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TOPOLOGICAL PROPERTIES OF KERNELS OF
PARTIAL DIFFERENTIAL OPERATORS

JOCHEN WENGENROTH

ABSTRACT. For a linear partial differential operator
with constant coefficients on D ′(Ω), we investigate topo-
logical properties like barrelledness or bornologicity (which
allow applications of fundamental principles like the Banach-
Steinhaus or the open mapping theorem) of its kernel. Using
recent functional analytic results inspired by homological al-
gebra we prove that almost all barrelledness type conditions
are equivalent in this situation and provide two distinct suffi-
cient conditions which, in particular, are satisfied if the oper-
ator is surjective or hypoelliptic. This last case generalizes a
classical result of Malgrange and Hörmander.

1. Introduction. Throughout this article, we consider a linear par-
tial differential operator with constant coefficients

P (∂) : D ′(Ω) −→ D ′(Ω)

on the space of Schwartz distributions over an open set Ω ⊆ Rd. For an
open and relatively compact exhaustion (Ωn)n∈N of Ω the space D ′(Ω)
is the strong dual of the strict inductive limit D(Ω) = Indn∈N D(Ωn)
of the Fréchet-Schwartz spaces D(Ωn) = {f ∈ E (Rd) : supp(f) ⊆
Ωn} endowed with the topology of uniform convergence of all partial
derivatives. Since the inductive limit is strict, D(Ω) is a complete
Schwartz space and, by a theorem of Schwartz [19, page 43], see also
[13, proposition 24.23], D ′(Ω) is ultrabornological. This is all we need
to know, although, by a theorem of Valdivia [21] and (independently)
Vogt [22], D ′(Ω) is even topologically isomorphic to (s′)N where s is
the space of rapidly decreasing sequences and s′ is its strong dual.

Being a closed subspace, the kernel D ′
P (Ω) = KernP (∂) inherits all

properties of D ′(Ω) which are stable with respect to closed subspaces,
in particular, it is a complete nuclear locally convex space. However,
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many locally convex properties which are crucial for applications of ba-
sic functional analytic principles, like barrelledness to use the Banach-
Steinhaus theorem (every pointwise bounded family of continuous lin-
ear operators into an arbitrary locally convex space is equicontinuous)
or ultrabornologicity (by definition, this means that the space is the
locally convex inductive limit of all continuously embedded Banach
spaces) to use the closed graph and open mapping theorem, are not
inherited by closed subspaces. Although quite implicitly, very concrete
properties of a differential operator are encoded in such locally con-
vex conditions of certain subspaces, for instance, P (∂) is surjective on
D ′(Ω) if and only if the range of P (∂)t = P (−∂) is an ultrabornological
subspace of D(Ω) (in fact, then the closed graph theorem implies that
P (−∂) : D(Ω) → D(Ω) is an isomorphism onto its range and hence its
transposed P (∂) : D ′(Ω) → D ′(Ω) is surjective by the Hahn-Banach
theorem).

Since properties of D ′
P (Ω) play an indispensable role in classical

analysis (we only mention Runge’s theorem for holomorphic functions–
the kernel of the Cauchy-Riemann operator) and in the study of general
partial differential operators, it is a most natural question whether the
kernel is barrelled or ultrabornological so that, as we said above, general
principles of functional analysis apply.

We thank Norbert Ortner from Innsbruck who posed this question
explicitly and pointed out to us that, surprisingly, only very little can
be found in the literature.

In Section 2 we recall and give a very simple proof of a result of
Malgrange [12] and Hörmander [9, theorem 4.4.2] in the hypoelliptic
case D ′

P (Ω) ⊆ E (Ω), stating that then the D ′(Ω)- and E (Ω)-topologies
coincide on KernP (∂), and hence D ′

P (Ω) is even a Fréchet space (for
which the functional analytic principles had been proved originally).
Moreover, we show that hypoellipticity is the only case where D ′

P (Ω)
is Fréchet (which is neither difficult to show nor very surprising, but
we did not find this result explicitly in the literature).

In the third section we apply results about acyclic LF-spaces due
to Palamodov [15] and the author [23] to obtain that D ′

P (Ω) is
ultrabornological whenever P (∂) is surjective on D ′(Ω) which is even a
characterization if P (∂) is surjective on E (Ω) (which is equivalent to Ω
being P -convex for supports). These methods also allow proving that
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all kinds of barrelledness conditions are equivalent in our situation.

In Section 4 we finally explain recent results about the derived
projective limit functor which allow proving two sufficient conditions
which generalize the surjective case as well as the above-mentioned
result of Malgrange.

2. The hypoelliptic case. By definition, the operator is hypoel-
liptic if D ′

P (Ω) is contained in E (Ω). There are many characterisations
of hypoellipticity due to Malgrange and Hörmander, in particular, this
property is independent of Ω, and it holds if and only if P (∂) has a fun-
damental solution E ∈ D ′(Rd) with E ∈ C∞(Rd\{0}). In this case,
KernP (∂) coincides with the kernel EP (Ω) of P (∂) : E (Ω) → E (Ω)
but, a priori, it is not evident that this coincidence holds topo-
logically because the closed graph theorem (applied to the identity
D ′

P (Ω) → EP (Ω)) would require that D ′
P (Ω) be ultrabornological which

is in question.

The topological equality D ′
P (Ω) = EP (Ω) in the hypoelliptic case

was proved by Malgrange [12] using duality theory and the fact that
quotients of Fréchet-Schwartz spaces are again Fréchet-Schwartz and,
independently and more directly, by Hörmander [9, Theorem 4.4.2]
using a fundamental solution which is smooth outside the origin. We
will present yet another proof using the fact that closed subspaces of LS-
spaces (i.e., countable inductive limits of Banach spaces with compact
inclusions which are also called DFS-spaces since they are precisely
the strong duals of Fréchet-Schwartz spaces) are again LS and thus
ultrabornological, see e.g., [16, Corollary 8.6.9] for a proof of this result
of Sebastião e Silva [20]. To prepare the proof, let us fix some notation
which will be used throughout this article.

For a fixed exhaustion (Ωn)n∈N of Ω by open and relatively compact
sets we write

Xn = {u ∈ D ′(Ωn) : P (∂)u = 0}

endowed with the relative topology of the strong dual of D(Ωn) (by the
preceding remark, Xn is thus an LS-space), ϱnm : Xm → Xn denotes
the restriction for n ≤ m, and

X∞ = D ′
P (Ω) = {u ∈ D ′(Ω) : P (∂)u = 0}

is the kernel endowed with the relative topology of D ′(Ω). X∞ is thus
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the projective limit of the spaces Xn, so that the preimages (ϱn∞)−1(U)
with 0-neighborhoods U in Xn and the restriction ϱn∞ : X∞ → Xn

form a basis of the 0-neighborhoods in X∞.

Theorem 2.1 ([12]). If P (∂) is hypoelliptic, then the D ′(Ω)-topology
on D ′

P (Ω) coincides with the topology of uniform convergence of all
partial derivatives on all compact sets.

Before giving a simple proof inspired by [4] (this proof is a kind
of dual version of Malgrange’s arguments) let us remark that, for
concrete operators like the Cauchy-Riemann, Laplace or heat operator,
this theorem contains classical results of Vitali, Harnack and Täcklind,
namely, if a sequence in the corresponding kernel converges uniformly
on all compact sets, then the same is true for all partial derivatives
(because the convergence in C (Ω) implies the convergence in D ′(Ω)
and thus in E (Ω) by the theorem).

Proof. Since the topology induced by E (Ω) is clearly finer than the
D ′(Ω) topology we only have to prove the continuity of the inclusion
i : X∞ → E (Ω) = Projn∈N(E (Ωn), σ

n
m) (where again, σn

m : E (Ωm) →
E (Ωn) and σn

∞ : E (Ω) → E (Ωn) are the restrictions), and this is
equivalent to the continuity of σn

∞ ◦ i : X∞ → E (Ωn) for all n ∈ N.
If rn+1 : Xn+1 → D ′(Ωn) again denotes the restriction, we have
rn+1 : Xn+1 → E (Ωn) by hypoellipticity, and this map is continuous
by the closed graph theorem since Xn+1 is ultrabornological as a closed
subspace of an LS-space. Since ϱn+1

∞ is continuous, we obtain the
continuity of rn+1 ◦ ϱn+1

∞ = σn
∞ ◦ i. �

As a supplement to this result, let us show that hypoellipticity is
the only case where KernP (∂) is Fréchet:

Proposition 2.2. If there is a Fréchet space topology on D ′
P (Ω) which

is finer than the D ′(Ω)-topology, then P (∂) is hypoelliptic and the given
Fréchet topology coincides with the E (Ω)-topology.

Consequently, the property that the kernel of P (∂) : D ′(Ω) → D ′(Ω)
is a Fréchet space is independent of Ω, i.e., if it holds for some open
Ω ̸= ∅, then it holds for all such Ω.
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Proof. With the notation introduced above we write Xn = Indn∈N

Xn,N where Xn,N is the space of all u ∈ Xn which are of order less than
N (i.e., they are continuous with respect to the norm sup{|∂αf(x)| :
x ∈ Rd, |α| ≤ N} on D(Ωn)). Denoting the Fréchet topology of the
proposition by T the continuity of ϱn∞ : (X∞, T ) → Xn together with
Grothendieck’s factorization theorem [13, Theorem 24.33] givesN ∈ N
such that ϱn∞(X∞) ⊆ Xn,N . In our concrete situation this means that
for every u ∈ D ′(Ω) with P (∂)u = 0 the restriction u|Ωn

has order less
than N .

If ∆k denotes a k-fold application of the Laplacian we have for
u ∈ X∞ that P (∂)(∆ku) = ∆k(P (∂)u) = 0 since P (∂) has constant
coefficients. Therefore, ∆ku|Ωn

has order less than N for every k ∈ N

which implies u|Ωn ∈ E (Ωn). Since this is true for all n ∈ N we
conclude u ∈ E (Ω).

The coincidence of T and the E (Ω)-topology follows from the closed
graph theorem. �

The proof used that P (∂) commutes with the Laplace operator which
is the case for every convolution operator. Proposition 2.2 is false even
for ordinary differential operators with non-constant coefficients. A
very simple example is the multiplication operator D ′(R) → D ′(R),
u 7→ xu whose kernel is one-dimensional (and thus clearly Fréchet)
but contains δ0 /∈ E (R), see [9, Theorem 3.16]. Another example
is the differential operator u 7→ u + xu′ on D ′(R) whose kernel is
{αpv(1/x) + βδ0 : α, β ∈ C} where pv(1/x) assigns to φ ∈ D(R) the
principal value of the integral of φ(x)/x.

3. Consequences of the theory of LF-spaces. Beyond the case
of hypoelliptic operators it seems that no results about topological
properties of D ′

P (Ω) are explicitly stated in the literature, although
a first important theorem can be obtained just by combining some
classical results.

Theorem 3.1. Let T : D ′(Ω) → D ′(Ω) be a surjective, continuous
linear operator. Then its kernel is ultrabornological.

In particular, D ′
P (Ω) is ultrabornological for all polynomials if Ω ⊆

Rd is convex or if d = 1 (in this trivial case it is finite dimensional). The
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case d = 2 is somehow special because a recent result [10] of Kalmes
(confirming a conjecture of Trèves) says that P (∂) is already surjective
on D ′(Ω) if it is surjective on E (Ω).

Proof. Let T t : D(Ω) → D(Ω) be the transposed operator which is
a weak isomorphism onto L = RangeT t by the Hahn-Banach theorem.
By a result of de Wilde [2, page 124] (a different proof is in [23])
T t is then a strong isomorphism since D(Ω) is an inductive limit of
Fréchet-Schwartz spaces. A theorem of Palamodov [15, Section 7]
then implies that the cokernel D(Ω)/L of T t is complete and that
the quotient map D(Ω) → D(Ω)/L lifts bounded sets, that is, every
bounded set in the quotient is contained in the image of a bounded set.
Therefore, KernT = (D(Ω)/L)′β holds topologically, and the strong

dual is ultrabornological by Schwartz’s theorem [19, page 43] since
D(Ω)/L is a complete Schwartz space. �

Using an earlier result from the author [23] one gets a kind of
converse. A subspace of an LF-space is called a limit subspace if the
relative topology is an LF-space topology. If the subspace is stepwise
closed, which means that the intersection with every step of the LF-
space is closed in that step, it is a limit subspace if and only if it
is ultrabornological (this equivalence follows from the closed graph
theorem for LF-spaces since there is a finer LF-space topology on the
subspace).

Proposition 3.2. Let T : D ′(Ω) → D ′(Ω) be a continuous linear

operator. Then KernT is ultrabornological if and only if Range(T t) is
a limit subspace of D(Ω).

Proof. Let us denote L = KernT , so that

Range(T t) = Range(T t)◦◦ = (KernT )◦ = L◦.

The dual sequence of 0 → L→ D ′(Ω) → D ′(Ω)/L→ 0 is

0 −→ L◦ −→ D(Ω) −→ L′ −→ 0,

which is algebraically exact by the Hahn-Banach theorem, and the
restriction map D(Ω) → L′ is continuous for the strong topologies. By
Schwartz’s theorem for the complete Schwartz space L, the strong dual



TOPOLOGICAL PROPERTIES OF KERNELS 1043

L′
β is ultrabornological and, by the open mapping theorem, D(Ω) → L′

β

is open, so that L′
β is an inductive limit of Fréchet-Schwartz spaces.

If now L is ultrabornological, then L′
β is complete and, by [23], L′

β

is acyclic which implies that the kernel L◦ of D(Ω) → L′ is a limit
subspace.

Vice versa, if L◦ is a limit subspace, then L′
β = D(Ω)/L◦ is acyclic

and hence complete by Palamodov’s result already used in the proof of
Theorem 3.1, so that KernT = (D(Ω)/L◦)′β is ultrabornological again
by Schwartz’s theorem. �

Corollary 3.3. If P (∂) : E (Ω) → E (Ω) is surjective, then D ′
P (Ω) is

ultrabornological if and only if P (∂) : D ′(Ω) → D ′(Ω) is surjective.

Note that a theorem of Malgrange [12] characterizes the surjectivity
on E (Ω) by P -convexity for supports, i.e., for every compact set K ⊆ Ω
there is another compact set M ⊆ Ω such that every u ∈ E ′(Ω) has
support in M whenever P (−∂)u has support in K (it is enough to
verify this for u ∈ D(Ω)).

Proof. By a result of Floret [3], Ω is P -convex for supports if
and only if Range(P (∂)t) is closed in D(Ω). If KernP (∂) is ultra-
bornological, the range is thus a limit subspace, and hence P (∂)t is
an isomorphism onto its range by the open mapping theorem. Hence,
P (∂) = P (∂)tt is surjective on D ′(Ω). �

The main argument in the proof of Theorem 3.2 was that complete
inductive limits of Fréchet-Schwartz spaces are acyclic. Again, by
[23], the same is true for locally complete limits. Thus, one can
replace ultrabornologicity of KernT by any condition which implies
local completeness of the strong dual (which is in a certain sense, the
weakest barrelledness condition called c0-quasibarrelledness, see the
book of Bonet and Pérez Carreras [16, Chapter 8.2]).

Theorem 3.4. The following are equivalent for the kernel of a contin-
uous linear operator T : D ′(Ω) → D ′(Ω):

(a) KernT is (ultra-) bornological,
(b) KernT is (c0-quasi-) barrelled.
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If Ω is not P -convex for supports, the characterization in Theo-
rem 3.2 is not easily evaluable since no concrete description of the
closure of Range (T t) is known. In the next section we therefore
abandon duality theory and directly investigate the projective limits
D ′

P (Ω) = X∞ = ProjXn. The general theory is, in principle, dual
to the theory of LF-spaces, but some aspects are easier to see on the
projective side.

4. Consequences of the theory of the derived projective
limit functor. Derived functors in functional analysis and, in par-
ticular, the derived projective limit functor were introduced in the late
1960’s by Palamodov [14, 15] and from the late 1980’s on further devel-
oped by many authors, we refer to [25] for a much broader introduction
to this subject. Here, we will give only an ad hoc definition of Proj1

and explain the connection with our problem. The following definition
is for an arbitrary countable projective spectrum, but the reader should
always have our concrete case with the notation introduced in Section 2
in mind.

For a spectrum X = (Xn, ϱ
n
m) where the linear spectral maps

ϱnm : Xm → Xn satisfy ϱnm ◦ ϱmk = ϱnk for n ≤ m ≤ k and ϱnn = idXn ,
the projective limit

X∞ =
{
(xn)n∈N ∈

∏
n∈N

Xn : xn = ϱnm(xm) for all n ≤ m
}

is the kernel of the difference map

∆X :
∏
n∈N

Xn −→
∏
n∈N

Xn, (xn)n∈N 7−→ (xn − ϱnn+1(xn+1))n∈N,

and the cokernel
∏

n∈NXn/Range(∆X ) is denoted by Proj1 X , so

that Proj1 X = 0 precisely means that ∆X is surjective. This simple
definition somehow hides that Proj1 is the derivative of the Proj-functor
(which can be defined by injective resolutions). The following result
recovers this origin and indicates the main types of applications. A
morphism f : X → Y between two spectra is a sequence of linear maps
fn : Xn → Yn commuting with the spectral maps, i.e., σn

m◦fm = fn◦ϱnm
for all n ≤ m. Then f∞ : X∞ → Y∞, (xn)n∈N 7→ (fn(xn))n∈N is well
defined and, in fact, typically f∞ is given in concrete situations and
the morphism f : X → Y has to be constructed.
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Proposition 4.1. For every short exact sequence 0 → X
f−→ Y

g−→
Z → 0 of projective spectra (i.e., gn : Yn → Zn is surjective and fn
is an isomorphism onto Kern gn) there is an exact sequence of vector
spaces.

0 → X∞
f∞−−→ Y∞

g∞−−→ Z∞
δ∗−→ Proj1 X

f∗

−→ Proj1 Y
g∗

−→ Proj1 Z → 0.

The maps f∗ and g∗ are canonical (i.e., the class generated by
(xn)n∈N is mapped to the class generated by (fn(xn))n∈N), and only
the definition of δ∗ needs a diagram chase.

Recall that exactness of the sequence of vector spaces means that
the kernel of every outgoing arrow is the range of the corresponding
incoming arrow. In particular, g∞ is surjective whenever f∗ is injective
which is automatically the case if Proj1 X = 0 (this is the most impor-
tant case for applications). One might object that the question whether
Proj1 X = 0 is also a surjectivity problem which, in general, is as hard
as a proof of the surjectivity of g∗ (which in fact is equivalent whenever
Proj1 Y = 0). This, however, is not the case since there are highly de-
veloped criteria for Proj1 X = 0 which are rather impossible to see in
a concrete situation (for instance, the necessity in the theorem below
is proved by applying Baire’s theorem to the complete metric group∏

n∈NXn where each factor is endowed with the discrete metric, the
sufficiency needs very abstract convexity, compactness and complete-
ness considerations). The following characterization of Proj1 X = 0
for LS-spectra is a conglomerate of results from Palamodov [15], Re-
tah [17], Wengenroth [23], Frerick and Wengenroth [5], Braun and
Vogt [1], and Langenbruch [11], we refer to [25, theorem 3.2.18] for
the proof.

Theorem 4.2. Let X = (Xn, ϱ
n
m) be a projective spectrum of LS-

spaces Xn = IndXn,N with continuous spectral maps. Then Proj1 X =
0 holds if and only if for all n ∈ N there exists m ≥ n such that, for
all k ≥ m there exists N ∈ N such that

(R) ϱnmXm ⊆ ϱnkXk and (P3) ϱnmXm ⊆ ϱnkXk +Xn,N .

The first condition is called reducedness. In our concrete situation it
requires an approximation in D ′(Ωn) of all zero solutions on Ωm by zero
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solutions in Ωk. The second condition means that the restriction to Ωn

of every zero solution in Ωm can be decomposed into a zero solution
on Ωk and a distribution on Ωn with fixed bound on the order. The
notation (P3) is for historical reasons since (stronger) predecessors of
the condition had been called (P1) and (P2) by Vogt.

As sufficient conditions (R) and (P3) are weakest possible but
Proj1 X = 0 implies stronger necessary conditions where k ∈ N is
replaced by k = ∞, we call these conditions strong reducedness and
(P3), respectively (for the necessity part it is enough to assume that
Xn are separated LB-spaces, no compactness is thus needed, see [25,
Theorem 3.2.8]).

In order to demonstrate that conditions (R) and (P3) are indeed
evaluable let us insert a simple approximation result for our concrete
situation which provides a handy description of the “local spaces” Xn

one has to work with.

Proposition 4.3. Let E ∈ D ′(Rd) be a fixed fundamental solution of
P (∂). Then the linear span of all restrictions to Ωn of translates δξ ∗E
with ξ /∈ Ωn is dense in Xn = {u ∈ D ′(Ωn) : P (∂)u = 0}.

For the Cauchy-Riemann operator ∂x+ i∂y and E = 1/(2π(x+ iy)),
the proposition is a very simple instance of Runge’s theorem.

Proof. By the Hahn-Banach theorem we have to show that every φ ∈
D(Ωn) vanishing in all δξ ∗E vanishes in Xn. Let Ĕ be the symmetric

distribution of E and f = Ĕ ∗ φ ∈ E (Rd). Since ⟨δξ ∗ E,φ⟩ = 0

for all ξ /∈ Ωn we get f(ξ) = 0 for ξ /∈ Ωn, and hence f ∈ D(Ωn)
satisfies P (−∂)f = φ. For u ∈ Xn, we thus get ⟨u, φ⟩ = ⟨u, P (−∂)f⟩ =
⟨P (∂)u, f⟩ = 0. �

The connection between Proj1 and our problem is the following
theorem of Vogt, see [25, Theorem 3.3.4] where Vogt’s unpublished
proof is reproduced.

Theorem 4.4. Let X be a projective spectrum of Hausdorff LB-spaces
satisfying Proj1 X = 0. Then X∞ = ProjX is ultrabornological.
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This theorem gives a different proof of Theorem 3.10. because, by
Proposition 4.1, the surjectivity of T on D ′(Ω) implies Proj1 X = 0
for the spectrum of the kernels.

A kind of converse of Vogt’s theorem (obtained by duality similarly
as in Proposition 3.2) is [25, Corollary 3.3.10]:

Theorem 4.5. If X is a strongly reduced spectrum of LS-spaces, then
Proj1 X = 0 if and only if X∞ = ProjX is ultrabornological.

At first sight, this theorem does not give a better result than
Corollary 3.3 because of the following result:

Proposition 4.6. For the spectrum X with Xn = {u ∈ D ′(Ωn) :
P (∂)u = 0}, the following are equivalent :

(a) X is reduced,
(b) X is strongly reduced,
(c) Ω is P -convex for supports.

Proof. We first show (a) implies (c). For every n ∈ N, we thus have
to find m ∈ N such that every φ ∈ D(Ω) has support in Ωm whenever
P (−∂)(φ) has support in Ωn.

We take m ≥ n such that ϱnmXm ⊆ ϱnkXk for all k ≥ m. Fix

φ ∈ D(Ω) such that P (−∂)(φ) has support in Ωn, and take k ≥ m such
that φ ∈ D(Ωk). Then we have P (−∂)φ ∈ (ϱnkXk)

◦, the polar taken

in D(Ωn), since for u ∈ Xk we have ⟨ϱnku, P (−∂)φ⟩ = ⟨u, P (−∂)φ⟩ =
⟨P (∂)u, φ⟩ = 0. We thus get P (−∂)φ ∈ (ϱnmXm)◦. For ξ /∈ Ωm and a
fundamental solution E we have E ∗ δξ ∈ Xm, and thus

0 = ⟨E ∗ δξ, P (−∂)φ⟩ = ⟨δξ, φ⟩ = φ(ξ)

so that suppφ ⊆ Ωm.

On the other hand, P -convexity for supports implies that the spec-
trum {u ∈ E (Ωn) : P (∂)u = 0} is reduced (by the same duality as
above since, by regularization, the convexity condition is the same for
φ ∈ E ′(Ω) instead of φ ∈ D(Ω)), and it is therefore strongly reduced;
this is a version of the abstract Mittag-Leffler procedure, see [25, Chap-
ter 3]. For u ∈ Xm+1, a cut off function ψ ∈ D(Ωm+1) which is 1 near
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Ωm and an approximate identity ek we can approximate ϱnm+1(u) by
ϱnm+1(ek ∗ ψu) which itself can be approximated by some ϱn∞v with
v ∈ Y∞ ⊆ X∞. �

Although Theorems 4.4 and 4.5 do not give more information than
Corollary 3.3 when applied to D ′

P (Ω), we will nevertheless get an
improvement. We call P (∂) surjective modulo E on Ω if T : D ′(Ω) ×
E (Ω) → D ′(Ω), (u, f) 7→ P (∂)(u) − f is surjective. Hörmander [8,
Theorems 10.7.6 and 10.7.8] proved that this condition is equivalent
to P -convexity for singular supports. Trivially, Corollary 3.3 may be
reformulated as follows:

If P (∂) is surjective on E (Ω), then D ′
P (Ω) is ultra-

bornological if and only if P (∂) is surjective modulo
E on Ω.

We can now relax the hypothesis of surjectivity on E (Ω) by the
weaker condition that every smooth right hand side of the equation
P (∂)u = f is smoothly solvable whenever it is solvable with a dis-
tribution, that is, E (Ω) ∩ P (∂)(D ′(Ω)) = P (∂)(E (Ω)). Clearly, this
condition is also satisfied by hypoelliptic operators. Unfortunately,
we do not know much about this property. According to a result of
Hörmander, P (∂) is surjective on E (Ω) whenever every smooth func-
tion is distributionally solvable, but this property does not always hold
individually (an example is the first partial derivative on R2 \ {0} and
f(x) = ϕ(x)/∥x∥ with a test function ϕ which equals 1 in a neigh-
borhood of the origin, since f defines a distribution on all R2 it is
distributionally solvable).

Theorem 4.7. Assume that E (Ω) ∩ P (∂)(D ′(Ω)) = P (∂)(E (Ω)) and
that P (∂) is surjective modulo E on Ω. Then D ′

P (Ω) is ultrabornologi-
cal.

Proof. The advantage of T : D ′(Ω) × E (Ω) → D ′(Ω), (u, f) 7→
P (∂)(u)− f compared to P (∂) : D ′(Ω) → D ′(Ω) is that the canonical
spectrum of KernT = {(u, f) ∈ D′(Ω) × E (Ω) : P (∂)u = f} is
always strongly reduced: if P (∂)u = f holds in Ωn+1, χ ∈ D(Ωn+1) is
equal to 1 in a neighborhood of Ωn, en ∈ D(Rd) is an approximative
unit and E is a fundamental solution of P (∂), then (un, fn) = (E ∗
en ∗ (χu), en ∗ (χu)) is a sequence in KernT whose restrictions to Ωn
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converge to (u, f). Applying Proposition 4.1 and Theorem 4.5 to T we
thus obtain that P (∂) is surjective modulo E on Ω if and only if KernT
is ultrabornological, which is thus the case by our assumption. We now
consider the short exact sequence

0 −→ EP (Ω) −→ D ′
P (Ω)× E (Ω) −→ KernT −→ 0

defined by the maps f 7→ (f, f) and (v, g) 7→ (g − v, P (∂)g). The
surjectivity of the latter is implied by (and even equivalent to) the given
assumption E (Ω) ∩ P (∂)(D ′(Ω)) = P (∂)(E (Ω)) (indeed, if P (∂)u = f
and P (∂)g = f just put v = g − u ∈ D ′

P (Ω)), and thus, the sequence
is algebraically exact. It is even topologically exact: the first map
is obviously an isomorphism onto its range, the second is clearly
continuous and it is open by de Wilde’s open mapping theorem for
webbed spaces (see, e.g., [13, 24.30]) since KernT is ultrabornological.

Since EP (Ω) is Fréchet and thus barrelled, the three space theorem
for barrelled locally convex spaces of Dierolf and Roelcke [18, Theorem
2.6] implies that D ′

P (Ω)×E (Ω) is also barrelled which implies barrelled-
ness of D ′

P (Ω) and thus its ultrabornologicity by Theorem 3.4. �

It should be noted that being ultrabornological is not a three space
property in the category of locally convex spaces and it is thus necessary
to make the “detour” via barrelledness (this detour proves a general
three space property for the category of PLS-spaces).

We will now introduce an object related to PLS-spaces which is
not so easily seen on the inductive side. For a projective limit X∞ =
ProjX of LS-spaces we define the associated strongly reduced spectrum

X̃n = ϱn∞X∞ which again consists of LS-spaces since this class is

stable with respect to closed subspaces. Then ProjX = Proj X̃ , and

since X̃ is strongly reduced, Theorems 4.2 and 4.4 imply that X∞ is

ultrabornological if and only if X̃ satisfies (P3).

Unfortunately, this is not very handy since, apparently, there is no
concrete description similar to the one in Proposition 4.3. Nevertheless,
we obtain the following sufficient condition:

Proposition 4.8. If an LS-spectrum X satisfies (P3), i.e., for all n ∈
N there exist m ≥ n, N ∈ N, such that ϱnm(Xm) ⊆ ϱn∞(X∞) +Xn,N ,
then X∞ is ultrabornological.
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Proof. We have to show (P3) for the associated strongly reduced

spectrum. Since X̃m ⊆ Xm and ϱnm(X̃m) ⊆ X̃n, we get

ϱnm(X̃m) ⊆ ϱnm(Xm) ∩ X̃n ⊆ (ϱn∞(X∞) +Xn,N ) ∩ X̃n.

For any element x = ϱn∞(a) + b ∈ X̃n of the right hand side we

have b = x − ϱn∞(a) ∈ Xn,N ∩ X̃n since ϱn∞(a) ∈ X̃n. Hence,

ϱnm(X̃m) ⊆ ϱn∞X∞ + (Xn,N ∩ X̃n).

It remains to note that Xn,N ∩ X̃n is contained in some step of the

LS-space X̃n = Ind(X̃n ∩Xn,N ) which is true for any closed subspace
of the LS-space Xn. �

Let us note that Proposition 4.8 contains both previous results
Theorems 2.1 and 3.1 as special cases (in the hypoelliptic case one
can even drop the summand ϱn∞X∞ and in the surjective case we have
Proj1 X = 0 which implies (P3) as mentioned after Theorem 4.2).

We do not know whether (P3) and (P3) are the same conditions in
our situation. This, of course, would be a very desirable result because
(P3) is equivalent to a very classical condition. Indeed, using [7], it is
not hard to show the following characterization:

Theorem 4.9. For P (∂) : D ′(Ω) → D ′(Ω) the following conditions
are equivalent :

(a) The kernel spectrum satisfies (P3),
(b) P (∂) has good fundamental solutions in the following sense:

for all n ∈ N, there exists m ≥ n such that, for all k ≥ m and
ξ /∈ Ωm, there is E ∈ D ′(Ω) with

P (∂)E = δξ in Ωk and E|Ωn ∈ C k(Ωn),

(c) P (∂) is surjective modulo E on Ω,
(d) Ω is P -convex for singular supports.

As mentioned above, the equivalence of (c) and (d) is due to
Hörmander [8]. A functional analytic proof of (c) ⇔ (d) based on
LF-space theory is in [6].

In a similar manner, one can characterize (P3) by almost the same
condition as (b) but requiring that P (∂)E = δξ in all of Ω and not only
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in Ωk. For more information about “good fundamental solutions” as
in (b) we refer to [7, 24].

The similarity between (P3) and (P3) together with Proposition 4.8
support the conjecture that D ′

P (Ω) might be ultrabornological when-
ever P (∂) is surjective modulo E on Ω. Even the converse of this might
be true but beyond the situation in Corollary 3.3 where Ω is assumed
to be P -convex for supports, but we do not have further evidence.

We believe that a better understanding of the condition E (Ω) ∩
P (∂)(D ′(Ω)) = P (∂)(E (Ω)) should be useful also beyond our topolog-
ical problem. A concrete question is whether it is always satisfied if
P (∂) is surjective modulo E on Ω.
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aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Grenoble,
6 (1955)–(1956), 271–355.

13. Reinhold Meise and Dietmar Vogt, Introduction to functional analysis,
Oxford Grad. Texts Math. 2, The Clarendon Press Oxford University Press, New

York, 1997.

14. Victor P. Palamodov, The projective limit functor in the category of
topological linear spaces, Mat. Sb. (N.S.) 75 (1968), 567–603.

15. , Homological methods in the theory of locally convex spaces, Uspehi
Mat. Nauk 26 (1971), 3–65.
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