A NEW CLASS OF INEQUALITIES FOR POLYNOMIALS

RICHARD FOURNIER

Abstract

We extend a recent inequality due to Fournier, Letac and Ruscheweyh to a class of inequalities involving a bound-preserving operator as a parameter.

1. Introduction. Let \mathbf{D} be the unit disc in the complex plane \mathbf{C}. \mathcal{P}_{n} denotes the set of complex polynomials of degree at most n and $|p|_{\mathbf{D}}$ stands for the uniform norm of $p \in \mathcal{P}_{n}$. The following result has been obtained recently [4]:

Theorem A. For $p \in \mathcal{P}_{n}$ and $n \geq 2$,

$$
\begin{equation*}
|p-p(0)|_{\mathbf{D}} \leq n\left(|p|_{\mathbf{D}}-|p(0)|\right) \tag{1}
\end{equation*}
$$

The constant n is the best possible and equality holds only for constant polynomials $p \equiv p(0)$.

Ruscheweyh and Woloszkiewicz [8] have extended (1) by determining the "best" function M_{n} such that

$$
\begin{equation*}
\frac{1}{n} \leq M_{n}\left(\frac{|p(0)|}{|p-p(0)|}{ }_{\mathbf{D}}\right) \leq \frac{|p|_{\mathbf{D}}-|p(0)|}{|p-p(0)|_{\mathbf{D}}}, \quad p \in \mathcal{P}_{n} \tag{2}
\end{equation*}
$$

They also studied some cases of equality for (2).
Of course, one may think of (1) and (2) as generalizations of the classical triangle inequality to a special finite-dimensional vector space. In the present note, we shall further extend (1) from the point of view of bound-preserving operators over \mathcal{P}_{n}. A polynomial $P \in \mathcal{P}_{n}$ is called a bound-preserving operator over \mathcal{P}_{n} if

$$
|P \star p|_{\mathbf{D}} \leq|p|_{\mathbf{D}}, \quad \text { for all } p \in \mathcal{P}_{n}
$$

[^0]Here \star denotes the convolution (sometimes called Hadamard product) of two functions in $\mathcal{H}(\mathbf{D})$, the class of functions analytic in \mathbf{D}. We refer the reader to [7, Chapter 4] and [9, Chapter 4] concerning the class of bound-preserving operators; we shall be interested here in the subclass \mathcal{B}_{n} of those operators Q such that $Q(0)=1$.

It is well known that

$$
Q \in \mathcal{B}_{n} \Longleftrightarrow Q(z)+o\left(z^{n}\right) \in \mathfrak{P}_{1 / 2}
$$

where $\mathfrak{P}_{1 / 2}=\{f \in \mathcal{H}(\mathbf{D}) \mid f(0)=1$ and $\operatorname{Re} f(z)>1 / 2, z \in \mathbf{D}\}$. We associate to each $Q(z):=1+\sum_{k=1}^{n} A_{k} z^{k} \in \mathcal{B}_{n}$ a sequence of Toeplitz matrices $T_{k}, 1 \leq k \leq n$, whose first row is $\left(1, A_{1}, A_{2}, \ldots, A_{k}\right)$. Crucial classical information due to Carathéodory, Fejér and Toeplitz is available in the following:

Lemma 1.1. If $Q \in \mathcal{P}_{n}$ and $\operatorname{det} T_{k}(Q)>0$ for all $1 \leq k \leq n$, then $Q \in \mathcal{B}_{n}$. Conversely, for each $Q \in \mathcal{B}_{n}$, we have $\operatorname{det} T_{k}(Q)>0$ for all $1 \leq k \leq n$ or else there exists a smallest positive integer $K, 1 \leq K \leq n$, such that $\operatorname{det} T_{k}=0$ if $K \leq k \leq n$. In that case,

$$
Q(z)=\sum_{j=1}^{K} \frac{\ell_{j}}{1-\zeta_{j} z}+o\left(z^{n}\right)
$$

where $0<\ell_{j}$ and $\left\{\zeta_{j}\right\}_{j=1}^{K}$ is a set of distinct nodes in $\partial \mathbf{D}$.

A good reference concerning Lemma 1.1 is the book of Tsuji $[\mathbf{1 0}$, pages 153-159].

Let $\mathcal{B}_{n}^{0}=\left\{Q \in \mathcal{B}_{n} \mid \operatorname{det} T_{n}>0\right\}$. Our main result is:

Theorem 1.2. For any $Q \in \mathcal{B}_{n}^{0}, n \geq 2$, there exists an optimal constant $0<d_{n}=d(Q, n)<1$ such that

$$
\begin{equation*}
|Q \star p|_{\mathbf{D}}+d_{n}|p-Q \star p|_{\mathbf{D}} \leq|p|_{\mathbf{D}}, \quad p \in \mathcal{P}_{n} \tag{3}
\end{equation*}
$$

Clearly, this is an extension of Theorem 1 which is the case $Q \equiv 1$ with $d_{n}=d(1, n)=1 / n$. In the next section we shall prove Theorem 1.2 and establish cases of equality in (3). We shall also discuss Theorem 1.2, assuming that $Q \in \mathcal{B}_{n} \backslash \mathcal{B}_{n}^{0}$. Finally, inspired by an inequality of

Ruscheweyh ([5], [7]) we shall introduce alternate versions of our theorem.
2. Proof of Theorem 1.2. Let $I(z)=\sum_{j=0}^{n} z^{j}$. The inequality (3) is clearly equivalent with

$$
\widetilde{Q}(z):=Q(z)+\delta u(I(v z)-Q(v z)) \in \mathcal{B}_{n}
$$

for any $0 \leq \delta \leq d_{n}$ and $u, v \in \partial \mathbf{D}$. If $Q(z):=1+\sum_{k=1}^{n} A_{k} z^{k}$, the first row of the Toeplitz matrix $T_{k}(\widetilde{Q})$ is

$$
\left(1, A_{1}+\delta u(1-A) v, \ldots, A_{k}+\delta u\left(1-A_{k}\right) v^{k}\right)
$$

We define, for $1 \leq k \leq n$,

$$
d_{k}=\sup _{\delta \geq 0}\left\{\delta \mid \operatorname{det} T_{j}(\widetilde{Q})>0, j=1,2, \ldots, k, u, v \in \partial \mathbf{D}\right\}
$$

The Taylor coefficients of Q are bounded and $\operatorname{det} T_{k}(Q)>0$ by hypothesis. This is sufficient to conclude that

$$
0<d_{n} \leq d_{n-1} \leq d_{n-2} \cdots \leq d_{1}
$$

By Lemma 1.1, we obtain that $\widetilde{Q} \in \mathcal{B}_{n}$ when $u, v \in \partial \mathbf{D}$ and $\delta<d_{n}$. By continuity, this must also hold for $\delta \leq d_{n}$ and, by definition, there must exist, given $\delta>d_{n}$, numbers $u, v \in \partial \mathbf{D}$ such that $\operatorname{det} T_{n}(\widetilde{Q})<0$ for the corresponding \widetilde{Q}. It follows that $d_{n}=d(Q, n)>0$.

When $n=1$, it is rather trivial that $d_{n}=\left(1-\left|A_{n}\right|\right) /\left|1-A_{n}\right|$ and, surely, $0<d_{n} \leq 1$, where equality is possible if A_{n} is positive. It should be noted that $\left|A_{k}\right|<1$ for $1 \leq k \leq n$ when $\operatorname{det} T_{n}(Q)>0$. We shall now prove that $d_{n}<1$ when $n \geq 2$; assume for now that $d_{n}=1$, and let $u \in \partial \mathbf{D}, 1 \leq k \leq n / 2$ and $v=\bar{u}^{1 / k}$. Then, if

$$
\begin{aligned}
\widetilde{Q}(z) & :=Q(z)+u d_{n}(I(v z)-Q(v z)) \\
& =1+\sum_{j=1}^{n}\left(A_{j}+d_{n} u\left(1-A_{j}\right) v^{j}\right) z^{j}
\end{aligned}
$$

where $A_{k}+d_{n} u\left(1-A_{k}\right) v^{k}=A_{k}+\left(1-A_{k}\right)=1$, it follows that $\widetilde{Q}(z)+o\left(z^{n}\right)$ is a support point of $\mathfrak{P}_{1 / 2}$ (see [6] for details) since it
maximizes $\operatorname{Re} f^{(k)}(0)$ within this class, and therefore

$$
\widetilde{Q}(z)=\sum_{j=1}^{k} \frac{\ell_{j}(u)}{1-w_{j} z}+o\left(z^{n}\right)
$$

where $\ell_{j}(u) \geq 0$ and $\left\{w_{j}\right\}_{j=1}^{k}$ is the set of distinct k-roots of unity. We have, in particular,

$$
\begin{aligned}
1 & =\sum_{j=1}^{k} \ell_{j}(u) w_{j}^{2 k}=A_{2 k}+d_{n} u\left(1-A_{2 k}\right) v^{2 k} \\
& =A_{2 k}+\bar{u}\left(1-A_{2 k}\right)
\end{aligned}
$$

which is impossible because u is arbitrary in $\partial \mathbf{D}$ and $\left|A_{2 k}\right|<1$.
Concerning the cases of equality in (3), we shall rely on two more hypotheses:

$$
\begin{equation*}
d_{n}<d_{n-1} \leq d_{n-2} \cdots \leq d_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}<\frac{1-\left|A_{n}\right|}{\left|1-A_{n}\right|} . \tag{5}
\end{equation*}
$$

These hypotheses may look artificial, but we remark that they were verified in the case of Theorem 1. We shall also need the following easy consequence of Theorem 1.2:

Corollary 2.1. Let $Q \in \mathcal{B}_{n}^{0}$ with $n \geq 2$. Then the constant polynomials are the only polynomials $p \in \mathcal{P}_{n}$ such that $|Q \star p|_{\mathbf{D}}=|p|_{\mathbf{D}}$.

Let us now assume that $n \geq 2$ and that equality holds for some polynomial $p \in \mathcal{P}_{n}$ in (3). There must exist $Z, u, v \in \partial \mathbf{D}$ such that

$$
\begin{align*}
\mid(Q(z) & \left.+d_{n} u(I(v z)-Q(v z))\right)\left.\star p(z)\right|_{z=Z} \tag{6}\\
& =|Q \star p(Z)|+d_{n}|(I-Q) \star p(v Z)| \\
& =|Q \star p|_{\mathbf{D}}+d_{n}|p-Q \star p|_{\mathbf{D}} \\
& =|p|_{\mathbf{D}} .
\end{align*}
$$

Then, either $\operatorname{det} T_{n}\left(Q+d_{n} u(I(v \cdot)-Q(v \cdot))\right)>0$ or else the same determinant vanishes. It follows, in the first case and by Corollary 2.1,
that the polynomial p is constant. In the second case, it shall follow from hypothesis (4) and Lemma 1.1 that

$$
\begin{equation*}
Q(z)+d_{n} u(I(v z)-Q(v z))=\sum_{j=1}^{n} \frac{\ell_{j}}{1-\zeta_{j} z}+o\left(z^{n}\right) \tag{7}
\end{equation*}
$$

where $\ell_{j}>0$ and the set of distinct nodes $\left\{\zeta_{j}\right\}_{j=1}^{n}$ lies in $\partial \mathbf{D}$. We obtain, in particular, from (6) and (7) that

$$
\left|\sum_{j=1}^{n} \ell_{j} p\left(\zeta_{j} Z\right)\right|=|p|_{\mathbf{D}}
$$

and there must exist some real number ρ such that

$$
p\left(\zeta_{j} Z\right)=|p|_{\mathbf{D}} e^{i \rho}, \quad j=1,2, \ldots, n
$$

It is known [3] that such polynomials must be of the type $p(z)=\beta+\alpha z^{n}$ for some $\alpha, \beta \in \mathbf{C}$. We now have from (6) that

$$
\left|\beta+\alpha A_{n} z^{n}\right|_{\mathbf{D}}+d_{n}|\alpha|\left|1-A_{n}\right|=|\beta|+|\alpha|,
$$

and, with $\alpha \neq 0$, this amounts to

$$
d_{n}=\frac{1-\left|A_{n}\right|}{\left|1-A_{n}\right|}
$$

which is ruled out by hypothesis (5) We conclude that, for $n \geq 2$ and under (4) and (5), equality holds in Theorem 1.2 if and only if the polynomial p is constant.

It seems at first sight difficult to exhibit functions $Q \in \mathcal{B}_{n}$ with given A_{n} and d_{n} satisfying (5). We remark, however, that any one of the two statements

$$
0 \leq A_{n}<1
$$

or

$$
\min _{1 \leq j \leq n} \frac{1-\left|A_{j}\right|}{\left|1-A_{j}\right|}<\frac{1-\left|A_{n}\right|}{\left|1-A_{n}\right|}
$$

admits (5) as a consequence.
3. What about $Q \in \mathcal{B}_{n} \backslash \mathcal{B}_{n}^{0}$? It is a natural question to ask if Theorem 1.2 remains valid for some polynomials $Q \in \mathcal{B}_{n}$ with
$\operatorname{det} T_{n}(Q)=0$ since our proof depends heavily on the fact that $Q \in \mathcal{B}_{n}^{0}$. We only have partial answers concerning this question.

Let $F(z)=\sum_{j=1}^{k} \ell_{j} /\left(1-w_{j} z\right) \in \mathfrak{P}_{1 / 2}, \ell_{j}>0$, and $\left\{w_{j}\right\}_{j=1}^{k}$ is the set of distinct k roots of unity with $2 \leq k$. There exists [2, Lemma 2.2] a non-constant polynomial $P \in \mathcal{P}_{\lceil k / 2\rceil}$ and $0<a<1$ such that, if

$$
\begin{equation*}
p(z)=1-a\left(1-z^{k}\right) P(z) \in \mathcal{P}_{k+\lceil k / 2\rceil} \tag{8}
\end{equation*}
$$

then $|p|_{\mathbf{D}}=1$. We set

$$
Q(z):=1+\sum_{t=1}^{k+\lceil k / 2\rceil}\left(\sum_{j=1}^{k} \ell_{j} w_{j}^{t}\right) z^{t}=F(z)+o\left(z^{k+\lceil k / 2\rceil}\right)
$$

Clearly, $Q \in \mathcal{B}_{k+\lceil k / 2\rceil}$ and, by Lemma 1.1,

$$
\operatorname{det} T_{j}(Q)>0 \quad \text { if } 1 \leq j<k
$$

and

$$
\operatorname{det} T_{j}(Q)=0 \quad \text { if } k \leq j \leq k+\left\lceil\frac{k}{2}\right\rceil
$$

Let us define $n=k+\lceil k / 2\rceil$; clearly, $Q \in \mathcal{B}_{n} \backslash \mathcal{B}_{n}^{o}$, and we claim that Theorem 1.2 is not valid for Q and that choice of n; otherwise, there would exist a constant $d>0$ such that

$$
\begin{equation*}
|Q \star p|_{\mathbf{D}}+d|p-Q \star p|_{\mathbf{D}} \leq|p|_{\mathbf{D}}, \quad p \in \mathcal{P}_{n} \tag{9}
\end{equation*}
$$

and, for p defined by (8), we obtain

$$
\begin{aligned}
1 & =|p|_{\mathbf{D}}=|Q \star p(1)| \\
& \leq|Q \star p|_{\mathbf{D}}+d|p-Q \star p|_{\mathbf{D}} \leq|p|_{\mathbf{D}}=1,
\end{aligned}
$$

i.e., $p(z) \equiv Q \star p(z)$ and $p(z) \equiv \sum_{j=1}^{k} \ell_{j} p\left(w_{j} z\right)$. Since p is non-constant, one of its Taylor coefficients (say $a_{t}(p)$ with $0<t \leq\lceil k / 2\rceil$) does not vanish with

$$
a_{t}(p)=\left(\sum_{j=1}^{k} \ell_{j} w_{j}^{t}\right) a_{t}(p)
$$

i.e., $1=\sum_{j=1}^{k} \ell_{j} w_{j}^{t}=w_{\ell}^{t}$ for $1 \leq \ell \leq k$, and there would exist k distinct t-roots of unity with $0<t \leq\lceil k / 2\rceil<k$. We are, however, unable to decide if we can choose $k \leq n<k+\lceil k / 2\rceil$.

We may also consider $F(z)=\sum_{j=1}^{k} \ell_{j} /\left(1-e^{i \theta_{j}} z\right)$ where $\ell_{j}>0$ and the $k+1$ nodes $\left\{e^{i \theta_{j}}\right\}_{j=1}^{k+1}$ satisfy

$$
0 \leq \theta_{1}<\theta_{2} \cdots<\theta_{k}<\theta_{k+1}<2 \pi
$$

but are otherwise arbitrary. Also let $0<\psi<\varphi<2 \pi$; according to a result of Clunie, Hallenbeck and MacGregor [1] there exists, for each n, a polynomial p_{n} univalent in \mathbf{D} such that

$$
p_{n}\left(e^{i \theta_{j}}\right)=e^{i(\psi-(1 / j n))}, \quad 1 \leq j \leq k, \text { and } p_{n}\left(e^{i \theta_{k+1}}\right)=e^{i \varphi}
$$

and $\left|p_{n}\right|_{\mathbf{D}}=1$ where, for each $n, p_{n} \in \mathcal{P}_{M}$ where M depends only on $k,\left\{\theta_{j}\right\}_{j=1}^{k+1}, \psi$ and φ but does not depend on n.

Due to the finiteness of M, the family $\left\{p_{n}\right\}$ has a subsequence $\left\{p_{n_{j}}\right\}$ converging uniformly over $\overline{\mathbf{D}}$ to a polynomial p which is univalent since $p\left(e^{i \theta_{1}}\right)=e^{i \psi} \neq e^{i \varphi}=p\left(e^{i \theta_{k+1}}\right)$. We now let

$$
\begin{equation*}
Q(z)=1+\sum_{t=1}^{M}\left(\sum_{j=1}^{k} \ell_{j} e^{i t \theta_{j}}\right) z^{t}=F(z)+o\left(z^{M}\right) \tag{10}
\end{equation*}
$$

We may assume $k<M$ and $Q \in \mathcal{B}_{M} \backslash \mathcal{B}_{M}^{0}$. If there exists a constant $d>0$ such that (9) holds with $n=M$, then for p as above,

$$
1=|Q \star p(1)| \leq|Q \star p|_{\mathbf{D}}+d|p-Q \star p|_{\mathbf{D}} \leq 1
$$

and again $p \equiv Q \star p$. Since p is univalent, we have $p^{\prime}(0) \neq 0$ and, by (10),

$$
\sum_{j=1}^{k} \ell_{j} e^{i \theta_{j}}=1
$$

which is impossible for $k>1$ since, for any $j, \ell_{j}>0$ and $\left\{e^{i \theta_{j}}\right\}_{j=1}^{k}$ contains k different nodes!
4. Another extension of (1). Given $Q \in \mathcal{B}_{n}^{0}$, we may look for a slightly different extension of (1), namely, statements of the type

$$
|Q \star p(z)|+c|p(z)-Q \star p(z)| \leq|p|_{\mathbf{D}}, \quad p \in \mathcal{P}_{n},|z| \leq 1
$$

where $c>0$. As in the proof of Theorem 1.2 , we define, for $\delta \geq 0$, $|u|=1$,

$$
\widetilde{Q}(z):=Q(z)+\delta u(I(z)-Q(z))
$$

and $T_{k}(\widetilde{Q})$ the Toeplitz matrix whose first row equals $1 \leq k \leq n$,

$$
\left(1, A_{1}+\delta u\left(1-A_{1}\right), A_{2}+\delta u\left(1-A_{2}\right), \ldots, A_{k}+\delta u\left(1-A_{k}\right)\right)
$$

Also, as in Theorem 1.2, we set

$$
c_{k}=\sup _{\delta \geq 0}\left\{\delta \mid \operatorname{det} T_{j}(\widetilde{Q})>0, j=1,2, \ldots, k, u \in \partial \mathbf{D}\right\} .
$$

We obtain the following result (the omitted proof runs as the proof of Theorem 1.2):

Theorem 4.1. For each $Q \in \mathcal{B}_{n}^{0}$, we have

$$
0<c_{n} \leq c_{n-1} \leq \cdots \leq c_{1}
$$

and

$$
\begin{equation*}
|Q \star p(z)|+c_{n}|p(z)-Q \star p(z)| \leq|p|_{\mathbf{D}}, \quad p \in \mathcal{P}_{n}, \quad z \in \overline{\mathbf{D}} \tag{11}
\end{equation*}
$$

The constant c_{n} is the best possible. Further, if $n \geq 2$ and $c_{n}<$ $\min \left(c_{n-1},\left(1-\left|A_{n}\right|\right) /\left|1-A_{n}\right|\right)$, equality holds in (11) only for constant polynomials.

There are, however, striking differences between the inequalities (3) and (11). It is clear that $d_{n} \leq c_{n} \leq 1$. The polynomial $Q_{n}(z):=\sum_{k=0}^{n}(1-k / n) z^{k}$ belongs to $\mathcal{P}_{n-1} \cap \mathfrak{P}_{1 / 2} \subset \mathcal{B}_{n}^{0}$ and, in that context, the inequality (11) is nothing but the classical

$$
\begin{equation*}
\left|p(z)-\frac{z p^{\prime}(z)}{n}\right|+\left|\frac{z p^{\prime}(z)}{n}\right| \leq|p|_{\mathbf{D}}, \quad z \in \mathbf{D}, p \in \mathcal{P}_{n} \tag{12}
\end{equation*}
$$

for which we have $c_{j}=c_{n}=\left(1-\left|A_{n}\right|\right) /\left|1-A_{n}\right|=1$, for any $1 \leq j \leq n$. Indeed, the cases of inequality in (12) are numerous, and they were studied in [3]; we also can prove (unpublished) that in (11) we may have $c_{n}=1$ if and only if $Q(z)=\sum_{k=0}^{n}(1-t k / n) z^{k}$ for some t in $[0,1]$.

The inequality (11) is reminiscent of a result of Ruscheweyh (see [5] or [7, Chapter 4]), claiming that

$$
\begin{equation*}
|q \star p(z)|+\left|q^{s} \star p(z)\right| \leq|p|_{\mathbf{D}}, \quad p \in \mathcal{P}_{n}, \quad z \in \overline{\mathbf{D}} \tag{13}
\end{equation*}
$$

for any $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1 / 2}$ and $q^{s}(z):=z^{n} \bar{q}(1 / \bar{z})$. It is easily seen that both of (11) and (13) reduce to (12) when both q and Q equal Q_{n}.

We remark, however, that this is their only point of "intersection" by showing that, for $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1 / 2}$,

$$
I-q \equiv q^{s} \Longleftrightarrow q \equiv Q_{n}
$$

As a matter of fact, it was shown in [3] that, for $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1 / 2}$ and θ real,

$$
\begin{equation*}
q(z)+e^{i \theta} q^{s}(z) \equiv \sum_{j=0}^{n-1} \frac{\ell_{j}}{1-w_{j} e^{i \theta / n} z}+o\left(z^{n}\right) \tag{14}
\end{equation*}
$$

where $\left\{w_{j}\right\}_{j=0}^{n-1}$ is the set of nth roots of unity and $\ell_{j}=(2 / n)(\operatorname{Re} q$ $\left.\left(\bar{w}_{j} e^{-i \theta / n}\right)-1 / 2\right)$. In particular, if $q(z)=1+\sum_{k=1}^{n-1} a_{k} z^{k}$, we obtain

$$
\left|a_{k}+e^{i \theta} a_{n-k}\right| \leq 1, \quad 1 \leq k \leq n-1,
$$

and, because θ is arbitrary, it follows that

$$
\left|a_{k}\right|+\left|a_{n-k}\right| \leq 1, \quad 1 \leq k \leq n-1
$$

Assume now that $q+q^{s} \equiv I$. Then, for $1 \leq k \leq n-1$,

$$
1=\left|a_{k}+\bar{a}_{n-k}\right| \leq\left|a_{k}\right|+\left|a_{n-k}\right|=1
$$

i.e. $\bar{a}_{n-k}=t_{k} a_{k}$ with $t_{k} \geq 0$ and

$$
\begin{equation*}
a_{k}=\frac{1}{1+t_{k}}, \quad 1 \leq k \leq n-1 \tag{15}
\end{equation*}
$$

The condition $q+q^{s} \equiv I$ is equivalent with $q(z)+q^{s}(z)=1 /(1-z)+$ $o\left(z^{n}\right)$, and a comparison with (14) yields

$$
\operatorname{Re} q\left(e^{-2 i j \pi / n}\right)= \begin{cases}\frac{1}{2} & \text { if } 1 \leq j \leq n-1 \tag{16}\\ \frac{n+1}{2} & \text { if } j=0\end{cases}
$$

By (15), the Taylor coefficients of q are real, and therefore

$$
\operatorname{Re} q\left(e^{i \theta}\right)=1+\sum_{k=1}^{n-1} a_{k} \cos (k \theta)=1+\sum_{k=1}^{n-1} a_{k} T_{k}(\cos \theta)
$$

where T_{k} is the k th Chebyshev polynomial. There exists at most one polynomial of this form satisfying the interpolation conditions (16), and it is now a routine calculation to show that $q \equiv Q_{n}$.

We finally obtain an analogue of Theorem 1.2 for Ruscheweyh's inequality (13):

Theorem 4.2. Let $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1 / 2}$ be non-constant. There shall exist an optimal constant $b_{n} \in(0,1)$ such that

$$
|q \star p|_{\mathbf{D}}+b_{n}\left|q^{s} \star p\right|_{\mathbf{D}} \leq|p|_{\mathbf{D}}, \quad p \in \mathcal{P}_{n}
$$

Cases of equality could be discussed as above. We omit the details.
5. Conclusion. We shall end this paper with the following problem.

Problem 5.1. Let $1 \leq k \leq n$ and $\left\{z_{j}\right\}_{j=1}^{k} \subset \partial \mathbf{D}$ be a set of distinct nodes. What are the polynomials $p \in \mathcal{P}_{n}$ such that

$$
p\left(z_{j}\right)=|p|_{\mathbf{D}}, \quad j=1,2, \ldots, k ?
$$

Problem 5.1 is trivial when $k=1$ and relatively easy when $k=$ n, (see [3]). Not much seems to be known about the existence of such polynomials when $1<k<n$; as an example, we remark [3] that, for $|b| \leq 1, b \neq-1$ and $0<a$, the polynomial $p(z):=$ $1-a\left[\left(1-z^{n}\right) /(1-z)\right](1+b z)$ always satisfies $|p|_{\mathbf{D}}>1=p\left(e^{2 i j \pi / n}\right)$, $j=1,2, \ldots, n-1$.

Such polynomials are related to problems considered in the present paper; if

$$
F(z)=\sum_{j=1}^{k} \frac{\ell_{j}}{1-z_{j} z}, \quad \ell_{j}>0
$$

the solutions to the extremal problem

$$
|F \star p|_{\mathbf{D}}=|p|_{\mathbf{D}}, \quad p \in \mathcal{P}_{n}
$$

are precisely, up to a multiplicative constant of modulus 1 , the polynomials $p \in \mathcal{P}_{n}$ such that $p\left(z_{j} Z\right)=|p|_{\mathbf{D}}$ for some $Z \in \partial \mathbf{D}$. Further, in the case where such non-constant polynomials do exist, there cannot be $d>0$ such that

$$
|F \star q|_{\mathbf{D}}+d|q-F \star q|_{\mathbf{D}} \leq|q|_{\mathbf{D}}
$$

for all $q \in \mathcal{P}_{n}$.

REFERENCES

1. J. Clunie, D. Hallenbeck and T. MacGregor, A peaking and interpolation problem for univalent functions, J. Math. Anal. Appl. 111 (1985), 559-570.
2. D. Dryanov and R. Fournier, Refinement of an inequality of P.L. Chebyshev, Acta Math. Hung. 122 (2009), 59-69.
3. R. Fournier, Cases of equality for a class of bound-preserving operators over P_{n}, Comp. Meth. Funct. Theor. 4 (2004), 183-188.
4. R. Fournier, G. Letac and St. Ruscheweyh, Estimates for the uniform norm of complex polynomials in the unit disk, Math. Nachr. 283 (2010), 193-199.
5. C. Frappier, Q.I. Rahman and St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985), 69-99.
6. D. Hallenbeck and T. MacGregor, Linear problems and convexity techniques in geometric function theory, Pitman, Boston, 1984.
7. St. Ruscheweyh, Convolutions in geometric function theory, Press. Univ. Montr., Montreal, 1983.
8. St. Ruscheweyh and M. Woloszkiewicz, Estimates for polynomials in the unit disk with varying constant terms, Ann. Univ. M.-Curie Sklod. 65 (2011), 169-178.
9. T. Sheil-Small, Complex polynomials, Cambridge University Press, Cambridge, 2002.
10. M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975.

Département de mathématiques et Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, H3C 3J7 Canada
Email address: fournier@dms.umontreal.ca

[^0]: 2010 AMS Mathematics subject classification. Primary 30E10, 41A17, 42A05.
 Keywords and phrases. Polynomial inequalities, bound-preserving operators.
 Received by the editors on March 27, 2012.

