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QUALITATIVE PROPERTIES AND STANDARD
ESTIMATES OF SOLUTIONS FOR SOME FOURTH

ORDER ELLIPTIC EQUATIONS

KAISHENG LIU AND RUICHANG PEI

ABSTRACT. In this paper, first, we make the estimates
for a class of fourth order elliptic equations in different
domains and boundary conditions. Consequently, we study
the qualitative properties of solutions with prescribed Q-
curvature. Finally, we also will obtain some radially symmet-
ric results by using moving plane methods.

1. Introduction. In this paper, we make estimates to the following
fourth order elliptic equation:

(∗)

{
∆2u(x) = Q(x)e4u in Ω ⊂ R4;

u = △u = 0 in ∂Ω,

and investigate properties of the solutions to the following fourth order
elliptic equation:

(∗∗) ∆2u(x) = Q(x)e4u, x ∈ R4,

where Ω is a bounded smooth domain and Q(x) is the given function in

Lp(Ω) for some 1 < p ≤ ∞. We assume that u ∈ L1(Ω), e4u ∈ Lp′
(Ω)

(where p′ is the conjugate exponent of p) so that (∗) has a meaning in
the sense of distributions. A first question is whether one can conclude
that u ∈ L∞(Ω) for (∗). As we will see in Section 2, the answer is
positive.

Recently, a series of works has been done to understand the existence
and qualitative properties of the solutions of (∗∗). When Q(x) = 6,
Lin [5] had given a complete classification of u in terms of its growth,
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or of the behavior of △u at ∞. Xu [10] had done similar work by
using moving sphere methods. Wei and Xu [8] and Martinazzi [6] also
gave a complete classification of solutions for higher order conformally
invariant equations compared to (∗∗). In Section 3, we consider more
general functions Q(x). This is considered as a generalization of [5].
First, we obtain the asymptotic behavior of solutions near infinity.
Consequently, we prove that all solutions satisfy an identity, which
is similar to the well-known Kazdan-Warner condition. Finally, using
the harmonic asymptotic expansion at ∞ in [5], we show that all the
solutions are radially symmetric provided Q is radially symmetric and
non-increasing. This part can be viewed as the completion of [5].

2. L∞-boundedness for a single solution of △2u = Q(x)e4u.
Assume Ω ⊂ R4 is a bounded domain, and let h be a solution of

(2.1)

{
∆2h(x) = f(x) in Ω ⊂ R4;

h = △h = 0 in ∂Ω.

Following the argument of Brezis and Merle [1], Lin obtained the
following lemma:

Lemma 2.1. [5] Suppose f ∈ L1(Ω). For any δ ∈ (0, 32π2), there
exists a constant Cδ > 0 such that the inequality∫

Ω

exp

(
δ|h|

||f ||L1

)
dx ≤ Cδ(diamΩ)4,

where diamΩ denotes the diameter of Ω.

By use of the above lemma, we obtain the following consequent
results:

Theorem 2.1. Let u be a solution of equation (2.1) with f ∈ L1(Ω).
Then, for every constant k > 0,

eku ∈ L1(Ω).
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Proof. Letting 0 < ε < 1/k, we may split f as f = f1 + f2 with
||f1||1 < ε and f2 ∈ L∞(Ω). Write ui as the solution of{

∆2ui = fi in Ω;

ui = △ui = 0 on ∂Ω.

By Lemma 2.1, we find
∫
Ω
exp [|u1(x)|/||f1||1] < ∞, and thus∫
Ω

exp [k|u1|] < ∞.

The conclusion follows since |u| ≤ |u1|+ |u2| and u2 ∈ L∞(Ω). �

Theorem 2.2. Assume u ∈ L1
Loc(Ω), △2u ∈ L1

Loc(Ω). Then for every
constant k > 0

eku ∈ L1
loc(Ω).

Proof. Without loss of generality, we may assume that Ω as BR

defines the ball of radius R centered at θ. For ε small enough, we split
△2u = f1+f2 with ||f1||1 < ε and f2 ∈ L∞(Ω). Write u = u1+u2+u3,
where ui (i = 1, 3) are, respectively, the solutions of{

∆2u1 = f1 in BR/2;

u1 = △u1 = 0 on ∂BR/2

and {
∆2u3 = f2 in BR/2;

u3 = △u3 = 0 on ∂BR/2.

It follows from Lemma 2.1 that ek|u1| ∈ L1
Loc(BR). Since standard

elliptic estimates apply (see [4]), we have |u3|L∞(BR/2) ≤ c. Hence, we

have ek|u3| ∈ L1
Loc(BR). Since △u2 is harmonic and △u ∈ L1

Loc(BR),
which is obtained from the Ehrling-Nirenberg-Gagliardo inequality, by
the mean value theorem for harmonic functions, we have

|△u2|L∞(BR/4) ≤ c.

Thus, by u ∈ L1
Loc(BR) and the above inequality, we have

|u2|L∞(BR/8) ≤ c.
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So eku2 ∈ L1
Loc(BR). At last, the conclusion follows since |u| ≤

|u1|+ |u2|+ |u3|. �

Remark 2.1. Theorem 2.2 is a local form of Theorem 2.1.

Theorem 2.3. Suppose u is a solution of equation (∗) with Q ∈ Lp(Ω)

and e4u ∈ Lp′
(Ω) for some 1 < p ≤ ∞. Then u ∈ L∞(Ω).

Proof. By Theorem 2.1, we know that eku ∈ L1(Ω) for all k, i.e.,
eu ∈ Lr(Ω) for all r < ∞. It follows that Qe4u ∈ Lp−δ for all δ > 0 if
p < ∞, and Qe4u ∈ Lr(Ω) for all r < ∞ if p = ∞. Standard elliptic
estimates imply that △u ∈ L∞(Ω). Hence, combining u = 0 with ∂Ω,
we have u ∈ L∞(Ω). �

Corollary 2.1. Suppose u is a solution of{
∆2u = Qe4u + f(x) in Ω;

u = g1, △u = g2 on ∂Ω

with Q ∈ Lp(Ω) and e4u ∈ Lp′
(Ω) for some 1 < p ≤ ∞, where

g1, g2 ∈ L∞(∂Ω) and f ∈ Lq(Ω) for some q > 1. Then u ∈ L∞(Ω).

Proof. Let w be the solution of{
∆2w = f(x) in Ω;

w = g1, △w = g2 on ∂Ω

so that w ∈ L∞(Ω). The function ũ = u− w satisfies{
∆2ũ = Qe4we4ũ in Ω;

ũ = 0, △ũ = 0 on ∂Ω,

and we are reduced to the assumption of Theorem 2.3. �

Theorem 2.4. Suppose u ∈ L1
Loc(R

4) is solution of equation (∗∗)
with Q ∈ Lp

Loc(R
4) and e4u ∈ Lp′

Loc(R
4) for some 1 < p ≤ ∞. Then

u ∈ L∞
Loc(R

4).

Proof. Without loss of generality, let BR(θ) ⊂ R4. Fix ε > 0
small enough and split Qe4u as Qe4u = f1 + f2 with ||f1||1 < ε and
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f2 ∈ L∞(BR), u1, u2, respectively, solutions of{
∆2u1 = f1 in BR;

u1 = △u1 = 0 on ∂BR,

and {
∆2u2 = f2 in BR;

u2 = △u2 = 0 on ∂BR.

It follows from Lemma 2.1 that ek|u1| ∈ L1(BR). Since standard
elliptic estimates apply (see [4]), we have |u2|L∞(BR) ≤ c. Hence, we

have ek|u2| ∈ L1(BR). Let u3 = u − u1 − u2. Since △u3 is harmonic,
by the mean value theorem for harmonic functions, we have

|△u3|L∞(BR/2) ≤ c.

Thus,
|u3|L∞(BR/4) ≤ c.

It follows from
△2u = (Qe4u1)e4u2+4u3

and standard elliptic estimates that

||△u||L∞(BR/8) ≤ c.

So
||u||L∞(BR/16) ≤ c. �

From [1], Brezis and Merle imply that u is bounded from above when
u satisfies −△u = V (x)eu and other conditions. This result is used to
study the qualitative properties and classification of solutions for some
second order elliptic equation (see [2, 3, 7]). Now, one naturally asks:
is any solution u to equation (∗∗) with

∫
R4 Qe4u < +∞ bounded from

above? We will partially answer this problem and obtain the following
result:

Theorem 2.5. Assume Q(x) is a positive bounded away from 0 and
bounded from the above function and u is a C2 solution of (∗∗) with∫
R4 e

4u < +∞, u(x) = ◦(|x|2). Then u+ ∈ L∞(R4).
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Before we begin our proof, we need the following lemmas.

Lemma 2.2. [9, 11]. Suppose u is a C2 function on R4 such that

(a) Qe4u is in L1(R4) with 0 < m ≤ Q ≤ M for some constants
m,M ;

(b) in the sense of weak derivatives, u satisfies the following equa-
tion:

△u+
2

β0

∫
R4

Q(y)e4u(y)

|x− y|2
dy = 0.

Then there is a constant c > 0, depending on u, such that
|△u|(x) ≤ c on R4, where β0 is given by (−△x)

2(ln(1/|x− y|))
= β0δy(x).

In fact, β0 = 8π2.

Lemma 2.3. [9]. Suppose u is a C2 function on R4 such that
0 ≤ (−△)u(x) ≤ A on R4 for some constant A and

∫
R4 Q(y)e4u(y)dy =

α < ∞ with 0 < m ≤ Q ≤ M . Then there exists a constant B,
depending only on A,m,M and α such that u(x) ≤ B on R4.

Lemma 2.4. Suppose u is a solution of (∗∗). Let

w(x) =
1

8π2

(∫
R4

ln |x− y|
|y|+ 1

Q(y)e4u(y)dy

)
.

Then there exists a constant c such that

w(x) ≤ β ln(|x|+ 1) + c,

where β = (
∫
R4 Q(y)e4u(y)dy)/8π2.

Proof. For |x| ≥ 4, we decompose R4 = A1 ∪ A2, where A1 =
{y||y − x| ≤ |x|/2} and A2 = {y||y − x| ≥ |x|/2}. For y ∈ A1, we
have |y| ≥ |x| − |x− y| ≥ |x|/2 ≥ |x− y|, which implies

ln
|x− y|
|y|+ 1

≤ 0.
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Since |x − y| ≤ |x| + |y| ≤ |x|(|y| + 1) for |x|, |y| ≥ 2 and ln |x − y| ≤
ln |x|+ c for |x| ≥ 4 and |y| ≤ 2, we have

w(x) ≤ 1

8π2

∫
A2

ln
|x− y|
|y|+ 1

Q(y)e4u(y)dy

≤ 1

8π2

(∫
R4

Q(y)e4u(y)dy

)
ln |x|+ c

= β ln(|x|+ 1) + c. �

Lemma 2.5. Suppose u is a solution of (∗∗) with u(x) = ◦(|x|2). Then
△u(x) can be represented by

(2.2) △u(x) = − 1

4π2

∫
R4

Q(y)e4u(y)

|x− y|2
dy.

Proof. Let v = u+ w. It is obvious that △2v ≡ 0 in R4. Similar to
the proof of Lin [5], we have for any x0 ∈ R4 and r > 0,

2π2r3exp

(
r2

2
△v(x0)

)
≤ e−4v(x0)

∫
|x−x0|=r

e4vdσ.

Since v = u + w ≤ u(x) + β ln |x| + c follows from Lemma 2.4, we
have

r3−4βexp

(
△v(x0)

2
r2
)

∈ L1[1,+∞].

Thus, △v(x0) ≤ 0 for all x0 ∈ R4. By Liouville’s theorem, △v(x) ≡
−c1 in R4 for some constant c1 ≥ 0. Hence, we have

(2.3) △u(x) = − 1

4π2

∫
R4

Q(y)e4u(y)

|x− y|2
dy − c1.

Now, we claim that c1 = 0. Otherwise, we have △u(x) ≤ −c1 < 0
for |x| ≥ R0 where R0 is sufficiently large. Let

(2.4) h(y) = u(y) + ε|y|2 +A(|y|−2 −R−2
0 ),

where ε is small enough such that

(2.5) △h(y) = △u+ 8ε < −c1
2

< 0
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for |y| > R0, and A is sufficiently large so that inf
|y|≥R0

h(y) is achieved

by some y0 ∈ R4 with |y0| > R0. Applying the maximum principle to
(2.5) at y0, we have a contradiction. Hence, our claim is proved. �

Proof of Theorem 2.5. By Lemma 2.5 and Lemma 2.3, our conclu-
sion holds. �

3. Qualitative properties of solutions of △2u = Q(x)e4u. In
this section, we study the qualitative properties of solutions of equation
(∗∗). Following our Theorem 2.5 and Chen [3], we obtain the following
results:

Theorem 3.1. Assume that Q(x) is a positive C1 function bounded
away from and above 0 and u is a C2 solution of equation (∗∗) with∫
R4 e

4udx < ∞, u(x) = ◦(|x|2). Then

(3.1) −β ln(|x|+ 1)− c ≤ u(x) ≤ −β ln(|x|+ 1) + c

with β > 1. Furthermore, we have the following identity

(3.2)

∫
R4

(x,∇Q)e4udx = π2β(16β − 32).

Theorem 3.2. Suppose u satisfies the assumptions of Theorem 3.1 and
Q is radially symmetric and monotone decreasing. Then u is radially
symmetric and monotone decreasing.

Lemma 3.1. Assume u satisfies the assumptions of Theorem 3.1.
Then

w(x)

ln |x|
−→ β, uniformly as |x| → ∞,

where w(x) and β have been given in Section 2.

Proof. We need only to verify that

I =

∫
R4

ln |x− y| − ln(|y|+ 1)− ln |x|
ln |x|

Q(y)e4u(y)dy −→ 0

as |x| → ∞.



SOME FOURTH ORDER ELLIPTIC EQUATIONS 983

Write I = I1+I2+I3 as the integrals on the regions D1 = {y : |x−y| ≤
1}, D2 = {y : |x − y| > 1 and |y| ≤ k} and D3 = {y : |x − y| >
1 and |y| > k}, respectively. We may assume that |x| ≥ 3.

(a) To estimate I1, we simply notice that

|I1| ≤ C

∫
|x−y|≤1

Q(y)e4u(y)dy − 1

ln |x|

∫
|x−y|≤1

ln |x− y|Q(y)e4u(y)dy.

Then, by the boundedness of Qe4u (see Theorem 2.5 in Section
2) and

∫
R4 Q(y)e4u(y)dy, we see that I1 → 0 as |x| → ∞.

(b) For each fixed k, in region D2, we have, as |x| → ∞,

ln |x− y| − ln(|y|+ 1)− ln |x|
ln |x|

−→ 0.

Hence, I2 → 0.
(c) To see I3 → 0, we use the fact that, for |x− y| > 1,

| ln |x− y| − ln(|y|+ 1)− ln |x|
ln |x|

| ≤ c.

Then let k → ∞. �

Lemma 3.2. Assume u satisfies the assumptions of Theorem 3.1.
Then

u(x) =
1

8π2

∫
R4

ln
|y|+ 1

|x− y|
Q(y)e4u(y)dy + c0,

where c0 is a constant.

Proof. By Lemma 2.5, we have △(u+w) = 0 in R4. By Theorem 2.5
in Section 2, we have u+ ∈ L∞, So, combining this result with
Lemma 2.4, we have u + w ≤ c ln |x| + c, since u + w is a harmonic
function and, by the gradient estimates of harmonic functions, we have
u(x) + w(x) ≡ c. �

Lemma 3.3. Suppose u satisfies the assumptions of Theorem 3.1.
Then u(x) ≥ −β ln(|x|+ 1)− c and β > 1.

Proof. By Lemma 2.4 and Lemma 3.2, we have

u(x) > −β ln(|x|+ 1)− c.
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From the above inequality and
∫
R4 e

4udx < +∞, we have β > 1. �

Lemma 3.4. Suppose u satisfies the assumptions of Theorem 3.1.
Then u(x) ≤ −β ln(|x|+ 1) + c.

Proof. In fact, for |x− y| ≥ 1, we have

|x| ≤ |x− y|(|y|+ 1).

Then
ln |x| − 2 ln(|y|+ 1) ≤ ln |x− y| − ln(|y|+ 1).

Consequently,

w(x) ≥ 1

8π2

∫
|x−y|≥1

(ln |x| − 2 ln(|y|+ 1))Q(y)e4u(y)dy

+
1

8π2

∫
|x−y|≤1

(ln |x− y| − ln(|y|+ 1))Q(y)e4u(y)dy

≥ β ln |x| − ln |x|
8π2

∫
|x−y|≤1

Q(y)e4u(y)dy

+
1

8π2

∫
|x−y|≤1

ln |x− y|Q(y)e4u(y)dy

− 1

8π2

∫
R4

ln(|y|+ 1)Q(y)e4u(y)dy

= β ln |x|+ I1 + I2 + I3.

Taking into account the fact that

u(x)

ln |x|
−→ −β and β > 1,

and, by the boundedness of Q(x), we have

I1, I2 −→ 0 as |x| → ∞

and I3 is finite. Therefore,

w(x) ≥ β ln(|x|+ 1)− c.

By Lemma 3.2, we have

u(x) ≤ −β ln(|x|+ 1) + c. �



SOME FOURTH ORDER ELLIPTIC EQUATIONS 985

Proof of Theorem 3.1. By Lemma 3.3 and Lemma 3.4, then (3.1)
holds. By Lin’s Lemma 2.6 and Lemma 2.7 [5], we can similarly infer
that (3.2) holds. �

Proof of Theorem 3.2. By Theorem 3.1, we have u(x) → −β ln |x|
as |x| → ∞, where β > 1. Let ṽ(x) = −△u(x). By Lin’s revised
Lemma 2.8 [5], ṽ(x) has a harmonic asymptotic expansion at ∞:

(3.3)


ṽ(x) = 1

|x|2

(
2β +

∑4
j=1

aj

|x|2

)
+⃝

(
1

|x|4

)
,

ṽxi = − 4βxi

|x|4 +⃝
(

1
|x|4

)
,

ṽxixj
= ⃝

(
1

|x|4

)
,

where aj (j = 1, . . . , 4) are constants. The remainder of the proof is
essentially equal to Lin’s proof. We omit it here. �
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