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A NEW CLASS OF INEQUALITIES
FOR POLYNOMIALS

RICHARD FOURNIER

ABSTRACT. We extend a recent inequality due to
Fournier, Letac and Ruscheweyh to a class of inequalities
involving a bound-preserving operator as a parameter.

1. Introduction. Let D be the unit disc in the complex plane C.
Pn denotes the set of complex polynomials of degree at most n and
|p|D stands for the uniform norm of p ∈ Pn. The following result has
been obtained recently [4]:

Theorem A. For p ∈ Pn and n ≥ 2,

(1) |p− p(0)|D ≤ n(|p|D − |p(0)|).

The constant n is the best possible and equality holds only for constant
polynomials p ≡ p(0).

Ruscheweyh and Woloszkiewicz [8] have extended (1) by determin-
ing the “best” function Mn such that

(2)
1

n
≤Mn

(
|p(0)|

|p− p(0)|D

)
≤ |p|D − |p(0)|

|p− p(0)|D
, p ∈ Pn.

They also studied some cases of equality for (2).

Of course, one may think of (1) and (2) as generalizations of the
classical triangle inequality to a special finite-dimensional vector space.
In the present note, we shall further extend (1) from the point of view
of bound-preserving operators over Pn. A polynomial P ∈ Pn is called
a bound-preserving operator over Pn if

|P ⋆ p|D ≤ |p|D, for all p ∈ Pn.
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Here ⋆ denotes the convolution (sometimes called Hadamard product)
of two functions in H(D), the class of functions analytic in D. We refer
the reader to [7, Chapter 4] and [9, Chapter 4] concerning the class of
bound-preserving operators; we shall be interested here in the subclass
Bn of those operators Q such that Q(0) = 1.

It is well known that

Q ∈ Bn ⇐⇒ Q(z) + o(zn) ∈ P1/2

where P1/2 = {f ∈ H(D) | f(0) = 1 and Re f(z) > 1/2, z ∈ D}.
We associate to each Q(z) := 1 +

∑n
k=1Akz

k ∈ Bn a sequence of
Toeplitz matrices Tk, 1 ≤ k ≤ n, whose first row is (1, A1, A2, . . . , Ak).
Crucial classical information due to Carathéodory, Fejér and Toeplitz
is available in the following:

Lemma 1.1. If Q ∈ Pn and detTk(Q) > 0 for all 1 ≤ k ≤ n, then
Q ∈ Bn. Conversely, for each Q ∈ Bn, we have detTk(Q) > 0 for all
1 ≤ k ≤ n or else there exists a smallest positive integer K, 1 ≤ K ≤ n,
such that detTk = 0 if K ≤ k ≤ n. In that case,

Q(z) =
K∑
j=1

ℓj
1− ζjz

+ o(zn),

where 0 < ℓj and {ζj}Kj=1 is a set of distinct nodes in ∂D.

A good reference concerning Lemma 1.1 is the book of Tsuji [10,
pages 153–159].

Let B0
n = {Q ∈ Bn | detTn > 0}. Our main result is:

Theorem 1.2. For any Q ∈ B0
n, n ≥ 2, there exists an optimal

constant 0 < dn = d(Q,n) < 1 such that

(3) |Q ⋆ p|D + dn|p−Q ⋆ p|D ≤ |p|D, p ∈ Pn.

Clearly, this is an extension of Theorem 1 which is the case Q ≡ 1
with dn = d(1, n) = 1/n. In the next section we shall prove Theorem 1.2
and establish cases of equality in (3). We shall also discuss Theorem 1.2,
assuming that Q ∈ Bn\B0

n. Finally, inspired by an inequality of
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Ruscheweyh ([5], [7]) we shall introduce alternate versions of our
theorem.

2. Proof of Theorem 1.2. Let I(z) =
∑n
j=0 z

j . The inequality

(3) is clearly equivalent with

Q̃(z) := Q(z) + δu
(
I(vz)−Q(vz)

)
∈ Bn

for any 0 ≤ δ ≤ dn and u, v ∈ ∂D. If Q(z) := 1 +
∑n
k=1Akz

k, the first

row of the Toeplitz matrix Tk(Q̃) is

(1, A1 + δu(1−A)v, . . . , Ak + δu(1−Ak)v
k).

We define, for 1 ≤ k ≤ n,

dk = sup
δ≥0

{δ | detTj(Q̃) > 0, j = 1, 2, . . . , k, u, v ∈ ∂D}.

The Taylor coefficients of Q are bounded and detTk(Q) > 0 by
hypothesis. This is sufficient to conclude that

0 < dn ≤ dn−1 ≤ dn−2 · · · ≤ d1.

By Lemma 1.1, we obtain that Q̃ ∈ Bn when u, v ∈ ∂D and δ < dn.
By continuity, this must also hold for δ ≤ dn and, by definition, there

must exist, given δ > dn, numbers u, v ∈ ∂D such that detTn(Q̃) < 0

for the corresponding Q̃. It follows that dn = d(Q,n) > 0.

When n = 1, it is rather trivial that dn = (1− |An|)/|1−An| and,
surely, 0 < dn ≤ 1, where equality is possible if An is positive. It should
be noted that |Ak| < 1 for 1 ≤ k ≤ n when detTn(Q) > 0. We shall
now prove that dn < 1 when n ≥ 2; assume for now that dn = 1, and
let u ∈ ∂D, 1 ≤ k ≤ n/2 and v = u1/k. Then, if

Q̃(z) := Q(z) + udn
(
I(vz)−Q(vz)

)
= 1 +

n∑
j=1

(Aj + dnu(1−Aj)v
j)zj ,

where Ak + dnu(1 − Ak)v
k = Ak + (1 − Ak) = 1, it follows that

Q̃(z) + o(zn) is a support point of P1/2 (see [6] for details) since it
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maximizes Re f (k)(0) within this class, and therefore

Q̃(z) =
k∑
j=1

ℓj(u)

1− wjz
+ o(zn),

where ℓj(u) ≥ 0 and {wj}kj=1 is the set of distinct k-roots of unity. We
have, in particular,

1 =

k∑
j=1

ℓj(u)w
2k
j = A2k + dnu(1−A2k)v

2k

= A2k + u(1−A2k),

which is impossible because u is arbitrary in ∂D and |A2k| < 1.

Concerning the cases of equality in (3), we shall rely on two more
hypotheses:

(4) dn < dn−1 ≤ dn−2 · · · ≤ d1

and

(5) dn <
1− |An|
|1−An|

.

These hypotheses may look artificial, but we remark that they were
verified in the case of Theorem 1. We shall also need the following easy
consequence of Theorem 1.2:

Corollary 2.1. Let Q ∈ B0
n with n ≥ 2. Then the constant polynomials

are the only polynomials p ∈ Pn such that |Q ⋆ p|D = |p|D.

Let us now assume that n ≥ 2 and that equality holds for some
polynomial p ∈ Pn in (3). There must exist Z, u, v ∈ ∂D such that∣∣∣(Q(z) + dnu

(
I(vz)−Q(vz)

))
⋆ p(z)

∣∣∣
z=Z

(6)

= |Q ⋆ p(Z)|+ dn|(I −Q) ⋆ p(vZ)|
= |Q ⋆ p|D + dn|p−Q ⋆ p|D
= |p|D.

Then, either detTn(Q + dnu(I(v·) − Q(v·))) > 0 or else the same
determinant vanishes. It follows, in the first case and by Corollary 2.1,
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that the polynomial p is constant. In the second case, it shall follow
from hypothesis (4) and Lemma 1.1 that

(7) Q(z) + dnu
(
I(vz)−Q(vz)

)
=

n∑
j=1

ℓj
1− ζjz

+ o(zn),

where ℓj > 0 and the set of distinct nodes {ζj}nj=1 lies in ∂D. We
obtain, in particular, from (6) and (7) that∣∣∣∣ n∑

j=1

ℓjp(ζjZ)

∣∣∣∣ = |p|D,

and there must exist some real number ρ such that

p(ζjZ) = |p|Deiρ, j = 1, 2, . . . , n.

It is known [3] that such polynomials must be of the type p(z) = β+αzn

for some α, β ∈ C. We now have from (6) that

|β + αAnz
n|D + dn|α| |1−An| = |β|+ |α|,

and, with α ̸= 0, this amounts to

dn =
1− |An|
|1−An|

,

which is ruled out by hypothesis (5) We conclude that, for n ≥ 2 and
under (4) and (5), equality holds in Theorem 1.2 if and only if the
polynomial p is constant.

It seems at first sight difficult to exhibit functions Q ∈ Bn with given
An and dn satisfying (5). We remark, however, that any one of the two
statements

0 ≤ An < 1

or

min
1≤j≤n

1− |Aj |
|1−Aj |

<
1− |An|
|1−An|

admits (5) as a consequence.

3. What about Q ∈ Bn\B0
n? It is a natural question to ask

if Theorem 1.2 remains valid for some polynomials Q ∈ Bn with
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detTn(Q) = 0 since our proof depends heavily on the fact that Q ∈ B0
n.

We only have partial answers concerning this question.

Let F (z) =
∑k
j=1 ℓj/(1− wjz) ∈ P1/2, ℓj > 0, and {wj}kj=1 is the

set of distinct k roots of unity with 2 ≤ k. There exists [2, Lemma 2.2]
a non-constant polynomial P ∈ P⌈k/2⌉ and 0 < a < 1 such that, if

(8) p(z) = 1− a(1− zk)P (z) ∈ Pk+⌈k/2⌉,

then |p|D = 1. We set

Q(z) := 1 +

k+⌈k/2⌉∑
t=1

( k∑
j=1

ℓjw
t
j

)
zt = F (z) + o(zk+⌈k/2⌉).

Clearly, Q ∈ Bk+⌈k/2⌉ and, by Lemma 1.1,

detTj(Q) > 0 if 1 ≤ j < k

and

detTj(Q) = 0 if k ≤ j ≤ k +

⌈
k

2

⌉
.

Let us define n = k + ⌈k/2⌉; clearly, Q ∈ Bn\Bon, and we claim that
Theorem 1.2 is not valid for Q and that choice of n; otherwise, there
would exist a constant d > 0 such that

(9) |Q ⋆ p|D + d|p−Q ⋆ p|D ≤ |p|D, p ∈ Pn,

and, for p defined by (8), we obtain

1 = |p|D = |Q ⋆ p(1)|
≤ |Q ⋆ p|D + d|p−Q ⋆ p|D ≤ |p|D = 1,

i.e., p(z) ≡ Q⋆p(z) and p(z) ≡
∑k
j=1 ℓjp(wjz). Since p is non-constant,

one of its Taylor coefficients (say at(p) with 0 < t ≤ ⌈k/2⌉) does not
vanish with

at(p) =

( k∑
j=1

ℓjw
t
j

)
at(p),

i.e., 1 =
∑k
j=1 ℓjw

t
j = wtℓ for 1 ≤ ℓ ≤ k, and there would exist k distinct

t-roots of unity with 0 < t ≤ ⌈k/2⌉ < k. We are, however, unable to
decide if we can choose k ≤ n < k + ⌈k/2⌉.
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We may also consider F (z) =
∑k
j=1 ℓj/(1− eiθjz) where ℓj > 0 and

the k + 1 nodes {eiθj}k+1
j=1 satisfy

0 ≤ θ1 < θ2 · · · < θk < θk+1 < 2π,

but are otherwise arbitrary. Also let 0 < ψ < φ < 2π; according to a
result of Clunie, Hallenbeck and MacGregor [1] there exists, for each
n, a polynomial pn univalent in D such that

pn(e
iθj ) = ei(ψ−(1/jn)), 1 ≤ j ≤ k, and pn(e

iθk+1) = eiφ,

and |pn|D = 1 where, for each n, pn ∈ PM where M depends only on

k, {θj}k+1
j=1 , ψ and φ but does not depend on n.

Due to the finiteness ofM , the family {pn} has a subsequence {pnj}
converging uniformly over D to a polynomial p which is univalent since
p(eiθ1) = eiψ ̸= eiφ = p(eiθk+1). We now let

(10) Q(z) = 1 +

M∑
t=1

( k∑
j=1

ℓje
itθj

)
zt = F (z) + o(zM ).

We may assume k < M and Q ∈ BM\B0
M . If there exists a constant

d > 0 such that (9) holds with n =M , then for p as above,

1 = |Q ⋆ p(1)| ≤ |Q ⋆ p|D + d|p−Q ⋆ p|D ≤ 1

and again p ≡ Q ⋆ p. Since p is univalent, we have p′(0) ̸= 0 and, by
(10),

k∑
j=1

ℓje
iθj = 1,

which is impossible for k > 1 since, for any j, ℓj > 0 and {eiθj}kj=1

contains k different nodes!

4. Another extension of (1). Given Q ∈ B0
n, we may look for a

slightly different extension of (1), namely, statements of the type

|Q ⋆ p(z)|+ c|p(z)−Q ⋆ p(z)| ≤ |p|D, p ∈ Pn, |z| ≤ 1,

where c > 0. As in the proof of Theorem 1.2, we define, for δ ≥ 0,
|u| = 1,

Q̃(z) := Q(z) + δu
(
I(z)−Q(z)

)
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and Tk(Q̃) the Toeplitz matrix whose first row equals 1 ≤ k ≤ n,(
1, A1 + δu(1−A1), A2 + δu(1−A2), . . . , Ak + δu(1−Ak)

)
.

Also, as in Theorem 1.2, we set

ck = sup
δ≥0

{
δ | detTj(Q̃) > 0, j = 1, 2, . . . , k, u ∈ ∂D

}
.

We obtain the following result (the omitted proof runs as the proof of
Theorem 1.2):

Theorem 4.1. For each Q ∈ B0
n, we have

0 < cn ≤ cn−1 ≤ · · · ≤ c1

and

(11) |Q ⋆ p(z)|+ cn|p(z)−Q ⋆ p(z)| ≤ |p|D, p ∈ Pn, z ∈ D.

The constant cn is the best possible. Further, if n ≥ 2 and cn <
min(cn−1, (1− |An|)/|1−An|), equality holds in (11) only for constant
polynomials.

There are, however, striking differences between the inequalities
(3) and (11). It is clear that dn ≤ cn ≤ 1. The polynomial
Qn(z) :=

∑n
k=0(1 − k/n)zk belongs to Pn−1 ∩ P1/2 ⊂ B0

n and, in
that context, the inequality (11) is nothing but the classical

(12)

∣∣∣∣p(z)− zp′(z)

n

∣∣∣∣+ ∣∣∣∣zp′(z)n

∣∣∣∣ ≤ |p|D, z ∈ D, p ∈ Pn,

for which we have cj = cn = (1− |An|)/|1−An| = 1, for any 1 ≤ j ≤ n.
Indeed, the cases of inequality in (12) are numerous, and they were
studied in [3]; we also can prove (unpublished) that in (11) we may
have cn = 1 if and only if Q(z) =

∑n
k=0(1− tk/n)zk for some t in [0, 1].

The inequality (11) is reminiscent of a result of Ruscheweyh (see [5]
or [7, Chapter 4]), claiming that

(13) |q ⋆ p(z)|+ |qs ⋆ p(z)| ≤ |p|D, p ∈ Pn, z ∈ D,

for any q ∈ Pn−1 ∩P1/2 and qs(z) := znq(1/z). It is easily seen that
both of (11) and (13) reduce to (12) when both q and Q equal Qn.
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We remark, however, that this is their only point of “intersection” by
showing that, for q ∈ Pn−1 ∩P1/2,

I − q ≡ qs ⇐⇒ q ≡ Qn.

As a matter of fact, it was shown in [3] that, for q ∈ Pn−1 ∩ P1/2

and θ real,

(14) q(z) + eiθqs(z) ≡
n−1∑
j=0

ℓj
1− wjeiθ/nz

+ o(zn),

where {wj}n−1
j=0 is the set of nth roots of unity and ℓj = (2/n)(Re q

(wje
−iθ/n)− 1/2). In particular, if q(z) = 1 +

∑n−1
k=1 akz

k, we obtain

|ak + eiθan−k| ≤ 1, 1 ≤ k ≤ n− 1,

and, because θ is arbitrary, it follows that

|ak|+ |an−k| ≤ 1, 1 ≤ k ≤ n− 1.

Assume now that q + qs ≡ I. Then, for 1 ≤ k ≤ n− 1,

1 = |ak + an−k| ≤ |ak|+ |an−k| = 1,

i.e. an−k = tkak with tk ≥ 0 and

(15) ak =
1

1 + tk
, 1 ≤ k ≤ n− 1.

The condition q + qs ≡ I is equivalent with q(z) + qs(z) = 1/(1− z) +
o(zn), and a comparison with (14) yields

(16) Re q(e−2ijπ/n) =


1

2
if 1 ≤ j ≤ n− 1

n+ 1

2
if j = 0.

By (15), the Taylor coefficients of q are real, and therefore

Re q(eiθ) = 1 +
n−1∑
k=1

ak cos(kθ) = 1 +
n−1∑
k=1

akTk(cos θ),

where Tk is the kth Chebyshev polynomial. There exists at most one
polynomial of this form satisfying the interpolation conditions (16), and
it is now a routine calculation to show that q ≡ Qn.
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We finally obtain an analogue of Theorem 1.2 for Ruscheweyh’s
inequality (13):

Theorem 4.2. Let q ∈ Pn−1∩P1/2 be non-constant. There shall exist
an optimal constant bn ∈ (0, 1) such that

|q ⋆ p|D + bn|qs ⋆ p|D ≤ |p|D, p ∈ Pn.

Cases of equality could be discussed as above. We omit the details.

5. Conclusion. We shall end this paper with the following problem.

Problem 5.1. Let 1 ≤ k ≤ n and {zj}kj=1 ⊂ ∂D be a set of distinct
nodes. What are the polynomials p ∈ Pn such that

p(zj) = |p|D, j = 1, 2, . . . , k?

Problem 5.1 is trivial when k = 1 and relatively easy when k =
n, (see [3]). Not much seems to be known about the existence of
such polynomials when 1 < k < n; as an example, we remark [3]
that, for |b| ≤ 1, b ̸= −1 and 0 < a, the polynomial p(z) :=
1 − a[(1− zn)/(1− z)](1 + bz) always satisfies |p|D > 1 = p(e2ijπ/n),
j = 1, 2, . . . , n− 1.

Such polynomials are related to problems considered in the present
paper; if

F (z) =
k∑
j=1

ℓj
1− zjz

, ℓj > 0,

the solutions to the extremal problem

|F ⋆ p|D = |p|D, p ∈ Pn

are precisely, up to a multiplicative constant of modulus 1, the poly-
nomials p ∈ Pn such that p(zjZ) = |p|D for some Z ∈ ∂D. Further, in
the case where such non-constant polynomials do exist, there cannot
be d > 0 such that

|F ⋆ q|D + d|q − F ⋆ q|D ≤ |q|D
for all q ∈ Pn.
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Département de mathématiques et Centre de Recherches Mathématiques,
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