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A DESCENT HOMOMORPHISM FOR
SEMIMULTIPLICATIVE SETS

BERNHARD BURGSTALLER

ABSTRACT. We define and provide some basic analysis
of various types of crossed products by semimultiplicative
sets, and then prove a KK-theoretical descent homomor-
phisms for semimultiplicative sets in accord with the descent
homomorphism for discrete groups.

1. Introduction. An associative semimultiplicative set is a set G
together with a partially defined associative multiplication. For in-
stance, categories, groupoids, semigroups, inverse semigroups and
groups are associative semimultiplicative sets. An equivariant KK-
theory for semimultiplicative sets is defined in [5], and in this theory
the G-action is realized by linear (non-adjointable) partial isometries
on C∗-algebras and Hilbert modules. In this paper we prove a descent
homomorphism for KKG and various types of crossed products,

KKH×G(A,B) −→ KKH(AoG,B oG),

see Theorem 13.4, parallel to Kasparov’s descent homomorphism for
groups ([9]). We consider four types of crossed products: the reduced
one, the full one, the full strong one and another one for so-called
inversely generated semigroups.

This work originated in an attempt to generalize the Baum-Connes
map for discrete groups [1] to discrete semimultiplicative sets. If G
is an inverse semigroup, then this seems conceptually (and at least
partially) to work, see [3, 4]. If G is not an inverse semigroup, then
still certain reduced crossed products Aor G are isomorphic to inverse
semigroup crossed products AoS, see Corollary 7.11, and so for these
crossed products one has potentially a Baum-Connes theory.
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In the full crossed product of a semimultiplicative set, however, one
usually has non-commuting source and range projections of the under-
lying partial isometries, and this turns out to be an obstacle in con-
structing a Baum-Connes map similarly as for groups and groupoids:
these Baum-Connes maps can be constructed by a combination of a de-
scent homomorphism and an averaging map. Averaging, however, fails
for semimultiplicative sets and their induced non-commuting projec-
tions on modules. (But even for inverse semigroups one cannot directly
average but needs to slice modules at first (see [3])).

Roughly speaking, the theory of crossed products by semimultiplica-
tive sets is a theory of C∗-algebras generated by partial isometries.
Hence, we generalize this point of view by also considering inversely
generated semigroups, which are ∗-semigroups that are generated by
their invertible elements.

We give a brief overview of this paper. In Sections 2–3 we recall
the basic definitions of equivariant KK-theory for semimultiplicative
sets from [5]. In Section 4 we prove some facts about partial isome-
tries in connection with G-actions. Sections 5–8 and Section 10 are
dedicated to the definition of the various crossed products; Section 10
also includes the definition of equivariant KK-theory for inversely gen-
erated semigroups. In Section 9 we compare semimultiplicative set
G-equivariant KK-theory with Kasparov’s G-equivariant KK-theory
when G is a group. Sections 11–13 occupy the proof of the descent
homomorphism, which is an adaption of Kasparov’s proof in [9].

2. Semimultiplicative sets.

Definition 2.1. A (general) semimultiplicative set G is a set endowed
with a subset G(2) ⊆ G×G and a map (written as a multiplication)

G(2) −→ G : (s, t) 7−→ st

satisfying the following weak associativity condition: s(tu) = (st)u
whenever both expressions are defined (s, t, u ∈ G).

Definition 2.2. A semimultiplicative set G is called associative if
whenever (st)u or s(tu) is defined, then both (st)u and s(tu) are defined
(s, t, u ∈ G).
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There is a similar notion called a semigroupoid [7]. A semigroupoid
is an associative semimultiplicative set with the property that (st)u is
defined if and only if st and tu are defined. For instance, groupoids
and small categories are semigroupoids. In general, however, an asso-
ciative semimultiplicative set is not a semigroupoid, a typical example
being a ring R without the zero element, so the semimultiplicative
set G = R\{0} under the multiplication inherited from R. Examples
for associative semimultiplicative sets include groups, groupoids, small
categories, inverse semigroups, semigroups and semigroupoids. An as-
sociative semimultiplicative set is also called a partial semigroup in the
literature (see [2]).

We remark that the weak associativity condition for a general semi-
multiplicative set is not essential in this paper. A general semimul-
tiplicative set is always realized by associative actions, so we require
the weak associativity without essential loss of generality. However, for
instance, an arbitrary subset of a group is a general but not necessarily
an associative semimultiplicative set. Now the point is that general and
associative semimultiplicative sets G yield different classes of actions,
since G has to be realized by partial isometries.

If an associative semimultiplicative set G has left cancelation, that
is, for all s, t1, t2 ∈ G, st1 = st2 implies t1 = t2, then we are able to
define a left reduced C∗-algebra for G. Write (eg)g∈G for the canonical
base in ℓ2(G).

Definition 2.3. Let G be an associative semimultiplicative set with
left cancelation. The left regular representation of G is the map
λ : G→ B(ℓ2(G)) given by

λg

( ∑
h∈G

αheh

)
=

∑
h∈G, gh is defined

αhegh,

where αh ∈ C. The C∗-subalgebra of B(ℓ2(G)) generated by λ(G) is
called the reduced C∗-algebra of G and denoted by C∗

r (G).

Definition 2.4. A morphism ϕ : G→ H between two semimultiplica-
tive sets G and H is a map satisfying ϕ(gh) = ϕ(g)ϕ(h) whenever gh
is defined (g, h ∈ G).
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Definition 2.5. An anti-morphism φ : G → H between semimulti-
plicative sets G and H is a map satisfying φ(gh) = φ(h)φ(g) whenever
gh is defined (g, h ∈ G).

Definition 2.6. A left action of a semimultiplicative set G on a set X
is given by a subset Y ⊆ G×X and a map

Y −→ X, (g, x) 7→ gx

such that, if gh is defined, then (gh)x is defined if and only if g(hx) is
defined, and in this case (gh)x = g(hx) (g, h ∈ G, x ∈ X).

By the last definition, we see that a G-action on a set is a morphism
ϕ : G → PartFunc (X) from G into the set of partial functions on X.
(That is, if gh is defined, then ϕ(gh) = ϕ(g) ◦ ϕ(h) and the domain
of both sides coincide.) The domain of the composition of two partial
functions is understood to be the maximal possible one. The identity
ϕ1 = ϕ2 of partial functions is understood to imply that both sides of
the identity must have the same domain.

Definition 2.7. A left G-action ϕ on X is called injective if the maps
ϕ(g) ∈ PartFunc (X) are injective on their domain for all g ∈ G.

A linear action of G on a vector space X is a morphism ϕ :
G → LinMap (X) from G into the linear maps on X. The map
λ of Definition 2.3 may be checked to be a linear action on ℓ2(G).
Left G-actions correspond to morphisms, and right G-actions to anti-
morphisms. That is, a right linear action on a vector space X is an
anti-morphism φ : G→ LinMap (X).

Definition 2.8. An injective left G-action ϕ on a Hausdorff space X
is continuous if all maps ϕ(g) ∈ PartFunc (X) are continuous and have
clopen domains and ranges for all g ∈ G.

3. G-Hilbert C∗-algebras and -modules. In this section we re-
call the basic definitions for G-equivariant KK-theory for a general
semimultiplicative set G ([5]). All C∗-algebras and Hilbert modules
are assumed to be Z2-graded [8, 9]. If ε is a grading on a linear space
X, then ε(T ) = εTε is a grading on the space of linear maps T on X.
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All ∗-homomorphisms between C∗-algebras are supposed to respect the
grading. We let [x, y] = xy − (−1)∂x∂yyx be the graded commutator.

At first we shall define an action by a general semimultiplicative set
G on a C∗-algebra. This is the next definition (from [5], Definitions
11, 12, 20 and the remark thereafter).

Definition 3.1. A G-Hilbert C∗-algebra A is a (Z/2)-graded C∗-
algebra A which is also regarded as a Hilbert module over itself
under the inner product ⟨x, y⟩ = x∗y, and which is equipped with a
semimultiplicative set morphism

α : G −→ End (A)

and a semimultiplicative set anti-morphism

α∗ : G −→ End (A)

such that αg and α∗
g are zero-graded for all g ∈ G,

αg = αgα
∗
gαg,

α∗
g = α∗

gαgα
∗
g,

and α∗
gαg and αgα

∗
g are self-adjoint for all g ∈ G, and

⟨αg(x), y⟩ = αg(⟨x, α∗
g(y)⟩),

⟨α∗
g(x), y⟩ = α∗

g(⟨x, αg(y)⟩)

holds for all x, y ∈ A and all g ∈ G.

We usually simply write g(x) rather than αg(x), and g∗(x) rather
than α∗

g(x). Instead of G-Hilbert C∗-algebra we often say just Hilbert
C∗-algebra if G is clear from the context or unimportant.

Definition 3.2. A G-equivariant homomorphism τ : A → B between
two Hilbert C∗-algebras A and B is a ∗-homomorphism intertwining
both the left and the right G-action, i.e., τ(g(x)) = g(τ(x)) and
τ(g∗(x)) = g∗(τ(x)) for all x ∈ A and g ∈ G.

Definition 3.3. A G-Hilbert module E is a (Z/2)-graded Hilbert
module E over a Hilbert C∗-algebra B, such that E is equipped with a
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semimultiplicative set morphism

U : G −→ LinMap (E)

and a semimultiplicative set anti-morphism

U∗ : G −→ LinMap (E)

such that Ug and U∗
g are zero-graded for all g ∈ G,

Ug = UgU
∗
gUg,

U∗
g = U∗

gUgU
∗
g ,

and U∗
gUg and UgU

∗
g are self-adjoint for all g ∈ G, and

Ug(ξb) = Ug(ξ)g(b),(3.1)

U∗
g (ξb) = U∗

g (ξ)g
∗(b),(3.2)

⟨Ug(ξ), η⟩ = g(⟨ξ, U∗
g (η)⟩),(3.3)

⟨U∗
g (ξ), η⟩ = g∗(⟨ξ, Ug(η)⟩)(3.4)

holds for all ξ, η ∈ E , b ∈ B and g ∈ G.

Definition 3.4. Let A and B be G-Hilbert C∗-algebras and E a G-
Hilbert module over B. A ∗-homomorphism π : A → L(E) is called
G-equivariant if

[UgU
∗
g , π(a)] = 0,(3.5)

[U∗
gUg, π(a)] = 0,(3.6)

Ugπ(a)U
∗
g = π(g(a))UgU

∗
g ,(3.7)

U∗
g π(a)Ug = π(g∗(a))U∗

gUg(3.8)

for all a ∈ A and g ∈ G.

Definition 3.5. Let A and B be G-Hilbert C∗-algebras. A G-Hilbert
(A,B)-bimodule E is a G-Hilbert B-module E together with a G-
equivariant ∗-homomorphism π : A → L(E). The homomorphism π
is often regarded as a left module multiplication of A on E .

We also write g(T ) = UgTU
∗
g and g∗(T ) = U∗

g TUg for g ∈ G and
adjoint-able operators T ∈ L(E). Note that in general L(E) is not a G-
Hilbert C∗-algebra, as usually the action g(·) is not multiplicative, i.e.,
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g(TS) ̸= g(T )g(S). The trivial G-action on an object X of a category
is the action τg(x) = x for all x ∈ X and g ∈ G.

For a subset C ⊆ L(E) we set

QC = {T ∈ L(E)| [T, c] ∈ K(E), ∀c ∈ C},
IC = {T ∈ L(E)| cT and Tc are in K(E), ∀c ∈ C}.

Here, K(E) denotes the set of compact operators in the sense of
Kasparov ([9]).

Definition 3.6. Let A,B be G-Hilbert C∗-algebras. Cycles in
EG(A,B) are Kasparov’s cycles (π, E , T ) in E(A,B) ([9]) with the
following addition: E is a G-Hilbert module (Definition 3.3) and
π : A→ L(E) is a G-equivariant (Definition 3.4), and the elements

(3.9) g(T )− g(1)T, [g(1), T ], [g∗(1), T ]

are in IA(E). Parallel to Kasparov’s theory, KKG(A,B) is defined to
be EG(A,B) divided by homotopy induced by EG(A,B[0, 1]).

KKG(A,B) is functorial in A and B and allows an associative
Kasparov product [5].

We recall that we have a diagonal G-action on tensor products,
see [5, Lemmas 4 and 5]. If E1 and E2 are G-Hilbert modules, then
E1 ⊗ E2 is a G-Hilbert module, and E1 ⊗B1 E2 is a G-Hilbert module
if B1 → L(E1) is a G-equivariant representation (Definition 3.4), both
under the diagonal action U (1) ⊗ U (2).

4. Partial isometries. In this section we shall show that an action
of a semimultiplicative set on a Hilbert module is realized by partial
isometries (Corollary 4.3), where inverse elements go over to adjoint
partial isometries (Corollary 4.6).

A projection on a Hilbert module E is a self-adjoint idempotent
map P on E . Recall that the identity P (E) = H links complemented
subspaces H of E with projections P on E in a bijective way.

Definition 4.1. A partial isometry T on a Hilbert-module E is a linear
map T : E → E for which there exist two complemented subspaces H0
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and H1 in E such that T maps H0 norm-isometrically onto H1 and
vanishes on H⊥

0 .

Notice that we do not require that a partial isometry T be adjoint-
able. (For instance, in Lance’s book [12], partial isometries are
supposed to be adjoint-able.) The projections P and Q of a partial
isometry T as in Definition 4.1 projecting onto H0 and H1, respectively,
are called the source and range projections of T . Since H⊥

0 = ker (T )
and H1 = range (T ), P and Q are uniquely determined by T . The
inverse partial isometry S of T , also denoted by S = T ∗, is the
unique partial isometry S on E which vanishes on H⊥

1 and satisfies
S|H1 = (T |H0)

−1. If T happens to be adjoint-able, then the notation
T ∗ cannot cause confusion as in this case the inverse partial isometry is
the adjoint of T , see [12]. The set of partial isometries of E is denoted
by PartIso (E).

Lemma 4.2. T is a partial isometry if and only if T is a norm
contractive linear map and there exists a norm contractive linear map
S : E → E such that ST and TS are projections, T = TST and
S = STS. In this case S = T ∗.

Proof. Since S and T are contractive, we have ∥Tx∥ = ∥TSTx∥ ≤
∥STx∥ ≤ ∥Tx∥ and ∥Sy∥ = ∥TSy∥ for all x, y ∈ E . Thus, T is a partial
isometry with source and range projections ST and TS, respectively,
and S = T ∗. �

Corollary 4.3. If U is a G-action on a Hilbert module, then Ug is a
partial isometry with inverse partial isometry U∗

g (g ∈ G).

Proof. The boundedness of Ug follows from ∥⟨Ugx, Ugx⟩∥ = ∥g(⟨x,
U∗
gUgx⟩)∥ ≤ ∥x∥2, and then one applies Lemma 4.3. �

Lemma 4.4. A partial isometry T satisfying T = TT and T ∗ = T ∗T ∗

is a projection.

Proof. Let x ∈ E . Set y = Tx. Then Ty = TTy = Tx = y. Let
y = y0 + y1 with y0 = T ∗Ty and y1 = (1 − T ∗T )y be the orthogonal
decomposition. Then T ∗y = T ∗Ty = y0. Hence, y0 = T ∗y = T ∗T ∗y =
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T ∗y0, thus T
∗(y0 + y1) = y0 = T ∗y0, and so T ∗y1 = 0. We thus have

0 = ⟨TT ∗y1, y0⟩ = ⟨y1, TT ∗y0⟩ = ⟨y1, Ty0⟩ = ⟨y1, TT ∗Ty⟩
= ⟨y1, T y⟩ = ⟨y1, y⟩ = ⟨y1, y1⟩.

Thus, y1 = 0 and so T ∗Ty = y0 = y = Ty. Hence, T ∗TTx = TTx,
and so T ∗Tx = Tx. Since x was arbitrary, T ∗T = T , and thus T is a
projection. �

Definition 4.5. An element g of a semimultiplicative set G is called
invertible if there exists an element h ∈ G such that ghg = g and
hgh = h.

Even if the inverse element h may not be unique, we occasionally
denote a given choice by h = g−1.

Corollary 4.6. Assume that E is a G-Hilbert module and g ∈ G is
invertible. Then U∗

g = Ug−1 and U∗
g−1 = Ug.

Proof. Set T = Ugg−1 = UgUg−1 . Then TT = T and T ∗T ∗ = T ∗.
Hence, T is a projection by Lemma 4.4. Similarly, Ug−1Ug is a
projection. By Lemma 4.2 (for S := Ug and T := Ug−1), U∗

g =
Ug−1 . �

5. Algebraic crossed products. In this section G denotes a dis-
crete general semimultiplicative set (if nothing else is said). For the
work with crossed products we shall also need to consider free prod-
ucts of elements of G and their adjoints, and for that purpose we shall
introduce G∗ below.

Definition 5.1. An involution on a semigroup S is a map ∗ : S → S :
s 7→ s∗ such that (s∗)

∗
= s and (st)∗ = t∗s∗ for all s, t ∈ S.

Definition 5.2. Define F (G) to be the free semigroup generated by
two copies of G. The elements of the second copy of G are denoted by
g∗ for g ∈ G and stand for adjoint elements. In other words, element γ
of F (G) consists formally of γ = xϵ11 · · ·xϵnn with xi ∈ G and ϵi ∈ {1, ∗}.
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We shall occasionally denote the multiplication in G by g ⊙ h
(g, h ∈ G) to distinguish it from the multiplication in F (G).

Definition 5.3. Define G∗ to be the semigroup which is the quotient
semigroup of F (G) by the following elementary equivalences defined for
all g, h ∈ G.

g ⊙ h = gh, (g ⊙ h)∗ = h∗g∗ if g ⊙ h is defined

g = gg∗g, g∗ = g∗gg∗.

In other words, elements of G∗ consist of representatives living in
F (G), and two representatives γ, δ ∈ F (G) are equivalent, if there is a
finite sequence of representatives in F (G) starting with γ and ending
with δ, where two representatives in this sequence differ only by a single
elementary equivalence (within a word).

G∗ is an involutive semigroup by concatenation and taking the
formal adjoints of representatives of F (G). For simplicity, we shall
omit the class brackets and write g rather than the class [g] for elements
in G∗, where g ∈ F (G) is a representative. Note that an element in
G∗ need not be invertible: if g, h ∈ G are indecomposable in G, then
usually gh(gh)∗gh ̸= gh in G∗.

Lemma 5.4. A morphism (respectively, anti-morphism) φ : G → H
between semimultiplicative sets G and H extends canonically to a ∗-
morphism (respectively, ∗-anti-morphism) G∗ → H∗.

Proof. A morphism φ : G → H induces a canonical ∗-morphism
F (G) → F (H) which respects the elementary equivalences of Defini-
tion 5.3. �

For the work with crossed products it is useful to extend a G-action
to a G∗-action, and this is what the next couple of lemmas will be
about.

Lemma 5.5. If ϕ is an injective G-action on a set X and g ∈ G is
invertible in G, then ϕ(g)−1 = ϕ(g−1).
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Proof. Let h be an inverse element for g. If gx is defined, then
(ghg)x = g(h(gx)) is defined, so h(gx) is defined; and conversely, if
hx = hghx is defined, then x = ghx by injectivity of the G-action.
We have checked that the range of ϕ(g) is the domain of ϕ(h). From
ghgx = gx it follows ghx = x by injectivity of the G-action, and
similarly hgx = x. Thus, ϕ(g) and ϕ(h) are inverses to each other. �

Lemma 5.6. A continuous injective left G-action on a Hausdorff space
X can be extended to a continuous injective left G∗-action on X.

Proof. Let ϕ : G → PartFunc (X) be the G-action on X. For
g = gϵ11 · · · gϵnn ∈ F (G) (gi ∈ G, ϵi ∈ {1, ∗}) define

(5.1) ϕ̂(g) = ϕ(g1)
ϵ1 ◦ · · · ◦ ϕ(gn)ϵn .

Here, ϕ(g)∗ denotes the inverse partial function for ϕ(g). We have to
show that (5.1) factors through G∗, in other words, we must show that
ϕ is invariant under the elementary equivalences of Definition 5.3.

Let s, t ∈ F (G), g, h ∈ G and g ⊙ h ∈ G be defined. Then
s(g ⊙ h)∗t = sh∗g∗t in G∗. By (5.1) and the definition of an action
ϕ we have

ϕ̂(s(g ⊙ h)∗t) = ϕ(s)
(
ϕ(g ⊙ h)

)∗
ϕ(t)

= ϕ(s)
(
ϕ(g)ϕ(h)

)∗
ϕ(t) = ϕ(s)ϕ(h)∗ϕ(g)∗ϕ(t) = ϕ̂(sh∗g∗t).

The other elementary equivalences are checked similarly. It is easy to
see that the extended ϕ is also a continuous action (the inverse partial
functions and composition of partial functions have clopen domains and
ranges again). �

Lemma 5.7. Every G-Hilbert B-module E induces a morphism Û :
G∗ → LinMap (E) extending the G-action U on E. The relations (3.1)–
(3.4) also hold for all g ∈ G∗.

Proof. For gϵ11 · · · gϵnn ∈ F (G) (gi ∈ G, ϵi ∈ {1, ∗}) define

Ûg
ϵ1
1 ···gϵn

n
= U ϵ1

g1 · · ·U
ϵn
gn .

This map respects the elementary equivalences of Definition 5.3 since
U and U∗ are a morphism and anti-morphism, respectively, by Defi-
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nition 3.3. Consequently, Û factors through G∗. Relations (3.1)–(3.4)
are checked by induction (recall [5, Lemma 3]). �

We emphasize that Û of the last lemma is a morphism but not a

∗-morphism. Usually E is not a G∗-Hilbert module as Ûg need not be

a partial isometry for g ∈ G∗. It may thus be suggestive to write Û∗
g

for Ug∗ (g ∈ G∗), but one should be aware that this star might not
be a (well defined) operator on the sets of Ug’s. There is no (obvious)

involution in the image of Û .

We shall usually write U rather than Û .

Lemma 5.8.

(i) Every G-Hilbert C∗-algebra A is also a G∗-Hilbert C∗-algebra.
In particular, there is a ∗-morphism α̂ : G∗ → PartIso (A) ∩
End (A) extending the G-action α.

(ii) Every G-equivariant representation π : A → L(E) of A on
a G-Hilbert module E is G∗-equivariant in the sense that the
identities (3.5)–(3.8) also hold for g ∈ G∗ (where U∗

g has to be
interpreted as Ug∗).

(iii) For all a, b ∈ A and g ∈ G∗, one has gg∗(ab) = gg∗(a)b =
agg∗(b).

Proof. We extend the G-action α to a morphism α̂ on A according
to Lemma 5.7. Let g, h ∈ G∗ and a, b ∈ A. We may write αgα

∗
g(a)b =

⟨α̂gα̂
∗
g(a

∗), b⟩ for all a ∈ A and g ∈ G∗. Writing α̂g(a) = g(a), by
identity (3.7) (Lemma 5.7), we have

gg∗(a)b = ⟨gg∗(a∗), b⟩ = g(g∗(a)g∗(b)) = gg∗(a)gg∗(b),

and similarly, agg∗(b) = gg∗(a)gg∗(b). Hence, gg∗(a)b = agg∗(b),
that is, gg∗ ≡ α̂gα̂

∗
g is self-adjoint, since gg∗gg∗(a)b = gg∗(a)gg∗(b) =

gg∗(a)b, gg∗ is a projection. These identities already prove (iii). Now

gg∗hh∗(a)b=gg∗(hh∗(a)b)=gg∗(ahh∗(b))=gg∗(a)hh∗(b)=hh∗gg∗(a)b,

that is, gg∗ and hh∗ commute. Hence, g ≡ α̂g is the product of
partial isometries αi, α

∗
j (i, j ∈ G) with commuting range and source

projections and thus by a standard inductive proof and Lemma 4.2
a partial isometry with inverse partial isometry α̂∗

g = α̂g∗ . This
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shows that α̂ maps into the partial isometries, and is thus a G∗-action,
which proves (i). The G∗-equivariance claimed in (ii) (meaning that
the formulas of Definition 3.4 hold) follows by induction; see also [5,
Lemma 9]. �

Lemma 5.9. Let X be a Hausdorff space equipped with an injective
continuous right G-action τ . Then C0(X) is a G-Hilbert C∗-algebra
under the action αg(f)x = 1{τg(x) is defined}f(τg(x)) (α∗

g := α−1
g ) for

f ∈ C0(X), g ∈ G and x ∈ X.

Proof. By definition of a continuous action τ on X, the domain and
range, respectively, of τg is a clopen subset Dg and Rg, respectively,
of X. So αg(f) is indeed a continuous function. αg projects onto
1DgC0(X), and αg moves 1RgC0(X) onto 1DgC0(X). α∗

g is the inverse
map. It is straightforward to verify Definition 3.1, and this is left to
the reader. �

We give another characterization of a Hilbert C∗-algebra.

Lemma 5.10. Let A be a C∗-algebra. Then A is a Hilbert C∗-
algebra with G-action α if and only if α is a morphism α : G →
PartIso (A) ∩ End (A), and for every g ∈ G, the source and range
projections α∗

gαg, αgα
∗
g are in ZM(A) (center of the multiplier algebra

of A).

Proof. If A is a Hilbert C∗-algebra, then source and range projec-
tions of αg are in ZM(A) as remarked in [5, Section 7]. Conversely,
assume the condition. Then A ⊆ L(A) by left multiplication. Since
gg∗ is in ZM(A), gg∗ commutes with the left multiplication operator
La(b) = ab (a, b ∈ A), and so gg∗(ab) = agg∗(b). Moreover, gg∗(ab) =
gg∗(a)b (since gg∗ ∈ L(E)). In particular, gg∗(a)b = gg∗(ab) = agg∗(b).
With this, one easily gets ⟨g(a), b⟩ = g⟨a, g∗(b)⟩. �

We shall now come to crossed products by G.

Definition 5.11. Let A be a G-Hilbert C∗-algebra. Write F(G,A) for
the universal ∗-algebra generated by A and G subject to the following
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relations: The ∗-algebraic relations of A are respected and the identities

g ⊙ h = gh if g ⊙ h is defined,(5.2)

gg∗g = g, gg∗a = agg∗,(5.3)

g∗ga = ag∗g, gag∗ = g(a)gg∗, g∗ag = g∗(a)g∗g(5.4)

hold true for all g, h ∈ G and a ∈ A.

Definition 5.12. Let A be a G-Hilbert C∗-algebra. The algebraic
crossed product A oalg G of A by G is the ∗-subalgebra of F(G,A)
generated by the set

{ag ∈ F(G,A)| a ∈ A, g ∈ G}.

Let A be a G-Hilbert C∗-algebra. Write

Ag = gg∗(A)

for g ∈ G∗. Ag is a two-sided closed ideal in A by Lemma 5.8 (iii).

Lemma 5.13. A oalg G is canonically isomorphic to the ∗-algebra
Cc(G

∗, A) consisting of formal finite sums
∑

g∈G∗ agg (ag ∈ Ag) with
involution ( ∑

g∈G∗

agg

)∗

=
∑
g∈G∗

g∗(a∗g)g
∗

and convolution product∑
g∈G∗

agg
∑
h∈G∗

bhh =
∑

g,h∈G∗

agg(bh)gh.

Proof. By induction on the length of a word in G∗, one checks that
ga = g(a)g holds in F(G,A) for all g ∈ G∗. Note that g(a) = gg∗g(a) ∈
Ag since the G∗-action on a Hilbert C∗-algebra is realized by partial
isometries (Lemma 5.8). One has

(5.5) ag = (g∗a∗)∗ = (g∗(a∗)g∗)∗ = gg∗(a)g = agg

for all a ∈ A and g ∈ G∗, where ag := gg∗(a) ∈ Ag. It follows that

gg∗a = gg∗(a)gg∗ = agg∗(5.6)

gag∗ = g(a)gg∗(5.7)
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for all a ∈ A and g ∈ G∗. Define D = A ⊕ Cc(G
∗, A) ⊕ G∗.

Endow D with the algebraic structure on the summands as given,
and between the summands as we have it in F(G,A), for instance,
g · a = g(a)g ∈ Cc(G

∗, A) for a ∈ A and g ∈ G∗. By universality
of F(G,A), there is a ∗-homomorphism ϕ : F(G,A) → D such that
ϕ(a) = a and ϕ(g) = g for all a ∈ A and g ∈ G∗ (using (5.6)–(5.7)). It
is obviously injective, as D, and particularly Cc(G

∗, A), is a direct sum.
The restriction ϕ′ of ϕ to A oalg G yields Cc(G

∗, A). The surjectivity
of ϕ′ follows by induction from the factorization

agh = (a1/2g)(g∗(a1/2)h)

for a ∈ A+ and g, h ∈ G. �

Lemma 5.14. (i) There is a linear isomorphism

F(G,A) ∼= A⊕ Cc(G
∗, A)⊕G∗.

(ii) The identities (5.3)–(5.4) hold for all a ∈ A and g ∈ G∗.

Proof. This was proved in Lemma 5.13. �

One usually has no cancelation in G∗, even if G has it. Assume for
instance that g, h ∈ G are not invertible and not decomposable in G.
Then usually h ̸= g∗gh in G∗. For this reason, we need not have a
transformation like ‘x = gh ⇔ g∗x = h’ in the convolution product of
Lemma 5.13.

Definition 5.15. By a covariant representation of a G-Hilbert C∗-
algebra A, we mean a G-equivariant representation π : A → B(H) on
a G-Hilbert space H (Definition 3.3 with trivial G-action on C) in the
sense of Definition 3.4.

Lemma 5.16. Restricting a ∗-homomorphism ϕ : F(G,A) → B(H)
of F(G,A) to A and G gives a covariant representation (ϕ|A, ϕ|G,H)
of A. Conversely, a covariant representation (π, u,H) of A extends
canonically to a representation ϕ : F(G,A) → B(H) of F(G,A)
determined by ϕ|A = π and ϕ|G = u. This correspondence between
representations of F(G,A) and covariant representations of A is a
bijection.
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By the last lemma, it is often comfortable to work with one homo-
morphism ϕ rather than an equivariant representation. A covariant
representation of Aoalg G is then just a restriction of ϕ. We have the
following diagram (where ι denotes the canonical embedding).

F(G,A)

ϕ

((QQ
QQQ

QQQ
QQQ

QQ

Aoalg G

ι

OO

(ϕ|A,ϕ|G,H)

ϕ|AoalgG

// B(H)

6. Full crossed products.

Definition 6.1. Let (π, u,H) be a G-covariant representation of a G-
Hilbert C∗-algebra A and ϕ its induced representation on F(G,A). The
C∗-algebra Ao(π,u,H)G induced by this covariant representation is the
norm closure of ϕ(Aoalg G).

Definition 6.2. For x =
∑

g∈G∗ agg ∈ A oalg G, let s(x) denote the

supremum of ∥(π × u)(x)∥ taken over all G-covariant representations
(π, u,H) of A. This supremum is finite as we have

s(x) ≤ sup
(π,U,H)

∑
g∈G∗

∥π(ag)∥ · ∥ug∥ ≤
∑
g∈G∗

∥ag∥ <∞.

The full crossed product A o G is the completion of the quotient of
Aoalg G divided by the kernel of the seminorm s.

Definition 6.3. Similarly as in Definition 6.2, we define a C∗-algebra
B ⊆ B(H) which is the completion of the quotient of F(G,A) divided
by the kernel of the seminorm s′ which arises by taking the supremum
of the norms over all representations of F(G,A). The canonical homo-
morphism ϕ∞ : F(G,A) → B ⊆ B(H) is called the universal represen-
tation of F(G,A), and the covariant representation (ϕ∞|A,ϕ∞|G,H)
of Lemma 5.16 the universal G-covariant representation of A.

The correspondence between G-covariant representations of A and
representations of F(G,A) by Lemma 5.16 shows that the seminorm
s is the restriction of the seminorm s′ to A oalg G, and note that the
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kernels of s and s′ are automatically ideals. Hence, it is easy to see that
AoG can be canonically isometrically embedded in B. Thus, we may
alternatively regard A o G as the norm closure of ϕ∞(A oalg G). In
particular, AoG is the C∗-algebra induced by the universal covariant
representation (ϕ∞|A,ϕ∞|G). Keeping Lemma 5.16 in mind, by an
abuse of language, we may also call ϕ∞ a covariant representation of
A.

Lemma 6.4. Let ϕ∞ be the universal covariant representation of
A. If ϕ is another covariant representation of A, then there is a
homomorphism σ : A o G → A oϕ G such that σϕ∞(x) = ϕ(x) for
all x ∈ Aoalg G.

Aoalg G
ϕ∞

//

ϕ %%LL
LLL

LLL
LL

AoG

σ

��
Aoϕ G

Proof. This is clear as ∥ϕ∞(x)∥ = supφ ∥φ(x)∥ ≥ ∥ϕ(x)∥, where
x ∈ Aoalg G and the supremum is taken over all representations φ of
F(G,A). �

Note that the above full crossed product is for proper semimulti-
plicative sets, and so there are differences to existing crossed products
if one considers special categories. Let (π,U,H) be a covariant repre-
sentation of a G-Hilbert C∗-algebra A. If G is a discrete group, then
UgU

∗
g = U∗

gUg = Ue for all g ∈ G by Lemma 4.6, but this need not be
a unit (we may resolve this difference by requiring Ue = 1, as option-
ally done in Sections 11–13). If G is an inverse semigroup, our crossed
product differs from Sieben’s crossed product [?] which is based on
strictly covariant representations in the sense that Ugπ(a)U

∗
g = π(g(a)).

We are, however, consistent with Khoshkam and Skandalis’s definition
[10], see Lemma 8.4. The precise difference between the latter two
crossed products is clarified in [10]. If G is a semigroup, then in
the existing definitions a semigroup covariant representation consists
of isometries Ug which strictly covariantly intertwine the G-action, see
Stacey [19], Murphy [14], Laca [11] and Larsen [13]. Stacey even
allows a family of isometries for representations of different multiplic-
ities. The crossed product of N by surjective shift maps on {0, 1}N
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degenerates to 0 according to Stacey in [19, Example 2.1(a)] (this af-
fects any crossed product construction induced by strictly covariantly
intertwining isometries) but there is an obvious non-degenerate covari-
ant representation on B(ℓ2({0, 1}N)) in our sense. In all constructions
of this paragraph the full crossed product is (roughly speaking) the
enveloping C∗-algebra of the respective class of equivariant representa-
tions.

If G is a discrete groupoid then gh = 0 in the groupoid C∗-algebra
if g and h are indecomposable (g, h ∈ G). Taking into account such an
approach to the crossed product, we consider such a variant also for
semimultiplicative sets.

Definition 6.5. Let G be a general semimultiplicative set. A covariant
representation (π, u,H) is called strong if uguh = 0 for all indecompos-
able pairs g, h ∈ G. The full strong crossed product A os G is the
C∗-algebra induced by the class of strong G-covariant representations
of A by a similar construction as in Definitions 6.2 and 6.3 and the
remark thereafter.

Similarly as in Definition 6.3 we define the universal strong represen-
tation and the universal strong G-covariant representation. A similar
lemma as Lemma 6.4 also holds for the strong crossed product and the
strong covariant representations.

7. Reduced crossed products. In this section we shall assume
that G is an associative semimultiplicative set with left cancelation. Let
ρ be the injectiveG-action onG given by left multiplication (ρg(h) = gh
in G). It can be extended to an injective G∗-action on G (also
denoted by ρ) by Lemma 5.6. ρ induces an action λ : G → B(ℓ2(G))
(Definition 2.3). This action is an action under which ℓ2(G) becomes
a G-Hilbert space (i.e., a G-Hilbert module over C). We shall regard
ℓ2(G) as a G-Hilbert module (if nothing else is said). We may extend
this action to a G∗-action, and denote this extension also by λ (and it
is the same action as the extended ρ would induce). For arbitrary g in
G∗ and arbitrary h in G, we use the abbreviation

egh := λg(eh).



DESCENT HOMOMORPHISM 827

Definition 7.1. If G has left cancelation, then a G-action U on
a G-Hilbert module E is said to have transferred left cancelation if
U∗
gUgUh = Uh for all g, h ∈ G for which gh is defined.

The last definition is understood to include G-Hilbert C∗-algebras
(which are special G-Hilbert modules). By sloppy terminology, we shall
also say that aG-Hilbert module has transferred left cancelation (rather
than the G-action itself).

If G is a semigroupoid, then λ has transferred left cancelation.
Indeed, assume gh is defined and x ∈ G. Since G is a semigroupoid
and gh is defined, (gh)x is defined if and only if hx is defined. Thus,
λ∗gλgλh(ex) = λh(ex).

Lemma 7.2. A G-action U has transferred left cancelation if and only
if for all g ∈ G∗ and all h ∈ G one has Ugh = Uρg(h) whenever ρg(h)
is defined (note that gh ∈ G∗ but ρg(h) ∈ G).

Proof. Assume the condition holds true. If ρg(h) exists for g, h ∈ G,
then ρ∗gρg(h) = h (Lemma 5.6). Consequently, Uh = Uρg∗g(h) = Ug∗gh

by assumption. Thus, U has transferred left cancelation. Assume that
U has transferred left cancelation and by induction hypothesis on the
length of g that Uρg(h) = Ugh, where g ∈ G∗, h ∈ G and ρg(h) is
defined. Suppose that t ∈ G and ρt∗g(h) are defined. Then gh =
ρtt∗g(h) = ρt(ρt∗g(h)) = ρt(x) for x := ρt∗g(h). Since U has transferred
left cancelation, U∗

t UtUx = Ux. Hence, Uρt∗g(h) = Ux = Ut∗tx = Ut∗gh.

This proves the inductive step. On the other hand, if ρtg(h) is defined,
then Uρtg(h) = Uρt(ρg(h)) = Ut(ρg(h)) = UtUρg(h) = UtUgh = Utgh,
proving the inductive step again. �

Definition 7.3. Suppose that A is a G-Hilbert C∗-algebra, G is as-
sociative with left cancelation, and A has transferred left cancelation.
Let σ : A → B(H) be a faithful nondegenerate representation (with-
out G-action) of A on a Hilbert space H. The left reduced crossed
product Aor G is the C∗-algebra induced by the left regular covariant
representation (π, u,H ⊗ ℓ2(G)) of A given by

π(a)(ξh ⊗ eh) = σ
(
h∗(a)

)
ξh ⊗ eh, u(g)(ξh ⊗ eh) = ξh ⊗ λg(eh)

for all a ∈ A, ξh ∈ H and g, h ∈ G.



828 B. BURGSTALLER

Lemma 7.4. The left regular representation (Definition 7.3) is indeed
covariant.

Proof. We need to check Definition 3.4 and demonstrate only (3.7).
Let α̂ denote the G∗-action on A. By Lemma 5.8 (i) and Lemma 7.2,
we have

ugπ(a)u
∗
g(ξ ⊗ eh) = ugπ(a)(ξ ⊗ eρg∗ (h))

= ug
(
σ
(
α̂∗
ρg∗ (h)

(a)
)
ξ ⊗ eρg∗ (h)

)
= ug

(
σ
(
α̂∗
g∗h(a)

)
ξ ⊗ eρg∗ (h)

)
= σ

(
α̂h∗g(a)

)
ξ ⊗ eρgg∗ (h)

= σ
(
α̂h∗gg∗g(a)

)
ξ ⊗ eρgg∗ (h)

= π(g(a))ugu
∗
g(ξ ⊗ eh)

for all g ∈ G∗ and h ∈ G. �

Obviously, u of Definition 7.3 is the diagonal G-action 1⊗λ. We are
going to show that the definition of Aor G is actually independent of
σ.

We shall recall three lemmas which can all be found in Kasparov
[8, pages 522–523]. Only Lemma 7.5 is somewhat extended (cf., Lance
[12, Proposition 2.1]).

Lemma 7.5. Let X be a Hilbert module, A a C∗-algebra and π : A→
L(X) a non-degenerate homomorphism. Then there is an isomorphism

ρ : A⊗A X −→ X : ρ(a⊗ x) = π(a)x.

If T ∈ L(A) then T ⊗ 1 = ρ−1π̂(T )ρ, where π̂ : L(A) → L(X) denotes
the strictly continuous extension of π.

Lemma 7.6. If X and H are Hilbert modules over C∗-algebras B1 and
B2, respectively, and B1 → L(H) is an injective homomorphism, then
µ : L(X) → L(X⊗B1 H), µ(T ) = T ⊗1 is an injective homomorphism.

Lemma 7.7. If E1, . . . , E4 are Hilbert Bi-modules and B1 → L(E3),
B2 → L(E4) are homomorphisms, then

(E1 ⊗ E2)⊗B1⊗B2 (E3 ⊗ E4) ∼= (E1 ⊗B1 E3)⊗ (E2 ⊗B2 E4).
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For a G-Hilbert C∗-algebra A, let A⊗ ℓ2(G) denote the skew tensor
product of G-Hilbert modules. We make it a G-Hilbert module over
A⊗C ∼= A under the diagonal action 1⊗ λ.

Lemma 7.8. Consider the setting of Definition 7.3. There is an
injective ∗-homomorphism

ζ : Aor G −→ L(A⊗ ℓ2(G))

induced by the covariant representation ϕ : A oalg G → L(A ⊗ ℓ2(G))
given by

ϕ(a)(xh ⊗ eh) = h∗(a)xh ⊗ eh,

ϕ(g) = 1⊗ λg,

for all a, xh ∈ A and g, h ∈ G.

Proof. Let ϕr be the representation of Aoalg G induced by the left
regular representation (Definition 7.3). Let σ : A→ B(H) be a faithful
and non-degenerate representation (withoutG-action) of A on a Hilbert
space H. We aim to show that there is a commutative diagram

Aoalg G
ϕ //

ϕr &&NN
NNN

NNN
NNN

L
(
A⊗ ℓ2(G)

) µ //

κ

��

L
(
(A⊗ ℓ2(G))⊗A⊗C (H ⊗C)

)
µ1

��
L
(
H ⊗ ℓ2(G)

)
L
(
(A⊗A H)⊗ (ℓ2(G)⊗C C)

)
µ2

oo

Here, µ is the injective homomorphism of Lemma 7.6, and µ1 and µ2

denote the isomorphisms induced by the isomorphisms of Lemmas 7.7
and 7.5, respectively. Define κ := µ2µ1µ, which is injective. We are
going to analyze κ(ϕ(a o g)). We write an element ξ ∈ H as σ(a0)ξ0
for a0 ∈ A and ξ0 ∈ H by Lemma 7.5. We shall write down, step by
step, how ϕ(a o g) transforms under κ. Let g ∈ G∗, h ∈ G, a ∈ Ag,
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xh ∈ A and ξ ∈ H. We have

ϕ
(
ao g

)(
xh ⊗ eh

)
= (gh)∗(a)xh ⊗ egh

µϕ
(
ao g

)(
(xh ⊗ eh)⊗ (ξ ⊗ 1C)

)
= ((gh)∗(a)xh ⊗ egh)⊗ (ξ ⊗ 1C)

κϕ
(
ao g

)(
σ(xh)ξ ⊗ eh

)
= σ

(
(gh)∗(a)

)
σ(xh)ξ ⊗ egh

κϕ
(
ao g

)(
ξ ⊗ eh

)
= σ

(
(gh)∗(a)

)
ξ ⊗ egh

= ϕr
(
ao g

)(
ξ ⊗ eh

)
In the last step, we have set ξ := σ(xh)ξ (Lemma 7.5). We have checked

that ϕr = κϕ. This shows that ϕ(Aoalg G) is isomorphic to A or G,
and we set ζ := κ−1. �

Corollary 7.9. The definition of the left reduced crossed product in
Definition 7.3 does not depend on σ.

For the rest of this section we consider the following assumptions.
Let L : F(G,A) → B(H ⊗ ℓ2(G)) be the left regular representation.
Then L(G∗) is an inverse semigroup. Suppose that the G∗-action on A
factors through L(G∗) via an inverse semigroup homomorphism µ.

G∗ L //

α̂ ##G
GG

GG
GG

GG
L(G∗)

µ

��
End (A)

(For instance, when the G-action on A is trivial.) Then µ defines a
L(G∗)-action on A. Suppose further that L is injective on A.

Lemma 7.10. There is an isomorphism
(7.1)
γ : L

(
F(G,A)

)
−→ F

(
L(G∗), A

)
: γ(L(a)) = a, γ(L(g)) = L(g),

where a ∈ A and g ∈ G∗, which restricts to an isomorphism

(7.2) L(Aoalg G) −→ Aoalg L(G
∗).

Proof. Note that in F(L(G∗), A) we have L(g)a = µL(g)(a)L(g) =
α̂g(a)L(g) = g(a)L(g). At first we shall show that γ ◦ L is a repre-
sentation of F(G,A). To this end, we need to check that the relations
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(5.2)–(5.4) are respected by γ ◦ L. We only show (5.4),

γL(g)γL(a)(γL(g))∗ = L(g)aL(g)∗ = g(a)L(g)L(g)∗

= γL(g(a))γL(g)(γL(g))∗.

Since L and γ ◦ L are homomorphisms, γ is a homomorphism.

We need to show that there is an inverse map σ for γ, where
σ(a) = L(a) and σ(L(g)) = L(g). Again, we have to check that the
relations (5.2)–(5.4) are respected by σ. For instance,

σ(L(g))(σ(L(g)))∗σ(L(g)) = L(g)L(g)∗L(g) = L(g) = σ(L(g)),

since L(g) is a partial isometry. �

Corollary 7.11. If the given C∗-norm on L(AoalgG) is the maximal
(covariant) one, then

Aor G ∼= Ao L(G∗).(7.3)

Proof. Let γ0 be the isomorphism (7.2) and endow domain and range
with the norms from A or G and A o L(G∗), respectively. Since
γ−1
0 is the restriction of γ−1, (7.1), by Lemma 5.16 it is a covariant

representation of Aoalg L(G
∗). Thus, γ−1

0 is norm-decreasing. On the
other hand, γ0 is a (covariant) representation of L(A oalg G), which
by assumption must decrease in norm. Thus, γ0 is an isometry and
extends continuously to (7.3). �

The last corollary may be useful to translate reduced crossed prod-
ucts to inverse semigroup crossed products, for which there exist
more Baum-Connes theory (see for instance [3, 4]). For example,
some Toeplitz graph C∗-algebras for graphs Λ are reduced C∗-algebras
C or Λ

∗ (via the so-called path space representation, see for instance
[17]). By a Cuntz-Krieger uniqueness theorem (the C∗-norm on
L(Coalg Λ

∗) is unique), Corollary 7.11 applies immediately.

8. Representations of ℓ1(G). Write ℓ1(G,A) for the completion
of Cc(G

∗, A) under the norm ∥
∑

g∈G∗ agg∥1 =
∑

g∈G∗ ∥ag∥. For

a, b ∈ Cc(G
∗, A), the estimate ∥ab∥1 ≤ ∥a∥1∥b∥1 is easy.

Lemma 8.1. ℓ1(G,A) is a Banach ∗-algebra.
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A representation of ℓ1(G,A) is a norm bounded ∗-homomorphism
π : ℓ1(G,A) → B(H), where H is a Hilbert space.

Proposition 8.2. If ℓ1(G,A) has an approximate unit, then a repre-
sentation of ℓ1(G,A) is realized by a covariant representation of A, and
vice versa. (It need not be a bijection, see [10, Remark, page 271].)

Consequently, if ℓ1(G,A) has an approximate unit, then a represen-
tation of A oalg G extends to F(G,A) if and only if it is covariant if
and only if it is bounded in ℓ1(G,A)-norm.

Proof. We essentially follow Pedersen’s book [15, Proposition 7.6.4].
Let π : ℓ1(G,A) → B(H) be a representation on a Hilbert space H.
It is a direct sum of a non-degenerate representation and the null-
representation. We may ignore the null-part, which we can then add
to the covariant representation of A again, and vice versa, and assume
that π is non-degenerate. The left and right multiplication of elements
z ∈ A oalg G by elements a ∈ A, g ∈ G in the algebra F(G,A), that
is, z 7→ az would be the operator given by left multiplication by a,
induce bounded linear maps (even centralizers) La, Lg, Ra, Rg from
ℓ1(G,A) into itself. Let (yi) ⊆ ℓ1(G,A) be a given approximate unit.
Since π is non-degenerate, π(ℓ1(G,A))H is dense in H. Since, for each
η = π(x)ξ (x ∈ ℓ1(G,A), ξ ∈ H) one has ∥η−π(yi)η∥ ≤ ∥π(x−yix)ξ∥ ≤
∥x − yix∥1∥ξ∥ → 0 for i → ∞, π(yi) converges strongly to the unit
of B(H). Similarly, for all a ∈ A and x ∈ ℓ1(G,A), the Cauchy
criterium ∥π(ayi − ayj)π(x)ξ∥ ≤ ε for all i, j ≥ i0 shows that π(ayi) =
π(La(yi)) has a strong limit point σ(a). Hence, π(ax) = limi π(ayix) =
limi π(ayi)π(x) = σ(a)π(x). Since ∥π(yia−ayi)π(x)ξ∥ → 0 for i→ ∞,
σ(a) = limi π(La(yi)) = limi π(Ra(yi)) (strong limits). In the same
manner we define Ug = limi π(Lg(yi)) = limi π(Rg(yi)) (strong limits),
and one has π(gx) = Ugπ(x) for g ∈ G. Analogously, we define
U∗
g for g ∈ G. A direct check shows that (σ,U,H) is a G-covariant

representation of A. For instance,

Ugσ(a)U
∗
g π(x) = Ugσ(a)π(g

∗x) = π(gag∗x) = π(g(a)gg∗x)

= σ(g(a))UgU
∗
g π(x),

and replacing x by yi and taking the limit yields (3.7). In particular, we
have π(agg) = σ(ag)Ug, which extends by norm continuity to ℓ1(G,A).
This shows that π will be assigned to (σ,U,H). On the other hand,
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starting with a representation (σ,U,H), we define a representation π
of ℓ1(G,A) by π(agg) = σ(ag)Ug. �

Corollary 8.3. If ℓ1(G,A) has an approximate unit, then A o G
(respectively A os G) is the C∗-algebra generated by the universal
(respectively universal strong) representation of ℓ1(G,A).

Lemma 8.4. If G is an inverse semigroup, then AoG coincides with
Khoshkam and Skandalis’s definition in [10], so is the enveloping C∗-
algebra of ℓ1(G,A).

Proof. Let α be any bounded representation of ℓ1(G,A) on Hilbert
space. Then it factors through Khoshkam-Skandalis’s crossed product
A o G. Any C∗-representation of A o G is realized as a covariant
representation of A by [10, Theorem 5.7.(b)], so the same must be
true for α.

Hence, a C∗-representation of ℓ1(G,A) is G-covariant. But then,
since every G-covariant C∗-representation of A oalg G is obviously
bounded in ℓ1(G,A)-norm, A oalg G and ℓ1(G,A) have the same
universal G-covariant representation (which induces the C∗-crossed
products). �

9. KKG for unital G. In this section we will compare Kasparov’s
equivariant KK-theory with semimultiplicative sets equivariant KK-
theory when G happens to be a group. We shall then also introduce
a unital version of KKG-theory for unital semimultiplicative sets G,
where we let the unit of G act as the identity on Hilbert modules and
C∗-algebras.

Recall that two cycles (E , T ) and (E , T ′) in EG(A,B) are compact
perturbations of each other if a(T − T ′) ∈ K(E) for all a ∈ A, and that
then the straight line segment from T to T ′ is an operator homotopy;
in particular, (E , T ) and (E , T ′) are homotopic in the sense of KKG-
theory (see [5]). We will denote Kasparov’s equivariant KK-theory for

groups G ([8, 9]) by K̃KG(A,B).

Proposition 9.1. Let G be a group (or a unital semimultiplicative set,
see Remark 9.2). Let A and B be Hilbert C∗-algebras where the unit of
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G acts identically on A and B, respectively. Then

KKG(A,B) ∼= K̃KG(A,B)⊕ K̃K(A,B).

Proof. The proof of this proposition (which had also been suspected
by the author) was indicated by an unknown referee. Let (E , T ) be a
cycle in EG(A,B). By Lemma 4.4 and Corollary 4.6, Ue is a projection
and a unit for all Ug, and Ug−1 = U∗

g , and so UgU
∗
g = U∗

gUg = Ue for

all g ∈ G. Hence, KKG(A,B) and K̃KG(A,B) differ only by the fact

that K̃KG(A,B) is build up by cycles (E , T ) ∈ ẼG(A,B) where Ue

acts identically on E .
Denote u = Ue. We aim to show that the map

ΦA,B : EG(A,B) −→ ẼG(A,B)⊕ Ẽ(A,B)

ΦA,B(E , T ) = (uE , uTu)⊕ ((1− u)E , (1− u)T (1− u))

induces an isomorphism in KK-theory. Homotopic elements in EG(A,
B) become homotopic elements in the image of ΦA,B via the map
ΦA,B[0,1] (because Ue⊗αe = Ue⊗1 on E ⊗B[0,1]B). The map ΦA,B has

an obvious canonical inverse map Φ−1
A,B , which also respects homotopy.

Obviously we have ΦA,BΦ
−1
A,B = 1. On the other hand,

Φ−1
A,BΦA,B(E , T ) = (E , uTu+ (1− u)T (1− u))

is just a compact perturbation of (E , T ). Hence, also Φ−1
A,BΦA,B∼1. �

Remark 9.2. The above revealed difference between Kasparov’s the-
ory and ours seems natural as usually lacking an identity in G, G-
actions are allowed to act degenerate on C∗-algebras or Hilbert mod-
ules. This is reflected in the KKG-theory. If, however, one considers
unital G’s one can neutralize the difference to Kasparov’s theory by
assuming that the unit 1G of G always acts as the identity on Hilbert
modules and Hilbert C∗-algebras. Then the whole KKG-theory of [5]
goes through under this modification (so one also has an associative
Kasparov product). This is clear as we only have to take care that
all used constructions of G-Hilbert modules respect the unitization,
and these are the tensor products and the direct sum where it is obvi-
ous. Furthermore, one has to ensure that under modified KKG-theory
the class 1 in KKG(C,C) associated to the cycle (C, 0) (as used in
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Section 7 of [5]) exists; but this is also clear. Actually, the proof of
Proposition 9.1 works (without essential modification) for any unital
semimultiplicative set G, that is, KKG is the direct sum of the unital
version of KKG, where the unit of G acts fully on Hilbert C∗-algebras

and Hilbert bimodules, and Kasparov’s K̃K.

10. Inversely generated semigroups.

Definition 10.1. We call an element g of an involutive semigroup G
a partial isometry if it is invertible with respect to the involution, that
is, if gg∗g = g.

Note that if s is a partial isometry then s∗ is also one. Consequently,
the set of partial isometries of an involutive semigroup is self-adjoint.

Definition 10.2. An inversely generated semigroup is an involutive
semigroup G which is generated by its partial isometries. In other
words, for every g ∈ G there exist partial isometries s1, . . . , sn ∈ G
such that g = s1 . . . sn.

The standard example for an inversely generated semigroup is the
involutive semigroup G∗ for a semimultiplicative set G (Definition 5.3).
(The set of partial isometries of G∗ might differ from G, since there
could exist more partial isometries.)

Definition 10.3. A ∗-morphism between involutive semigroups is a
map with respect to multiplication and involution. A ∗-antimorphism
between involutive semigroups is an involution respecting semigroup
antimorphism.

We shall write G for the set of partial isometries of an inversely
generated semigroup G. G is a semimultiplicative set which usually is
not associative. (One can easily construct examples where st ∈ G and
(st)u ∈ G are partial isometries, but tu /∈ G is not one; this contradicts
the associativity condition.)
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Definition 10.4. A G-Hilbert C∗-algebra is a semimultiplicative set
G-Hilbert C∗-algebra A where the action maps α, α∗ : G → End (A)
extend to a map α : G→ End (A)

α(g) = α(g),(10.1)

α(g∗) = α∗(g),(10.2)

α(hk) = α(h)α(k)(10.3)

for all g ∈ G and h, k ∈ G.

Since α maps into the partial isometries of A which have commuting
source and range projections (in the center of the multiplier algebra),
α is actually a ∗-morphism.

Definition 10.5. A G-Hilbert module is a Hilbert module which is
endowed with a general semimultiplicative set G-action α that extends
to a map α via the formulas (10.1)–(10.3).

Note that the G-action α on a Hilbert module is usually not realized
by partial isometries; only the partial isometries of G, that is the ele-
ments of G, go over to partial isometries (because a semimultiplicative
set G-action is always realized by partial isometries). These partial
isometries determine how we have to define the other elements of G,
as they can be written as products of elements of G. These products,
however, need not be partial isometries on the Hilbert module.

We may equivalently reformulate Definition 10.4 (and similarly Def-
inition 10.5) by saying that the G∗-action α̂ on A factors through G.

G∗ α̂ //

p

��

A

G

α

>>}}}}}}}}

Here, p is the quotient ∗-morphism determined by p(g) = g for all
g ∈ G. Indeed, if α allows an extension α given by (10.1)–(10.3), then
the above diagram commutes. On the other hand, if the above diagram
exists, α is an extension of α satisfying (10.1)–(10.3).
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Because of this fact, we view a G-Hilbert module also as a G-Hilbert
module with the property that the induced G∗-map factors through G.
We sloppily say that the G-Hilbert module factors through G.

Lemma 10.6. Identities (3.9) also hold for all g ∈ G∗.

Proof. We leave the inductive proof to the reader and sketch only
one identity modulo IA(E); note that g(K(E)), g∗(K(E)) ⊆ K(E) for all
g ∈ G. For g ∈ G and some h ∈ G∗ (given by inductive hypothesis) we
have

UgUhTU
∗
hU

∗
g ≡UgTUhU

∗
hU

∗
g ≡UgTU

∗
gUgUhU

∗
hU

∗
g ≡TUgUhU

∗
hU

∗
g . �

A G-equivariant homomorphism π : A → L(E) (Definition 3.4) is
automatically G∗-equivariant by Lemma 5.8 (ii). Thus, it is also G-
equivariant when the G-Hilbert module E and G-Hilbert C∗-algebra A
which appear factor through G. Such a similar fact can also be said for
a cycle (E , T ) ∈ EG(A,B). By Lemma 10.6, identities (3.9) also hold
for g ∈ G if all Hilbert modules E , A and B factor through G. The
following definition thus seems natural.

Definition 10.7. We define G-equivariantKK-theory in the same way
as KKG-theory but with the addition that all G-Hilbert modules and
G-Hilbert C∗-algebras which appear factor through G.

In other words, KKG-theory is built up by G-Hilbert modules rather
than by G-Hilbert modules as in KKG-theory.

It is easy to see that the category of G-Hilbert modules is stable
under tensor products and direct sums. Also, any Hilbert module is
a G-Hilbert module under the trivial G-action. We have thus checked
that all discussion and theorems like the Kasparov product in [5] carry

over from KKG to KKG (compare with Remark 9.2).

We say a representation ϕ : F(G,A) → B(H) factors through
G if the restriction map ϕ|G∗ factors through G. (Analogously and
equivalently, the G-equivariant representation (ϕ|A, ϕ|G, H) is said to
factor through H). We prefer to view a crossed product of A by G
as a special crossed product of A by G and introduce the following
definition.
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Definition 10.8. The full crossed product AoG is the norm closure of

ϕG(AoalgG), where ϕ
G denotes the universal representation of F(G,A)

which factors through G.

11. Hilbert bimodules over full crossed products. In the re-
mainder of this paper we are going to prove the descent homomorphism.
In this and the remaining sections H and G denote discrete countable
semimultiplicative sets. We may either assume thatH andG have units
1H and 1G and treat everything in the unital world of KK-theory (see
Remark 9.2), and define the product of H and G by H × G; or we
consider the non-unital version, in this case defining the product of H
and G as the semimultiplicative set H ⊔G⊔H ×G with multiplication

h · g := (h, g), h · (h′, g′) := (hh′, g′), (g, h) · (g′, h′) := (gg′, hh′),

and so on for h, h′ ∈ H and g, g′ ∈ G, and denote this product, by
sloppy but suggestive notation, still as H×G. In any case, a morphism
H ×G→ K is determined by its restriction to H and G, where H and
G are identified with H × 1G and 1H × G, respectively, in the unital
case.

For all H×G-actions on Hilbert modules or C∗-algebras, we require
that the induced H∗-actions and G∗-actions (in the sense of Lemmas
5.7 and 5.8) commute: the point is that h∗ may not commute with g
otherwise (h ∈ H, g ∈ G). This requirement also affects the definition
of KKH×G, and in this sense the notion KKH×G is suggestive but
sloppy. (See the discussion in Remark 9.2 why we can slightly adjust
equivariant KK-theory. Actually, we only need stability under tensor
products, direct sums, and the existence of 1 = (C, 0) in KKG(C,C).)

Let l ∈ {∅, s, r, i} and D be a G-Hilbert C∗-algebra. Let ϕD,G,l

be the representation of F(G,D) induced by the universal G-covariant
representation (in case that l = ∅), or the universal strong G-covariant
representation (when l = s), or the reduced representation of D (when
l = r).

The case l = i requires that we are given an inversely generated
semigroup denoted by G and H, and G and H, respectively, denote
their subsets of partial isometries. In this case all G-Hilbert modules
andG-Hilbert C∗-algebras which appear are supposed to factor through
G (and similarly so forH andG×H) in accordance with Definition 10.7.
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If l = i, then we need to work with G-equivariant KK-theory, that is,
KKGoH means then actually Moreover, ϕD,G,i denotes the universal

G-factorizing G-covariant representation of D, and D oi G will stand
for D oG (Definition 10.8).

We shall sometimes write ϕl rather than ϕD,G,l if D and G are clear
from the context. Recall that

D ol G ∼= ϕD,G,l(D oalg G).

We denote
G′ = {g, g∗ ∈ G∗ | g ∈ G}.

If l = r, then we deal with the reduced crossed product, and in this
case we assume that G is an associative semimultiplicative set with left
cancelation, and all G-Hilbert modules and G-Hilbert C∗-algebras have
transferred left cancelation. So, in this sense, we also have a modified
KKG-theory as we adapt it in the sense that it is build up by modules
with left transferred cancelation (confer Remark 9.2 why we can easily
slightly adapt KK-theory). However, we do not require cancelation for
H or its actions. If l = r, then we assume that B = C equipped with
the trivial G-action.

We will assume that G has a unit, partially because of non-
degenerateness concerns as in Lemma 13.1. Nevertheless, we shall
sometimes try to avoid using a unit.

Assume that A,B are (H × G)-Hilbert C∗-algebras and E is a
(H ×G)-Hilbert B-module. The G-action on E is denoted by U .

Lemma 11.1.

(i) B ol G is an H ×G-Hilbert C∗-algebra (where the G-action is
trivial).

(ii) Under a different H×G-action denoted by V , BolG is a H×G-
Hilbert module over the H×G-Hilbert C∗-algebra BolG. This
Hilbert module is denoted by B oMod

l G.

Proof. (i) Let ϕl = ϕB,G,l. We endow BolG with the H×G-Hilbert
C∗-action

(11.1) αh×g

(
ϕl(bkk)

)
= ϕl

(
h(bk)k

)
=: ψ(bkk)



840 B. BURGSTALLER

for k ∈ G∗, bk ∈ Bk and h × g ∈ (H × G)′. (So the G-action is
trivial.) We claim that ψ : F(G,B) → B ol G is a representation. We
need to show that (ψ|B , ψ|G) is G-covariant, where ψ(b) = ϕl(h(b)) and
ψ(g) = ϕl(g). Let us check (3.5). In ϕl(F(G,B)) we have

ψ(g)ψ(g)∗ψ(b) = ϕl(g)ϕl(g)
∗ϕl(h(b))

= ϕl(gg
∗h(b)) = ϕl(gg

∗(h(b))gg∗)

= ϕl(h(b)gg
∗) = ψ(b)ψ(g)ψ(g)∗,

where gg∗(b)gg∗ = bgg∗ is identity (5.4) (Lemma 5.14 (ii)).

In the case where l indicates the full or full strong crossed prod-
uct, the map αh×g extends to a well-defined endomorphism of B ol G
by Lemma 6.4. For the reduced crossed product we see the bounded-
ness of αh×g by direct evaluation of the left regular representation of
Definition 7.3: one computes∥∥∥∥ϕr( ∑

k∈G∗

h(bk)k

)
ξ

∥∥∥∥ ≤
∥∥∥∥ϕr( ∑

k∈G∗

bkk
)
ξ

∥∥∥∥
for all ξ ∈ H ⊗ ℓ2(G).

It remains to check the identities of Definition 3.3 to see that α is a
G×H-action on B ol G. For instance, by Lemma 5.8 (iii), one has⟨

αh×g ϕl(bkk), ϕl(cmm)
⟩
= ϕl

(
k∗ h(b∗k)cmm

)
= ϕl

(
k∗ h(b∗k h

∗(cm))m
)

= αh×g

⟨
ϕl(bkk), α

∗
h×g ϕl(cmm)

)⟩
.

(ii) We make BolG a Hilbert BolG-module BoMod
l G with inner

product ⟨x, y⟩ = x∗yand (H×G)-Hilbert BolG-module action

(11.2) Vh×g

(
ϕl(bkk)

)
= ϕl

(
g
(
h(bk)

)
gk

)
for all k ∈ G∗, bk ∈ Bk and h× g ∈ (H ×G)′. Note that

(11.3) Vh×g

(
ϕl(x)

)
= ϕl(g)αh(ϕl(x))

(x ∈ A oalg G), which shows the boundedness of Vh×g. Then
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V is an action, and we shall demonstrate only one rule:⟨
Vgϕl(x), ϕl(y)

⟩
= ϕl(x

∗)ϕl(g
∗)ϕl(y)

=
⟨
ϕl(x), V

∗
g ϕl(y)

⟩
= αg

⟨
ϕl(x), V

∗
g ϕl(y)

⟩
. �

Lemma 11.2. There is an H×G-equivariant homomorphism τ : B →
L(B oMod

l G) given by left multiplication, i.e.,

τ(b)
(
ϕl(x)

)
= ϕl(b)ϕl(x)

for b ∈ B and x ∈ B oalg G.

Proof. We only check (3.7)–(3.8). Let k ∈ G∗, g × h ∈ (G × H)′,
b ∈ B and ck ∈ Bk. Then we have

Vg×hτ(b)V
∗
g×hϕl(ckk) = Vg×hτ(b)ϕl(g

∗)ϕl
(
h∗(ck)k

)
= ϕl(g)ϕl

(
h(bg∗h∗(ck))g

∗k
)

= ϕl
(
gh(bg∗h∗(ck))gg

∗k
)

= τ(gh(b))Vh×gV
∗
h×gϕl(ckk).

Notice that here we used the requirement that the G- and H-actions
(and their adjoint actions) commute. �

Definition 11.3. Define an H ×G-Hilbert module over B ol G by

E ol G = E ⊗B (B oMod
l G)

(internal tensor product of H × G-Hilbert modules), where B acts on
B oMod

l G by left multiplication (Lemma 11.2).

By definition, E ol G is an H ×G-Hilbert module over the H ×G-
Hilbert C∗-algebra B ol G under the diagonal action U ⊗ V (see [5,
Lemma 4]). Here, V denotes the H ×G-action on B ol G, see (11.2).
Note that, if l = i, then both B oi G and B oMod

i G factor through
H × G under their actions α and V ((11.1), (11.3)), respectively.
Consequently, the tensor product E oi G factors through H ×G.

Proposition 11.4. If l indicates one of the full crossed products, i.e.,
l ∈ {∅, s, i}, then E ol G is an H-Hilbert (Aol G,B ol G)-bimodule.
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Proof. AolG is an H-Hilbert C∗-algebra by Lemma 11.1. Let U⊗V
be the diagonal H×G-action on E⊗B (BoMod

l G). Note that Ug⊗Vg is
an adjoint-able operator as the G-action on BolG is trivial (see (11.1)).
Let ϕl = ϕA,G,l. We define a ∗-homomorphism Θl : AolG→ L(EolG)
by

(11.4) Θl(ϕl(agg)) = (ag ⊗ 1)(Ug ⊗ Vg),

where ag ∈ Ag, g ∈ G∗. It is induced by the G-covariant representation
a 7→ a ⊗ 1 and g 7→ Ug ⊗ Vg (Lemma 6.4), because Ug ⊗ Vg is partial
isometry in the C∗-algebra L(E ol G) ⊆ B(H) (H a Hilbert space).
When l = i, then Θl is also well defined as g 7→ Ug⊗Vg factors through

G (see (11.3)). For the H-equivariance of Θ, we compute

�(11.5) Uh⊗VhΘ(ϕl(agg))U
∗
h⊗V ∗

h = Θ
(
ϕl
(
h(ag)g

))
UhU

∗
h⊗VhV ∗

h .

12. Hilbert bimodules over reduced crossed products. The
discussion in this section is only related to the reduced crossed product,
that is, when l = r. Recall that in this case we only allow B = C
with the trivial G-action. (Nevertheless we shall write B rather than
C in this section.) Consequently, the operator Ug (g ∈ G) on a B-
Hilbert module E is adjoint-able by (3.3). For the boundedness of the
action of A or G on E or G in Proposition 12.4 below, we will need
a standard intertwining trick for covariant representations tensored by
the left regular representation, see for instance [6, Appendix A, Lemma
A.18.(ii)].

Let E ⊗ ℓ2(G) be the skew tensor product of G-Hilbert modules. By
Lemma 7.7, there is an isomorphism

(12.1) E ⊗ ℓ2(G) ∼= (E ⊗B B)⊗ (C⊗C ℓ2(G)) ∼= E ⊗B

(
B ⊗ ℓ2(G)

)
.

Define a partial isometry W on E ⊗ ℓ2(G) by

W (xt ⊗ et) = Ut(xt)⊗ et

for all t ∈ G and xt ∈ E (Lemma 4.2). Let

(12.2) Γ : Aoalg G −→ L(E ⊗ ℓ2(G))

be induced by the covariant representation

(12.3) Γ(a) = (a⊗ 1), Γ(g) = Ug ⊗ λg
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for all a ∈ A, g ∈ G. Recall that we write

AoΓ G = Γ(Aoalg G).

Lemma 12.1. WW ∗ commutes with the G-action U ⊗ V , with A⊗ 1
and with AoΓ G.

Proof. One checks that the projection WW ∗ commutes with the
adjoint-able partial isometry Ug ⊗ λg (and so with U∗

g ⊗ λ∗g) and a⊗ 1
for all g ∈ G and a ∈ A. (One uses Uρg(t)U

∗
ρg(t)

Ug = Ugtt∗g∗g =

Ugt(g∗gt)∗ = Ugtt∗ by transferred left cancelation and Lemma 7.2.) �

Definition 12.2. G is called non-degenerate if for all Hilbert (A,B)-
bimodules and all x ∈ AoΓ G, xWW ∗ = 0 implies x = 0.

If G is a groupoid, then WW ∗ is an identity for A oΓ G and so G
is non-degenerate. Indeed, every y ∈ Γ(A o G) can be written as a
product of elements of the form x = (ag ⊗ 1)(Ug ⊗ λg) ∈ A oΓ G for
g ∈ G′. Let η := ξt ⊗ et ∈ E ⊗ ℓ2(G). Then

xWW ∗η = agUgUtU
∗
t ξt ⊗ λget = agUgξt ⊗ λget = xη

by Lemma 4.6.

Our motivating examples for reduced crossed products were semi-
multiplicative sets like directed graphs. A prototype-example is G =
N0. By showing in the next lemma that N0 is non-degenerate, we
would like to demonstrate that non-degenerateness may not be a too
restrictive condition.

Lemma 12.3. N0 is non-degenerate.

Proof. Let S denote the N0-action on a Hilbert module E with
transferred left cancelation. We claim that every word Sg for g ∈ N∗

0

allows a representation as Sg = SnS
∗
k = Sn

1 (S
k
1 )

∗ for n, k ∈ N0.
Indeed, S0 is a unit for every word, as in particular S0 is self-adjoint by
Lemma 4.4. Also, S0 = S∗

1S1S0 = S∗
1S1 by transferred left cancelation.

The claim then follows by induction on the length of a word.

Let X ⊆ Aoalg G ⊆ F(G,A) denote the set of elements of the form
a =

∑
n,k∈N0

an,knk
∗ for an,k ∈ A (recall identity (5.5) which holds in
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F(G,A)). By the above claim, Γ(X) = Γ(Aoalg G). Write p =WW ∗.
To check Definition 12.2, assume that T ∈ A oΓ G satisfies Tp = 0.
Then there is a sequence T i =

∑
n,k∈N0

ain,knk
∗ in X such that Γ(T i)

converges in norm to T .

In E ⊗ ℓ2(N0) and by (12.3) we have

Γ(T i)(x0 ⊗ e0) =
∑

n,k∈N0

ain,kSnk∗(x0)⊗ λnk∗(e0)

=
∑
n∈N0

ain,0Snx0 ⊗ en

= Γ(T i)p(x0 ⊗ e0) −→ Tp(x0 ⊗ e0) = 0(12.4)

when i→ ∞, since Tp = 0, for all x0 ∈ E . Similarly, we have

Γ(T i)(x1 ⊗ e1) =
∑
n∈N0

ain,0Snx1 ⊗ en+1(12.5)

+
∑
n∈N0

ain,1Sn(S
∗
1x1)⊗ en,

Γ(T i)p(x1 ⊗ e1) = (1⊗ λ)
∑
n∈N0

ain,0Sn(S1S
∗
1x1)⊗ en(12.6)

+
∑
n∈N0

ain,1Sn(S
∗
1x1)⊗ en −→ 0.(12.7)

The convergence is here because of Tp = 0. Entering convergence
(12.4) in convergence (12.6)–(12.7) shows that (12.5) converges to zero
(using convergence (12.4) again). One can proceed in this way further
by considering Γ(Ti)(x2 ⊗ e2) and showing that it converges to zero,
and so on. In this way, we get T (x) = limi→∞ Γ(Ti)(x) = 0 for all
x ∈ E ⊙ ℓ2(N0). Hence T = 0. �

We now come to the main result of this section.

Proposition 12.4. EorG is an H-Hilbert (AorG,BorG)-bimodule.

Proof. We want to define the action Θr of A or G on E or G as in
(11.4). Thus, we aim to define Θr on ϕr(AoalgG) by Θrϕr = φ, where
φ : Aoalg G→ L(E or G) is determined by

φ(agg) = (ag ⊗ 1)(Ug ⊗ Vg).
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We have a commutative diagram:

A oalg G

φ //

Γ

''OO
OOO

OOO
OOO

L
(
E ⊗B (B or G))

µ //

f

��

L
(
E ⊗B (B or G) ⊗BorG (B ⊗ ℓ2(G))

)
µ1

��
L
(
E ⊗ ℓ2(G)

)
L
(
E ⊗B (B ⊗ ℓ2(G))

)
µ2

oo

Here, B or G acts on B ⊗ ℓ2(G) by ζ of Lemma 7.8, µ is the injective
map of Lemma 7.6, µ1 the isomorphism induced by the isomorphism
of Lemma 7.5 and µ2 the isomorphism induced by the isomorphism
(12.1). It is important here that G acts trivially on B. Hence, in the
right bottom corner of the above diagram, B acts on B⊗ ℓ2(G) by left
multiplication (so acts only on B). Let f := µ2µ1µ, which is injective.
A tedious computation (similar to that of Lemma 7.8) yields

f
(
φ(agg)

)
(xt ⊗ et) = agUgxt ⊗ λget = Γ(agg)

for g ∈ G∗, t ∈ G, xt ∈ E and ag ∈ Ag. Hence, fφ = Γ on Aoalg G.

In order that Θr is evidently a well-defined continuous map we need
to show that

∥Θr(ϕr(x))∥ = ∥φ(x)∥ = ∥f(φ(x))∥ = ∥Γ(x)∥ ≤ ∥ϕr(x)∥AorG

for all x ∈ A oalg G. Only the last inequality needs a discussion; the
other identities are clear.

Since G is non-degenerate (Definition 12.2), the homomorphism

ν : AoΓ G −→ (AoΓ G)WW ∗

given by ν(x) = xWW ∗ (see Lemma 12.1) is an isometry. Thus,
∥WW ∗Γ(x)∥ = ∥Γ(x)∥ for all x ∈ Aoalg G.

By Lemma 7.2 and the fact that U has transferred left cancelation,
we thus have

Γ(agg)WW ∗(ξt ⊗ et) = agUgUtU
∗
t ξt ⊗ λg(et)

= agUρg(t)U
∗
t ξt ⊗ eρg(t)

= Uρg(t)U
∗
ρg(t)

agUρg(t)U
∗
t ξt ⊗ eρg(t)

= Uρg(t)

(
(ρg(t))

∗(ag)
)
U∗
t ξt ⊗ eρg(t)

=
(
Wϕr(agg)W

∗)(ξt ⊗ et)
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for t ∈ G, g ∈ G∗, ag ∈ Ag and ξt ∈ E , and when ρg(t) is defined.
(Note that E is actually a Hilbert space.) This thus shows

∥Γ(x)∥ = ∥Γ(x)WW ∗∥ = ∥Wϕr(x)W
∗∥ ≤ ∥ϕr(x)∥. �

13. The descent homomorphism. Let B1 and B2 be H × G-
Hilbert modules. Let (E1, T1) ∈ EG(A,B1) and (E2, T2) ∈ EG(B1, B2).
Write E12 = E1 ⊗B1 E2.

Lemma 13.1. There is an H-Hilbert module isomorphism

E12 ol G ∼= (E1 ol G)⊗B1olG (E2 ol G).

Proof. In the category of H-Hilbert modules B2olG and B2oMod
l G

are identic, as they differ only in their G-action (see Lemma 11.1). The
map φ : B1 → B1 ol G given by φ(b) = b1G is an H-equivariant
homomorphism of H-Hilbert C∗-algebras (Definition 3.2). By [5,
Lemma 14], there is an isomorphism of H-Hilbert modules

E1 ⊗B1 (B1 ol G)⊗B1olG

(
E2 ⊗B2 (B2 ol G)

)
∼= E1 ⊗B1 E2 ⊗B2 (B2 ol G). �

Lemma 13.2. If (E12, T12) is a Kasparov product, then R = [T1⊗1, T12]
belongs to QA(E12), further R ≥ 0 modulo IA(E12), and the elements

g(R)− g(1)R = UgRU
∗
g − UgU

∗
gR,

g(1)R−Rg(1) = UgU
∗
gR−RUgU

∗
g

are in IA(E12) for all g ∈ G′.

Proof. The first two assertions follows from the Remark below Def-
inition 2.10 in [9], applied to the trivial group G = {e}. Let a ∈ A,
a′ = g∗(a) and T ′

1 = T1 ⊗ 1. For simplicity, we only compute the case
when ∂a = 0. Modulo K(E12), we have

ag(T12T
′
1) = ag(g∗(1)T12T

′
1) = g(a′g∗(1)T12T

′
1)

≡ g(a′T12g
∗(1)T ′

1) = ag(T12)g(T
′
1)

≡ aT12g(1)g(T
′
1) ≡ T12ag(T

′
1)

= T12(k ⊗ g(1)) + T12T
′
1ag(1),
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where k = ag(T1)− T1g(1)a ∈ K(E1). Similarly, we compute

ag(T ′
1T12) = (k ⊗ g(1))T12 + T ′

1T12ag(1).

Hence,

ag([T ′
1, T12])− [T ′

1, T12]g(1)a ≡ [k ⊗ g(1), T12] ≡ 0

by [5, Lemma 10.(1)]. Also, one has [a, [T ′
1, T ]] ≡ 0 by this lemma. A

similar computation yields the last claim. �

The following lemma is a standard result for crossed products.

Lemma 13.3. If D is a C∗-algebra with trivial G-action, then (A⊗max

D) o G ∼= (A o G) ⊗max D (also for the strong crossed product) and
(A⊗min D)or G ∼= (Aor G)⊗min D canonically.

Theorem 13.4. Let A and B be H × G-Hilbert C∗-algebras and
l ∈ {∅, s, r, i}. Assume that G is unital. For all G ×H-actions which
appear on Hilbert modules and C∗-algebras we require that the induced
H∗-actions and G∗-actions commute. If l = r, then we assume that G
is non-degenerate and associative and has left cancelation, all G-Hilbert
modules and G-Hilbert C∗-algebras have transferred left cancelation,
and B = C with the trivial G-action. Then there exists a descent
homomorphism

jGl : KKH×G(A,B) −→ KKH(Aol G,B ol G)

given by
jGl (E , T ) = (E ol G,T ⊗ 1)

for all (E , T ) ∈ EH×G(A,B). Moreover, the following two points hold
true:

(a) If x1 ∈ KKH×G(A,B1), x2 ∈ KKH×G(B1, B2) and the inter-
section product x1 ⊗B1 x2 exists, then

jGl (x1 ⊗B1 x2) = jGl (x1)⊗B1olG j
G
l (x2).

(b) If A = B is σ-unital, then jGl (1A) = 1AolG.

Proof. In our proof we essentially follow Kasparov [9]. We define
compact operators θξ,η ∈ K(F) by θξ,η(x) = ξ⟨η, x⟩, where ξ, η, x ∈ F
and F is any Hilbert module. Write Z for the diagonal G-Hilbert action
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U⊗V on E⊗B (BoMod
l G). Let ϕl = ϕB,G,l. Let (ai) be an approximate

unit in B. Let E ∈ E and F ∈ B ol G. Let x, y ∈ G∗. Then one has
(in E ⊗B (B oMod

l G))

θUxy∗ (ξ)⊗ϕl(xy∗(ai)x), η⊗ϕl(yy∗(ai)y)(E ⊗ F )

= Uxy∗(ξ)⊗ ϕl
(
xy∗(ai)x

) ⟨
η ⊗ ϕl

(
yy∗(ai)y

)
, E ⊗ F

⟩
= Uxy∗(ξ)⊗ ϕl

(
xy∗(ai)x

)
ϕl
(
yy∗(ai)y

)∗
ϕl
(
⟨η,E⟩

)
F

= Uxy∗(ξ)⊗ ϕl
(
xy∗(ai)x y

∗yy∗(a∗i )y
∗ ⟨η,E⟩

)
F

= Uxy∗(ξ)⊗ ϕl
(
xy∗(ai)xy

∗(a∗i )xy
∗(⟨η,E⟩)

)
ϕl(xy

∗)F

= Uxy∗
(
ξ ai a

∗
i ⟨η,E⟩

)
⊗ ϕl(xy

∗)F

= Uxy∗ ⊗ Vxy∗
(
θξaia∗

i ,η
⊗ 1

(
E ⊗ F

))
.

Omitting here E ⊗ F and then taking the limit i→ ∞ yields

Zxy∗
(
K(E)⊗ 1

)
⊆ K

(
E ⊗B (B oMod

l G)
)
.

For x ∈ G′, we have Zx = ZxZ
∗
xZx, and since Zx(K) ⊆ K, we obtain

(13.1) Zx

(
K(E)⊗ 1

)
⊆ K

(
E ⊗B (B oMod

l G)
)
.

Let Θ be the action of Aol G on E ol G, see (11.4). By (13.1), it is
straightforward to compute that

[Θ
(
ϕl(agg)

)
, T ⊗ 1] ∈ K(E ol G)

for all g ∈ G′, where ϕl denotes ϕA,G,l (use aUg = UgU
∗
g aUg = Ugg(a)).

This result extends by induction to all g in G∗ by using products: write
Θ
(
ϕl(agh)

)
as

Θ
(
ϕl(agh)

)
= Θ

(
ϕl(a

1/2g)
)
Θ
(
ϕl(g

∗(a1/2)h)
)

for g ∈ G∗, h ∈ G′ and positive a ∈ Agh by (5.5) and Lemma 5.8 (iii).
By similar computations, one easily checks all other requirements
showing that (E ol G,T ⊗ 1) is a cycle.

The map jG is well defined, as a homotopy (F , S) ∈ EH×G
(
A,B[0, 1]

)
gives a homotopy jG(F , S) ∈ EG

(
Aol G,B[0, 1]ol G

)
, as

B[0, 1]ol G ∼=
(
B ol G

)
⊗ C[0, 1],

F ⊗B[0,1]

(
B[0, 1]ol G

)
⊗B[0,1]olG

(
B ol G

) ∼= Ft ⊗B

(
B ol G

)
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for 0 ≤ t ≤ 1, where the first isomorphism is by Lemma 13.3 and the
second isomorphism follows from Lemma 7.7.

To prove (a), let x1 = (E1, T1), x2 = (E2, T2), E12 = E1 ⊗B1 E2,
and let (E12, T12) be a Kasparov product of x1 and x2. We have to
check that jG(E12, T12) = (E12 ol G,T12 ⊗ 1) is a Kasparov product of
jG(x1) = (E1 ol G,T1 ⊗ 1) and jG(x2) = (E2 ol G,T2 ⊗ 1). For the
definition of a Kasparov product (E12, T12) of (E1, T1) and (E2, T2) we
shall use [5, Definition 19] (cf., [18]). It states that E12 = E1 ⊗B1 E2,
T1⊗1 is a T2-connection on E12, and a[T1⊗1, T12]a

∗ ≥ 0 in the quotient
L(E12)/K(E12) for all a ∈ A. For the definition of a T2-connection on
E12 see [18], [9, Definition 2.6], or [5, Definition 18].

We use the isomorphism given in Lemma 13.1. For theH-equivariant
∗-homomorphism

(13.2) f : B2 −→ B2 ol G, f(b) = b1G,

jG(E12, T12) = f∗((E12, T12)) is a cycle in EH(A ol G,B ol G) by [5,
Definition 24].

The G-action on E12 will be denoted by U . The inclusion

K(E2, E1⊗B1E2)⊗1B2olG ⊆ K
(
E2⊗B2 (B2olG), E1⊗B1E2⊗B2 (B2olG)

)
,

where B2 acts by f , is similarly proved as [5, Lemma 15].

We use it to check

θη(T
t
2 ⊗ 1)− (−1)∂η·∂T2(T t

12 ⊗ 1)θη ∈ K(E2 ol G, E12 ol G)

for η ∈ E1, t ∈ {1, ∗} and

θη(ξ ⊗ z) = η ⊗ ξ ⊗ z

for ξ ∈ E2, z ∈ B2 ol G. This shows that T12 ⊗ 1 is a T2 ⊗ 1-connection
on E12 ol G.

By [5, Lemma 15] and the homomorphism f , we have

K(E12)⊗ 1 ⊆ K(E12 ol G).(13.3)

By Lemma 13.2, we have R + k ≥ 0 for R = [T1 ⊗ 1, T12] and some
k ∈ IA(E12). Let a ∈ A (actually π(A) ⊗ 1!), g ∈ G′, and note that
aUg = UgU

∗
g aUg = Ugg

∗(a) for a ∈ A and g ∈ G′. Using inclusion
(13.3), Lemma 13.2 and the fact that Ug ⊗ Vg is in L(E12 ol G), we
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have the next computation in E12 ol G = E12 ⊗B2 (B oMod
l G) modulo

K(E12 ol G) for g ∈ G′.

a(Ug ⊗ Vg)(R⊗ 1) = Ugg
∗(a)U∗

gUgR⊗ Vg

≡ aUgRU
∗
gUg ⊗ Vg

≡ aRUg ⊗ Vg = a(R⊗ 1)(Ug ⊗ Vg).

By induction on the length of a word in G∗, we see that this identity
holds true also for all g ∈ G∗.

Let a =
∑

g agg ∈ Cc(G,A). Let ϕl = ϕA,G,l. By the last com-

putation, we have the following computation in the quotient L(E12 ol

G)/K(E12 ol G), where R := R+ k ≥ 0.

(Θ⊗ 1)(ϕl(a)) (R⊗ 1) (Θ⊗ 1)(ϕl(a))
∗

=

[
Θ⊗ 1

(
ϕl

( ∑
g∈G∗

agg

))]

(R⊗ 1)

[
Θ⊗ 1

(
ϕl

( ∑
h∈G∗

ahh

))]∗
=

∑
g,h∈G∗

agUgRU
∗
ha

∗
h ⊗ VgV

∗
h

=
∑

g,h∈G∗

Ugg
∗(ag)RU

∗
ha

∗
h ⊗ VgV

∗
h

=
∑

g,h∈G∗

agR
1/2UgU

∗
hR

1/2a∗h ⊗ VgV
∗
h ≥ 0.

Note that
R⊗ 1 = [T1 ⊗ 1⊗ 1, T12 ⊗ 1].

This shows that (E12 ol G,T12 ⊗ 1) is a Kasparov product. We have
thus checked point (a).

Point (b) follows from jGl (A, 0) = (A ⊗A (A ol G), 0) = (A ol G, 0)
by using a map as in (13.2). �
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