
0

mi0 (τ) dτ

×
(∫ t

0

e−
∫ t
s
mi0 (τ) dτ ds+ e−

∫ T
0

mi0 (τ) dτ

∫ T

t

e−
∫ t
s
mi0 (τ) dτ ds

)
− λ0

≤ ξ +
εξ

1− e−
∫ T
0

mi0 (τ) dτ
T e−

∫ T
0

mi(τ) dτ − λ0

=

(
1 +

εT

e
∫ T
0

mi0 (τ) dτ − 1

)
ξ − λ0.

Hence, ξ ≤ (1 + (εT )/(e
∫ T
0

mi0 (τ) dτ − 1))ξ − λ0 < ξ, which is a
contradiction. Therefore, (3.8) is proved.

By Lemma 2.3, T : K∆ ∩ (Ω2 \Ω1) → K∆ is completely continuous.
According to Lemma 2.4, there exists x ∈ K∆ ∩ (Ω̄2 \ Ω1) such
that T (x)(t) = x(t), ∥x∥ ≥ r1 > 0, xi(t) ≥ δi∥xi∥ ≥ 0, i ∈ I+;
xi(t) ≤ −δi∥xi∥ ≤ 0, i ∈ I−. Therefore, x(t) is a mixed-type solution
of PBVP (1.1), (1.2).

Next, assume that (H4) holds. Then there exist ε1 > 0, r3 > 0,
R1 > 0 (ε1 and r3 are small enough, R1 is large enough) such that

f i(t, x)

xi
≤ −ε1, almost everywhere t ∈ [0, T ],

0 < |x| ≤ r3, i = 1, 2, · · · , n,(3.10)

f i(t, x)

xi
≥ ε1, almost everywhere t ∈ [0, T ],

|x| ≥ R1, i = 1, 2, . . . , n.(3.11)

Let Ω3 = {x ∈ CT : ∥x∥ < r3}. Then, for any z ∈ K∆ ∩ ∂Ω3, there
exists i0 ∈ {1, 2, . . . , n} such that ∥zi0∥ = r3. By (3.10), similar to the
proof of (3.8), we have

(3.12) z − T (z) ̸= λz0, for all z ∈ K∆ ∩ ∂Ω3, λ ≥ 0.

Let r4 = R1/δ and Ω4 = {x ∈ CT : ∥x∥ < r4}. Then, for any
z ∈ K∆ ∩ ∂Ω4, there exists i0 ∈ {1, 2, · · · , n} such that ∥zi0∥ = r4.
Thus, if i0 ∈ I+, zi0(t) ≥ δi0∥zi0∥ ≥ R1 and if i0 ∈ I−, zi0(t) ≤
−δi0∥zi0∥ ≤ −R1. Hence, |z(t)| ≥ R1. In view of (3.11), similar to the
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proof of (3.3), we can obtain

T (z) ̸= µz, for all u ∈ K∆ ∩ ∂Ω4, µ ≥ 1.

By Lemma 2.4, T has a fixed point x ∈ K∆∩(Ω4\Ω3), ∥x∥ ≥ r3 > 0,
xi(t) ≥ δi∥xi∥ ≥ 0, i ∈ I+; xi(t) ≤ −δi∥xi∥ ≤ 0, i ∈ I−. Therefore,
x(t) is a mixed-type solution of PBVP (1.1), (1.2). �

Remark 3.1.

(i) When E = diag (1, 1, . . . , 1), Theorem 3.1 gives the existence
result of positive solutions for PBVP (1.1), (1.2).

(ii) When E = diag (−1,−1, . . . ,−1), Theorem 3.1 gives the exis-
tence result of negative solutions for PBVP (1.1), (1.2).

Example 3.1. Consider the two-dimensional PBVP of the following
form

x′ + (t+ 1) sinx+ xy − x(x2 + y2) = 0, 0 ≤ t ≤ 1,(3.13)

y′ + arctan y − (t2 + 1)y3 − x2y = 0, 0 ≤ t ≤ 1,(3.14)

x(0) = x(1), y(0) = y(1).(3.15)

In this example, T = 1, and

f(t, x, y) =

(
(t+ 1) sinx+ xy − x(x2 + y2)
arctan y − (t2 + 1)y3 − x2y

)
.

By choosing

M(t) =

(
t+ 1 0
0 1

)
, E =

(
1 0
0 −1

)
,

we can easily verify that (H1) and (H2) hold. In addition, by a direct
calculation, we get f

0
= (1, 1)⊤ > 0, f∞ → (−∞,−∞)⊤. Theorem 3.1

shows the PBVP (3.13), (3.14), (3.15) has at least one mixed-type
solution (x(t), y(t))⊤. Moreover, x(t) ≥ 0, y(t) ≤ 0.

4. Multiplicity of solutions.

Theorem 4.1. Let f be a Carathéodory function which satisfies (H1),
(H2). If
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(H5) f0 < 0, f∞ < 0; and
(H6) there exists ρ > 0 such that

inf
δρ≤|x|≤ρ

ess inf
t∈[0,T ]

f(t, x)

x
> 0.

Then PBVP (1.1), (1.2) has at least two mixed-type solutions x1(t)
and x2(t). Moreover, xi1(t) and xi2(t) ≥ 0 for i ∈ I+ and xi1(t) and
xi2(t) ≤ 0 for i ∈ I−.

Proof. By (H5) and the proof of Theorem 3.1, we know that there
exist r5 > 0, r6 > 0 (r5 is small enough, and r6 is large enough,
r5 < ρ < r6) such that

z − T (z) ̸= λz0, for all z ∈ K∆ ∩ ∂Ω5, λ ≥ 0,

z − T (z) ̸= λz0, for all z ∈ K∆ ∩ ∂Ω6, λ ≥ 0,

where Ω5 = {x ∈ CT : ∥x∥ < r5} and Ω6 = {x ∈ CT : ∥x∥ < r6}.
By (H6), there exists ε > 0 (ε is small enough) such that

f i(t, x)

xi
≥ ε, almost everywhere t ∈ [0, T ],

δρ ≤ |x| ≤ ρ, i = 1, 2, . . . , n.(4.1)

Let Ω7 = {x ∈ CT : ∥x∥ < ρ}. Then, for any z ∈ K∆ ∩ ∂Ω7,
there exists i0 ∈ {1, 2, . . . , n} such that ∥zi0∥ = ρ. Thus, if i0 ∈ I+,
zi0(t) ≥ δi0∥zi0∥ ≥ δρ and if i0 ∈ I−, zi0(t) ≤ −δi0∥zi0∥ ≤ −δρ. Hence,
δρ ≤ |z(t)| ≤ ρ. In view of (4.1), by using a similar method as used in
the proof of Theorem 3.1, we have

T (z) ̸= µz, for all z ∈ K∆ ∩ ∂Ω7, µ ≥ 1.

It is obvious that Ω5 ⊂ Ω7 ⊂ Ω6, and by Lemma 2.4, we conclude that T
has at least two fixed points x1 ∈ K∆∩(Ω7\Ω5) and x2 ∈ K∆∩(Ω6\Ω7).
Moreover, r5 ≤ ∥x1∥ < ρ, ρ < ∥x2∥ ≤ r6, x

i
1(t), x

i
2(t) ≥ 0, i ∈ I+;

xi1(t), x
i
2(t) ≤ 0, i ∈ I−. Therefore, x1(t) and x2(t) are mixed-type

solutions of PBVP (1.1), (1.2). �

Similar to the proof of Theorem 4.1, we have the following theorem.

Theorem 4.2. Let f be a Carathéodory function which satisfies (H1),
(H2). If
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(H7) f
0
> 0, f∞ > 0; and

(H8) there exists ρ > 0 such that

sup
δρ≤|x|≤ρ

ess sup
t∈[0,T ]

f(t, x)

x
< 0.

Then PBVP (1.1), (1.2) has at least two mixed-type solutions x1(t)
and x2(t). Moreover, xi1(t), x

i
2(t) ≥ 0 for i ∈ I+; xi1(t), x

i
2(t) ≤ 0 for

i ∈ I−.

Remark 4.1.

(i) When E = diag (1, 1, . . . , 1), Theorems 4.1 and 4.2 give the
multiplicity results of positive solutions for PBVP (1.1) and
(1.2).

(ii) When E = diag (−1,−1, . . . ,−1), Theorems 4.1 and 4.2 give
the multiplicity results of negative solutions for PBVP (1.1)
and (1.2).

Example 4.1. Consider the following two-dimensional PBVP

x′ +
1

4
(t2 + 1)x− 2

√
x2 + y2 e−

√
x2+y2

x = 0,(4.2)

y′ +
1

2π
y arctan(1 + x2 + y2)(4.3)

−(t+ 1)
√
x2 + y2 e−

√
x2+y2

y = 0,

x(0) = x(1), y(0) = y(1),(4.4)

where 0 ≤ t ≤ 1. In this example, T = 1, and

f(t, x, y) =

(
1
4 (t

2 + 1)x− 2
√
x2 + y2 e−

√
x2+y2

x
1
2π y arctan(1 + x2 + y2)− (t+ 1)

√
x2 + y2 e−

√
x2+y2

y

)
.

By choosing

M(t) =

(
1
4 (t

2 + 1) 0
0 1

8

)
, E =

(
1 0
0 −1

)
,

we can easily verify that (H1) and (H2) hold. A direct calculation yields
f
0
= (1/4, 1/8)⊤ > 0, f∞ = (1/4, 1/4)⊤ > 0. Let δ = e−1/3, ρ = 1. By

means of the Matlab, we can compute that max{(f(t, x, y))/(x, y) | t ∈
[0, T ], δρ ≤ |(x, y)⊤| ≤ ρ} ≤ (−0.1876,−0.0938)⊤ < 0. Theorem 4.2
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shows that PBVP (4.2), (4.3), (4.4) has at least two mixed-type
solutions, (x1(t), y1(t))

⊤ and (x2(t), y2(t))
⊤. Moreover, x1(t), x2(t) ≥

0; y1(t), y2(t) ≤ 0.

5. Conclusions. This paper has presented some existence and mul-
tiplicity results of positive, negative and mixed-type solutions for PBVP
(1.1), (1.2) in vector form under some proper conditions. In special case
n = 1, the existence and multiplicity conditions can be weakened as
follows.

As regards the existence and multiplicity results of positive solutions,
we only require

f0 = lim sup
x→0+

ess sup
t∈[0,T ]

f(t, x)

x
,

f
0
= lim inf

x→0+
ess inf
t∈[0,T ]

f(t, x)

x
,

f∞ = lim sup
x→+∞

ess sup
t∈[0,T ]

f(t, x)

x
,

f∞ = lim inf
x→+∞

ess inf
t∈[0,T ]

f(t, x)

x
,

and the multiplicity conditions (H6) and (H8), respectively, can be
replaced by

(H6)′ there exists ρ > 0 such that

inf
δρ≤x≤ρ

ess inf
t∈[0,T ]

f(t, x) > 0;

(H8)′ there exists ρ > 0 such that

sup
δρ≤x≤ρ

ess sup
t∈[0,T ]

f(t, x) < 0.

As regards the existence and multiplicity results of negative solu-
tions, we only require

f0 = lim sup
x→0−

ess sup
t∈[0,T ]

f(t, x)

x
,

f
0
= lim inf

x→0−
ess inf
t∈[0,T ]

f(t, x)

x
,
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f∞ = lim sup
x→−∞

ess sup
t∈[0,T ]

f(t, x)

x
,

f∞ = lim inf
x→−∞

ess inf
t∈[0,T ]

f(t, x)

x
,

and the multiplicity conditions (H6) and (H8), respectively, can be
replaced by

(H6)′′ there exists ρ > 0 such that

sup
−ρ≤x≤−δρ

ess sup
t∈[0,T ]

f(t, x) < 0.

(H8)′′ there exists ρ > 0 such that

inf
−ρ≤x≤−δρ

ess inf
t∈[0,T ]

f(t, x) > 0.

In addition, we can also use the methods in this paper to deal with
the PBVP of the following form

−x′(t) + f(t, x(t)) = 0, almost everywhere t ∈ [0, T ],(5.1)

x(0) = x(T ),(5.2)

where f : [0, T ] × Rn → Rn is a Carathéodory function satisfying
(H1) and (H2). For PBVP (5.1), (5.2), the function ui(t, s) in (2.3) is
replaced by

ui(t, s) =
e
∫ t
s
mi(τ) dτ

e
∫ T
0

mi(τ) dτ − 1
, i = 1, 2, . . . , n.

Letting δi = e−
∫ T
0

mi(τ) dτ , we can also prove that Theorems 3.1, 4.1
and 4.2 are valid for PBVP (5.1), (5.2).

Finally, we also remark that, if the function f(t, x) is periodic with
respect to t, the existence and multiplicity of positive, negative and
mixed-type solutions can also be discussed by using our method.
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