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NONLINEAR TENSOR DISTRIBUTIONS
ON RIEMANNIAN MANIFOLDS

EDUARD NIGSCH

ABSTRACT. We construct an algebra of nonlinear gener-
alized tensor fields on manifolds in the sense of Colombeau,
i.e., containing distributional tensor fields as a linear subspace
and smooth tensor fields as a faithful subalgebra. The use of a
background connection on the manifold allows for a simplified
construction based on the existing scalar theory of full diffeo-
morphism invariant Colombeau algebras on manifolds, still
having a canonical embedding of tensor distributions. In the
particular case of the Levi-Civita connection on Riemannian
manifolds, one obtains that this embedding commutes with
pullback along homotheties and Lie derivatives along Killing
vector fields only.

1. Introduction. While the theory of distributions developed
by Sobolev and Schwartz as a generalization of classical analysis is
a powerful tool for many applications, in particular in the field of
linear partial differential equations, it is inherently linear and thus not
well-suited for nonlinear operations. In particular, one cannot define
a reasonable intrinsic multiplication of distributions [21]. Even more,
if one aims at embedding the space D′(Ω) of distributions on some
open set Ω ⊆ Rn into a differential algebra one is limited by the
Schwartz impossibility result [24] which in effect states that there can
be no associative commutative algebra A(Ω) satisfying the following
conditions:

(i) There is a linear embedding D′(Ω) → A(Ω) which maps the
constant function 1 to the identity in A(Ω).

(ii) A(Ω) is a differential algebra with linear derivative operators
satisfying the Leibniz rule.
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(iii) The derivations on A(Ω) extend the partial derivatives of D′(Ω).

(iv) The product in A(Ω) restricted to Ck-functions for some k <∞
coincides with the usual pointwise product.

However, it was found that such a construction is indeed possible if one
requires (iv) for smooth functions only.

In the 1980’s, Colombeau developed a theory of generalized functions
[3, 6, 7, 10, 21] displaying maximal consistency with both the
distributional and the smooth theory under the restrictions dictated
by the Schwartz impossibility result. A Colombeau algebra thus has
come to mean a differential algebra as above containing the space of
distributions as a linear subspace and the space of smooth functions as
a faithful subalgebra.

The basic idea behind Colombeau algebras is to represent distribu-
tions as families of smooth functions obtained through some regular-
ization procedure. The space of these families is then subjected to
a quotient construction which ensures that the pointwise product of
smooth functions is preserved. In practice, one distinguishes two vari-
ants of Colombeau algebras, namely, the full and the special variant.
Full algebras possess a canonical embedding of distributions which al-
lows for a more universal approach to physical models. Special algebras
use a fixed mollifier for the embedding and thus are more restrictive
but have a considerably simpler structure.

In the context of the special algebra on manifolds [3, 23] the de-
velopment of generalized counterparts of elements of classical semi-
Riemannian geometry was comparatively easy, leading to concepts like
generalized sections of vector bundles (thus generalized tensor fields),
point values, Lie and covariant derivatives, generalized vector bundle
homomorphisms, etc. [17 19]. However, the embedding into the spe-
cial algebra is not only non-canonical, it is essentially non-geometric
[10, Section 3.2.2]. Therefore, the construction of a full variant was
desired.

After several attempts and preliminary work by various authors [7,
14, 26] the full diffeomorphism invariant algebra Gd(Ω) of generalized
functions on open subsets Ω ⊆ Rn was presented in [9], which in turn

led to the introduction of the full algebra Ĝ(M) of generalized func-
tions on a manifold M in intrinsic terms in [12]. One key element
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in this construction is smoothing kernels, which allow for coordinate-
independent regularization of scalar distributions.

The latest cornerstone in the development of geometric Colombeau
algebras outlined here was the construction of a full Colombeau-type
algebra of generalized tensor fields on manifolds as in [11]. Although
the resulting space can be seen as a scalar extension of T r

s (M), i.e.,

a space of the form Ĝ(M) ⊗C∞(M) T r
s (M), one cannot simply use a

coordinatewise embedding ofD′r
s (M) ∼= D′(M)⊗C∞(M)T r

s (M): for this

to be well-defined one would require the embedding ι : D′(M) → Ĝ(M)
to be C∞(M)-linear, which cannot be the case; we refer to [11, Section
4] for an in-depth discussion of the obstructions to such tensorial

extensions of generalized function algebras like Ĝ(M).

The underlying deeper reason for this is that regularization of dis-
tributional tensor fields in a coordinate-invariant way requires some
additional structure on the manifold in order to relate to each other
the values of a tensor field at different points, namely a connection.
Formally, one uses for this the derived concept of transport operators
(see Section 4).

In the scalar case the choice between a fixed mollifier (i.e., smoothing
kernel) for the embedding on the one side or the parametrization of
generalized functions by all possible mollifiers on the other side results
in the split between special and full variants of the theory, trading in
simplicity for generality. In the tensor case the same situation is found:
one can either fix a particular regularization procedure (i.e., transport
operator) for the embedding or parametrize generalized tensor fields
by all possible transport operators. Hence, on a basic level, one can
distinguish the following four characteristic types of generalized tensor
algebras in the sense of Colombeau:

1.1. Full-full. Both mollifiers and transport operators appear as
parameters of generalized objects. This results in a construction of
considerable technical complexity but having very desirable properties:
the embedding of tensor distributions commutes with any Lie deriva-
tives and pullbacks along arbitrary diffeomorphmism [11, Propositions
6.6 and 6.8]. Furthermore, this algebra can be defined on any manifold
without further structure.
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1.2. Full-special. If a covariant derivative is given, in particular
the Levi-Civita derivative on a Riemannian manifold, one can use the
associated transport operator (Definition 9) for the embedding, which
leaves only the mollifiers as parameters for generalized tensor fields.
This type is examined in this article, building on the scalar case of
[12]. Basically, one sees that in the category of Riemannian manifolds
one has nice properties: the embedding commutes with pullback along
isometries (even homotheties) and with Lie derivatives along Killing
vector fields.

1.3. Special-full. This would amount to using a fixed regularization
procedure for scalars but a parametrization by all possible transport
operators for the tensorial part and has not been investigated so far.

1.4. Special-special. The most simple case; this has been ad-
dressed in the literature before as cited above. Here, one uses a non
canonical coordinate-dependent embedding which has obvious draw-
backs but gives a simple workable theory.

It should be noted that intermediate variants are conceivable; by
treating the special-full case, this work finishes one major case and is
intended to stand as a precursor to an all-encompassing study of the
above types in one framework.

To recapitulate, in this work we will assume that a fixed covariant
derivative is given on the manifold. This allows us to carry out a
construction of a space of generalized tensor fields similar to [11],
but instead of introducing an additional parameter for the generalized
objects, we use the covariant derivative for embedding distributional
tensor fields.

In Section 2 we will introduce some notation and basic definitions.
In Section 3 the space of generalized tensor fields on a manifold is
constructed. In Section 4 we describe transport operators; these are
the formal objects used for smoothing tensor distributions. In Section 5
we treat pullback and Lie derivatives of generalized tensor fields. In
Section 6 we give the definition of the embedding of distributional
tensor fields, using the background connection in an essential way. In
Section 7 we finally study commutation relations of pullback along
diffeomorphisms and Lie derivatives with the embedding of tensor
distributions. The main result is that these commute for homotheties
and Killing vector fields, respectively, but not in general.
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2. Preliminaries. We write A ⊂⊂ B when A is a compact subset
of the interior of B. The identity mapping is denoted by id. We will
frequently use I = (0, 1] as an index set. The topological boundary of a
set U is denoted by ∂U . For notions of algebra, we refer to [5]. For any
open set V ⊆ Rn, Ωn

c (V ) denotes the space of compactly supported
n-forms on V .

The space of smooth mappings between open subsets U and V
of finite-dimensional vector spaces (or manifolds) is C∞(U, V ); we
write C∞(U) if V = R or C. We use the usual Landau notation
f(ε) = O(g(ε)) (ε → 0) if there exist positive constants C and ε0
such that |f(ε)| ≤ Cg(ε) for all ε ≤ ε0. D(Ω) denotes the space of
test functions on an open subset Ω ⊆ Rn and D′(Ω) its dual. We use
multi-index notation for partial derivatives.

For differentiation theory on infinite-dimensional locally convex spaces
we refer to [16] for a complete exposition of calculus on convenient vec-
tor spaces as we use it and to [11] for background information more
specific to our setting. The differential d:C∞(U, F ) → C∞(U,L(E,F ))
is that of [16, Theorem 3.18]. Several smoothness arguments are iden-
tical to the corresponding ones in [11] and will only be referred to at
the appropriate places.

Our basic references for differential geometry are [1, 15]. A manifold
will always mean a second countable Hausdorff smooth manifold of
finite dimension that is (except in Section 4) oriented. Its dimension
will be denoted by n throughout if not otherwise stated. Charts are
written as a pair (U,ϕ) with U an open subset of the manifold and ϕ
a homeomorphism from U to an open subset of Rn. A vector bundle
E with base M is denoted by E → M , its fiber over the point p ∈ M
by Ep. The space of sections of E is denoted by Γ(E), the space of
sections with compact support by Γc(E) and the space of sections with
compact support in a set L ⊆ M by Γc,L(E). TM and T∗M are the
tangent and cotangent bundle ofM , respectively, ΛnT∗M is the vector
bundle of exterior n-forms on M . A particular vector bundle we will
use is pr∗2T

r
s(M), the pullback of the tensor bundle Tr

s(M) along the
projection ofM ×M onto the second factor. X(M) and X∗(M) are the
spaces of vector and covector fields, respectively, Ωn

c (M) denotes the
space of compactly supported n-forms and T r

s (M) the space of (r, s)-
tensor fields on M . We set T 0

0 (M) := C∞(M). D(M) is the space of
test functions on M , i.e., the space of smooth functions with compact
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support. For a diffeomorphism μ : M → N between manifolds M and
N , μ∗ denotes pullback of whatever object in question along μ, and we
set μ∗ := (μ−1)∗. Tμ is the tangent map of μ, (Tμ)rs the corresponding
map on the tensor bundle Tr

s(M). The result of the action of a tensor
field t ∈ T r

s (M) on a dual tensor field u ∈ T s
r (M) is written as t ·u. LX

denotes the Lie derivative with respect to a vector field X , the flow of
X is written as (t, p) 
→ FlXt p with t ∈ R and p ∈M . Given a covariant
derivative onM a subset ofM is called (geodesically) convex if any two
of its points can be connected by a unique geodesic contained in this
set.

If M is endowed with a Riemannian metric g we speak of the
Riemannian manifold (M, g). The norm induced by g is denoted
by ‖·‖g, a metric ball of radius r > 0 about p ∈ M with respect
to g by Bg

r (p). Following the notation of [15, Definition 1.5.1] a
covariant derivation is a mapping X(M) × X(M) → X(M) locally
determined by a family of Christoffel symbols, which are smooth
mappings Γ : ϕ(U) → L2(Rn×Rn,Rn) for each chart (U,ϕ) satisfying
the appropriate transformation rule, where L2 denotes the space of
bilinear mappings.

Our basic reference for distributions on manifolds is [10, subsection
3.1]. We define the spaces of scalar distributions and (r, s)-tensor
distributions on an oriented manifold M as

D′(M) := Ωn
c (M)′ and D′r

s (M) := Γc(T
s
rM ⊗ ΛnT∗M)′,

respectively, where the spaces of compactly supported sections carry
the usual (LF)-topology and D′(M) and D′r

s (M) are endowed with the
strong dual topology. We will furthermore make use of the isomorphic
representations [10, Corollary 3.1.15]

D′r
s (M) ∼= LC∞(M)(T s

r (M),D′(M))
∼= D′(M)⊗C∞(M) T s

r (M).

The action of a tensor distribution T ∈ D′r
s (M) will accordingly be

denoted by either of 〈T, ξ〉 = 〈T, s⊗ω〉 = 〈T (s), ω〉 with ξ corresponding
to s⊗ω via the isomorphism Γc(T

s
r(M)⊗ΛnT∗M) ∼= T s

r (M)⊗C∞(M)

Ωn
c (M). By E ′(Ω) ⊆ D′(Ω), we denote the space of distributions with

compact support in Ω ⊆ Rn (this is only used in Section 7).



NONLINEAR TENSOR DISTRIBUTIONS 655

Given a chart (U,ϕ) on M , to each distribution T ∈ D′(U) there cor-
responds a unique distribution in D′(ϕ(U)) also denoted by T such that
for all ω ∈ Ωn

c (U) with support in U and local representation ω(x) =
f(x) dx1 ∧ · · · ∧ dxn with f ∈ D(ϕ(U)) the relation 〈T, ω〉 = 〈T, f〉
holds. More explicitly, we may also write 〈T (p), ω(p)〉 = 〈T (x), f(x)〉.
For T ∈ D′r

s (U) and s ⊗ ω ∈ T s
r (U) ⊗C∞(U) Ωn

c (U) we write

〈T, s⊗ ω〉 =
∑

〈T λ, sλ · ω〉 where the T λ ∈ D′(M) are the coordinates
of T and the sλ ∈ C∞(U) are the coordinates of s on U for λ in some
index set.

Concerning the theory of local diffeomorphism-invariant Colombeau
algebras and the corresponding global construction on manifolds, we
refer to [9, 12].

3. Generalized tensor fields. In this section we will detail the
construction of an algebra of generalized tensor fields. As in other
variants of Colombeau algebras the basic idea is that generalized objects
are families of their smooth counterparts indexed by some parameters
which are required for regularizing the corresponding distributional
objects. Our case is a direct extension of the full algebra Ĝ(M) of [12]
and contains it as the special case r = s = 0. Scalar distributions are
regularized by means of compactly supported n-forms having integral 1,
the space of which is denoted by Â0(M); as seen in Section 6, a
connection on the tangent bundle provides the further means to also
regularize tensor distributions; hence, the indexing set for the basic
space remains the same. Instead of C∞(Â0(M), C∞(M)) from the

scalar theory we simply take C∞(Â0(M), T r
s (M)). Replacing the

absolute value of scalars by the norm of tensors with respect to any
Riemannian metric (all of which are equivalent on compact sets) we
will be able to use the same notion of moderateness and negligibility
as in the scalar case (cf., [12, Definitions 3.10 and 3.11]).

The definitions of this section are given for arbitrary oriented man-
ifolds; for embedding distributions we will later on assume that a co-
variant derivative is given.

3.1. Smoothing kernels. Smoothing kernels lie at the basis of
the construction of full diffeomorphism invariant Colombeau algebras.
We recall from [12, Section 3] that for Φ ∈ C∞(I × M,Ωn

c (M))
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the Lie derivatives in both slots are given by LXΦ := LX ◦ Φ and
(L′

XΦ)(ε, p) := (d/dt)|t=0Φ(ε,Fl
X
t p) for ε ∈ I and p ∈M .

Definition 1. Let M be an oriented manifold. A map Φ ∈
C∞(I × M, Â0(M)) is called a smoothing kernel if it satisfies the
following conditions for any Riemannian metric g on M :

(i) for all K ⊂⊂ M there exists ε0, C > 0 for all p ∈ K for all
ε ≤ ε0: suppΦ(ε, p) ⊆ Bg

εC(p),

(ii) for all K ⊂⊂ M for all l,m ∈ N0 for all θ1, . . . , θm, ζ1, . . . , ζl ∈
X(M), we have ‖(Lθ1 · · ·Lθm(L′

ζ1
+ Lζ1) · · · (L′

ζl
+ Lζl)Φ)(ε, p)(q)‖g =

O(ε−n−m) uniformly for p ∈ K, q ∈M .

The space of all smoothing kernels is denoted by Ã0(M). For each

k ∈ N, we denote by Ãk(M) the set of all Φ ∈ Ã0(M) such that for all
f ∈ C∞(M) the value of |f(p)−

∫
M
f · Φ(ε, p)| is O(εk+1) uniformly

on compact sets.

By the following lemma, whose straightforward proof is omitted, see
[12, Lemma 3.4], this definition is independent of the metric used.

Lemma 2. Let (M, g) and (N, h) be Riemannian manifolds. Given
a diffeomorphism μ:M → N and a compact set K ⊂⊂ M there exists
a constant C > 0 such that

(i) ‖(μ∗t)(p)‖g ≤ C‖t(μ(p))‖h for all t ∈ T r
s (N) for all p ∈ K.

(ii) ‖(μ∗ω)(p)‖g ≤ C‖ω(μ(p))‖h for all ω ∈ Ωn
c (N) for all p ∈ K.

(iii) Bg
r (p) ⊆ μ−1(Bh

rC(μ(p))) = Bμ∗h
rC (p) for all small r > 0 and for

all p ∈ K.

One furthermore easily verifies the following.

Proposition 3. Let M,N be oriented manifolds and μ:M → N an
orientation preserving diffeomorphism. Then for Φ ∈ Ãk(N) the map
μ∗Φ: I ×M → Ωn

c (M) defined by (μ∗Φ)(ε, p) := μ∗(Φ(ε, μ(p))) is in

Ãk(M).
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We call μ∗Φ the pullback of Φ. Due to the canonical isomorphism
Ωn

c (ϕ(U)) ∼= C∞(ϕ(U)) a smoothing kernel Φ ∈ Ã0(U) on a chart
(U,ϕ) has local expression φ ∈ C∞(I × ϕ(U), C∞(ϕ(U))) (for details
see [20]).

3.2. Basic spaces. We now introduce the basic space and appro-
priate moderateness and negligibility tests. Let r, s ∈ N0 throughout.

Definition 4. The basic space of generalized (r, s)-tensor fields on an

oriented manifold M is defined as Êr
s (M) := C∞(Â0(M), T r

s (M)). An

element R ∈ Êr
s (M) is calledmoderate if it satisfies, for any Riemannian

metric g on M ,

∀K ⊂⊂M ∀l ∈ N0 ∃N ∈ N ∀X1, . . . , Xl ∈ X(M)

∀Φ ∈ Ã0(M) : sup
p∈K

‖LX1 · · ·LXl
R(Φ(ε, p))(p)‖g = O(ε−N )

and negligible if additionally it satisfies

∀K ⊂⊂M ∀l,m ∈ N0 ∃k ∈ N ∀X1, . . . , Xl ∈ X(M)

∀Φ ∈ Ãk(M) : sup
p∈K

‖LX1 · · ·LXl
R(Φ(ε, p))(p)‖g = O(εm).

where, for r = s = 0, the norm is replaced by the absolute value. The
spaces of moderate and negligible generalized (r, s)-tensor fields on M

are denoted by (Êr
s )m(M) and N̂ r

s (M), respectively.

By Lemma 2 this definition is independent of the metric used. The
following lemma will alleviate the need to use further constructions
with cut-off functions in several proofs.

Lemma 5. In Definition 4, one can replace “for all Φ ∈ Ã0(M)” and

“for all Φ ∈ Ãk(M)” by “there exists U ⊇ K open for all Φ ∈ Ã0(U)”

and “there exists U ⊇ K open for all Φ ∈ Ãk(U),” respectively.
Furthermore, one can instead of “there exists U ⊇ K open” demand
“for all U ⊇ K open.” Finally, in testing, one can assume that K is
contained in a chart domain.
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Proof. The only nontrivial part is to show that “there exists U ⊇ K
open” implies “for all U ⊇ K open.” Let U, V ⊆ M both be
open subsets of M , and let R ∈ Êr

s (M) satisfy the moderateness or

negligibility test for all Φ ∈ Ãk(U). Let K ⊂⊂ U ∩ V . Given

Ψ ∈ Ãk(V ), let 0 < δ < dist (K, ∂(U ∩ V )). Choose θ ∈ D(M)
with supp θ ⊆ Bδ(K) and θ = 1 on Bδ/2(K). Let ε0 > 0 such that
suppΨ(ε, p) ⊆ Bδ(K) for all ε < ε0 and p ∈ supp θ. With λ ∈ C∞(R)

such that λ = 1 on (−∞, ε0/2] and λ = 1 on [ε0,∞), define Φ ∈ Ãk(U)
by

Φ(ε, p) := (1 − λ(ε)θ(p))Ψ0(ε, p) + λ(ε)θ(p)Ψ(ε, p),

where Φ0 ∈ Ãk(U) is arbitrary. Then, for ε ≤ ε0/2 and p ∈ Bδ/2(K),
R(Ψ(ε, p)) equals R(Φ(ε, p)), which satisfies the respective test. The
last claim is clear.

Êr
s (M), (Êr

s )m(M) and N̂ r
s (M) are C∞(M)-modules, and N̂ r

s (M) is

a submodule of (Êr
s )m(M) so we can form the quotient module.

Definition 6. The space of generalized (r, s)-tensor fields is defined

as the quotient C∞(M)-module Ĝr
s (M) := (Êr

s )m(M)/N̂ r
s (M). Smooth

tensor fields are embedded into Êr
s (M) via the C∞(M)-linear mapping

σr
s : T r

s (M) → Êr
s (M), σr

s(t)(ω) := t.

Evidently σr
s has moderate values. The corresponding mapping into

the quotient Ĝr
s (M) is easily seen to be injective.

For r = s = 0 the above definitions reproduce, up to an application
of the exponential law C∞(Â0(M), C∞(M)) ∼= C∞(Â0(M) × M),

exactly the global algebra Ĝ(M) and the related spaces Ê(M), Êm(M)

and N̂ (M) of [12] as well as the embedding σ : C∞(M) → Ĝ(M).
By standard algebraic techniques one obtains the following useful
isomorphisms.

Proposition 7. For (r, s) �= 0, one has the canonical isomorphisms

Êr
s (M) ∼= LC∞(M)(T s

r (M), Ê(M)) ∼= Ê(M)⊗C∞(M) T r
s (M)
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explicitly given by R(u)(ω) := R(ω) · u, (F ⊗ t)(ω) := F (ω) · t and

(F ⊗ t)(u) := F · σ(t · u) for R ∈ Êr
s (M), F ∈ Ê(M), t ∈ T s

r (M) and
u ∈ T s

r (M).

These restrict to isomorphisms on the appropriate subspaces of mod-
erate and negligible functions and thus induce similar isomorphisms for
Ĝr
s (M). In the sequel, we will use the notation R(u) as above or equally
R · u without further notice.

Proposition 7 also says that Êr
s (M) is obtained from T r

s (M) by
extending its ring of scalars. As a consequence, the tensor product
of R = F ⊗ t and R′ = F ′ ⊗ t′ is given by R⊗R′ = (F · F ′)⊗ (t⊗ t′).
One defines the tensor algebra in the usual way.

4. Transport operators. As will be seen in Section 6, in order
to regularize distributional tensor fields in a coordinate-invariant way
one needs a connection on the tangent bundle for relating fibers over
different points of the manifold. In order to formalize the regularization
process so-called transport operators, which provide linear mappings
between any two fibers of the tensor bundle, were introduced in [26]
and further developed in [11]. We will detail their construction and
their relation to covariant derivatives here. Given a covariant derivative
on a manifold there is a natural way to obtain a transport operator:
locally (in convex neighborhoods) any two points are connected by a
unique geodesic along which we can parallel transport tensor fields.

We introduce the following definitions. Let M,N be arbitrary mani-
folds (not necessarily orientable). For any two vector bundles E → M
and F → N we define the vector bundle

TO (E,F ) :=
⋃

(p,q)∈M×N

{(p, q)} × L(Ep, Fq).

The fiber over (p, q) consists of the space of linear maps from Ep to Fq.
A section of TO (E,F ), called transport operator, is locally given by a
smoothly parametrized matrix.

We will now define a transport operator coming from any covariant
derivative ∇ on M . Let (U,ϕ) be a chart on M , and set U ′ := ϕ(U).
Let Γ denote the Christoffel symbol of ∇ on U . From standard results
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of ODE theory (cf., [2]) the geodesic equation
(1)
u̇ = v, v̇ = −Γ(u)(v, v), u(0) = x ∈ U ′, v(0) = w ∈ Rn,

has a unique solution (u, v)(t, x, w) defined for t in an open interval
J(x,w) ⊆ R containing 0. (u, v) is defined and smooth on the open set

{ (t, x, w) | x ∈ U ′, w ∈ Rn, t ∈ J(x,w)} ⊆ R× U ′ ×Rn.

By differentiating system (1), one obtains the following lemma. Note
that differentiation with respect to time t will be denoted by an
overhead dot as in σ̇(t, x, y), while a prime denotes the differential with
respect to all space variables, as in σ′S(t, x, y) · (ξ1, ξ2) or X ′(x) · ξ1.

Lemma 8. For x ∈ U ′ and t ∈ J(x, 0) the mappings u, v and their
derivatives in directions (ξ1, η1), (ξ2, η2) ∈ Rn ×Rn are given by

u(t, x, 0) = x, v(t, x, 0) = 0,

u′(t, x, 0) · (ξ1, η1) = ξ1 + tη1, v′(t, x, 0) · (ξ1, η1) = η1,

u′′(t, x, 0) · ((ξ1, η1), (ξ2, η2)) = −t2/2 · (Γ(x)(η1, η2) + Γ(x)(η2, η1)),

v′′(t, x, 0) · ((ξ1, η1), (ξ2, η2)) = −t · (Γ(x)(η1, η2) + Γ(x)(η2, η1)).

Now fix p ∈ U , and set x0 := ϕ(p). By continuity of (u, v), we can
find for all r1 > 0 with r1 < dist (x0, ∂U

′) and r2 > 0 real numbers
r3, r4, r5 > 0 with r4 < dist (x0, ∂U

′) such that

(u, v)(Br3(0)×Br4(x0)×Br5(0)) ⊆ Br1(x0)×Br2(0)

⊆ U ′ ×Rn.

Noting for all a �= 0 and t ∈ a−1J(x,w) the identities

u(at, x, w) = u(t, x, aw) and av(at, x, w) = v(t, x, aw),

we see that (u, v)(B2(0)×Br4(x0)×Br3r5/2(0)) ⊆ Br1(x0)×B2r2/r3(0)
which means that these geodesics are defined for |t| < 2. Define now
the mapping

F : Br4(x0)×Br3r5/2(0) −→ Br4(x0)×Br1(x0)

(x,w) 
−→ (x, u(1, x, w)).
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As seen from Lemma 8, F has a regular derivative at (x0, 0). Thus,
there is an open neighborhood W ⊆ Br4(x0) × Br3r5/2(0) of (x0, 0)
which is mapped diffeomorphically onto an open neighborhood W1 ⊆
Br4(x0) × Br1(x0) of (x0, x0). Choose an open neighborhood W2 of
x0 with W2 ×W2 ⊆ W1, and set U1 := F−1(W2 ×W2). We have a
diffeomorphism F |U1 : U1 →W2×W2, which means that any two points
x, y ∈ W2 can be connected by a geodesic σ(t, x, y) := u(t, F−1(x, y))
which is unique in Br1(x0). The set W2 can be chosen such that this
geodesic is contained and unique in W2 for all x, y ∈W2, i.e., ϕ

−1(W2)
is convex; we will assume this to be the case without proof (which can
be found for example in [13, Chapter I Theorem 6.2]). Furthermore, we
remark that W2 can be chosen arbitrarily small. We denote the initial
direction of the geodesic from x to y by w(x, y) := (pr2◦(F |U1)

−1)(x, y)
where pr2 is the projection on the second factor.

Parallel transport of a vector ζ ∈ Rn along σ now is defined as the
solution of the ODE system

(2)
ρ(0, x, y, ζ) = ζ,

ρ̇(t, x, y, ζ) = −Γ(σ(t, x, y))(σ̇(t, x, y), ρ(t, x, y, ζ))

which exists for all t for which σ is defined; this is linear in ζ. We
finally define the prospective transport operator locally as

(3) a ∈ C∞(W2 ×W2,L(R
n,Rn)), a(x, y) · ζ := ρ(1, x, y, ζ),

which determines an element of Γ(W2,TO (TM,TM)) on the manifold.
Set Wp := ϕ−1(W2); performing the above construction for all p ∈M ,
one obtains a transport operator on the set W ′ :=

⋃
p∈M (Wp ×

Wp) which is an open neighborhood of the diagonal in M × M .
This transport operator is denoted by AW ′ ∈ Γ(W ′,TO(TM,TM))
and locally given by a. Now the diagonal in M × M has a closed
neighborhood V contained inW ′, and there is a smooth bump function
χ ∈ C∞(M × M) with χ = 1 on V and suppχ ⊆ W ′ which
permits us to extend AW ′ to a globally defined transport operator
A ∈ Γ(M,TO(TM,TM)) given by A(p, q) := χ(p, q)AW ′ (p, q).

At this point a remark concerning the uniqueness and well-definedness
of the construction is in order. Suppose on two charts we constructed
local transport operators a, ã whose domains of definition on the man-
ifold overlap. Then on the intersection of this domain they have to
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agree because of the local uniqueness of geodesics and because parallel
transport is independent of the chart; thus, AW ′ is well-defined.

Although A depends on V and χ it is unique near the diagonal in
the sense that each point p ∈ M has an open neighborhood U (which
can be chosen arbitrarily small) such that any two points in U can
be joined by a unique geodesic in this set and A is given by parallel
transport along these geodesics on U . We call A associated to ∇ as in
the following definition.

Definition 9. A transport operator A ∈ Γ(M,TO (TM,TM)) is
said to be associated to a covariant derivative ∇ on M if A is given
locally by parallel transport along geodesics with respect to ∇, as in
(3).

Acting on vectors, A is denoted by A1
0. A acts on covectors by

the adjoint of its inverse: given a covector ωp ∈ T∗
p(M) and a vector

vq ∈ TqM , we set ((A0
1(p, q)ωp)·vq := ωq ·(A1

0(p, q)vp). A extends in the
usual way to a transport operator on the tensor bundle, i.e., for all (r, s),
we have Ar

s ∈ Γ(TO(Tr
s(M),Tr

s(M))) given by Ar
s = (A1

0)
⊗r ⊗ (A0

1)
⊗s.

By setting A0
0 = id we can say that A commutes with tensor products,

i.e., Ar+p
s+q(s⊗t) = Ar

s(s)⊗Ap
q(t) for any tensors s ∈ T r

s (M), t ∈ T p
q (M)

with r, s, p, q ∈ N0. If clear from the context we omit the rank and
simply write A instead of Ar

s.

We will now calculate the derivatives of A explicitly in a chart as
we will need them later. From (3), we see that derivatives of a are
obtained as derivatives of ρ. For the direction of differentiation we use
arbitrary vectors e = (ξ1, η1) and f = (ξ2, η2) ∈ Rn ×Rn. Then σ and
its derivatives are given by

(4)

σ(t, x, y) = u(t, x, w(x, y))

σ′(t, x, y) · e = u′(t, x, w(x, y)) · (ξ1, w′(x, y) · e)
σ′′(t, x, y) · (e, f) = u′(t, x, w(x, y))

· (0, w′′(x, y) · (e, f)) + u′′(t, x, w(x, y))
· ((ξ1, w′(x, y) · e), (ξ2, w′(x, y) · f)),

and similarly for σ̇ with v in place of u. The mapping w is given by
the second component of the inverse of G := F |U1 which is defined on
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W2 ×W2. The derivative of G−1 at (x, x) is given by

(G−1)′(x, x) = (G′(x, 0))−1 =

(
id 0
−id id

)
,

and thus w′(x, x)(ξ, η) = η − ξ. Applying the chain rule to (G−1 ◦
G)′′(x,w) = 0 results, by Lemma 8, in

w′′(x, x) · ((ξ1, η1), (ξ2, η2))
= 1/2 · (Γ(x)(η1 − ξ1, η2 − ξ2) + Γ(x)(η2 − ξ2, η1 − ξ1)).

Inserting this into (4), we obtain the derivatives of σ:

σ(t, x, x) = x, σ′(t, x, x)(ξ, η) = ξ + t(η − ξ)

σ′′(t, x, x)((ξ1, η1), (ξ2, η2)) = (t− t2)/2 · (Γ(x)(η1 − ξ1, η2 − ξ2)

+Γ(x)(η2 − ξ2, η1 − ξ1)).

Now the derivatives of ρ can be obtained by differentiating (2), giving
first (omitting the arguments of ρ)

ρ′(0) · e = 0

ρ̇′ · e = −(Γ′(σ) · σ′ · e)(σ̇, ρ)− Γ(σ)(σ̇′ · e, ρ)− Γ(σ)(σ̇, ρ′ · e)

and then

ρ′′(0) · (e, f) = 0,

ρ̇′′ · (e, f) = −(Γ′′(σ)(σ′ · e, σ′ · f))(σ̇, ρ)− (Γ′(σ) · σ′′ · (e, f))(σ̇, ρ)
− (Γ′(σ) · σ′ · e)(σ̇′ · f, ρ)− (Γ′(σ) · σ′ · e)(σ̇, ρ′ · f)
− (Γ′(σ) · σ′ · f)(σ̇′ · e, ρ)− Γ(σ)(σ̇′′ · (e, f), ρ)
− Γ(σ)(σ̇′ · e, ρ′ · f)− (Γ′(σ) · σ′ · f)(σ̇, ρ′ · e)
− Γ(σ)(σ̇′ · f, ρ′ · e)− Γ(σ)(σ̇, ρ′′ · (e, f)).

Solving these equations, we finally obtain

ρ(t, x, x, ζ) = ζ,

ρ′(t, x, x, ζ)(ξ, η) = −t · Γ(x)(η − ξ, ζ)
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ρ′′(t, x, x, ζ) · ((ξ1, η1), (ξ2, η2))
= −(Γ′(x) · (tξ1 + t2(η1 − ξ1)/2))(η2 − ξ2, ζ)

− (Γ′(x) · (tξ2 + t2(η2 − ξ2)/2))(η1 − ξ1, ζ)

− (t− t2)/2 · Γ(x)(Γ(x)(η1 − ξ1, η2 − ξ2), ζ)

− (t− t2)/2 · Γ(x)(Γ(x)(η2 − ξ2, η1 − ξ1), ζ)

+ t2/2 · Γ(x)(η1 − ξ1,Γ(x)(η2 − ξ2, ζ))

+ t2/2 · Γ(x)(η2 − ξ2,Γ(x)(η1 − ξ1, ζ)).

This holds for all |t| < 2 and x, y in the open neighborhoodW2 of x0.
As x0 was arbitrary in U ′, we have shown the following.

Lemma 10. Let (U,ϕ) be an arbitrary chart on M . Then the
local representation a ∈ C∞(ϕ(U) × ϕ(U),L(Rn,Rn)) of a transport
operator A associated to ∇ satisfies the following identities for all
x ∈ ϕ(U) and ξ, η, ζ ∈ Rn:

(i) a(x, x) = id,

(ii) a′(x, x)(ξ, η) · ζ = −Γ(x)(η − ξ, ζ),

(iii) 2a′′(x, x)((ξ1, η1), (ξ2, η2)) · ζ = −(Γ′(x) · (η1 + ξ1))(η2 − ξ2, ζ)−
(Γ′(x) · (η2+ ξ2))(η1− ξ1, ζ)+Γ(x)(η1− ξ1,Γ(x)(η2− ξ2, ζ))+Γ(x)(η2−
ξ2,Γ(x)(η1 − ξ1, ζ)).

Finally, we recall that the pullback (μ, ν)∗A ∈ Γ(TO(TN,TN)) of
a transport operator A ∈ Γ(TO (TM,TM)) along a pair of diffeomor-
phisms μ, ν : N →M is given by

((μ, ν)∗A)(p, q) := (Tqν)
−1 ·A(μ(p), ν(q)) · Tpμ,

and its Lie derivative LX×YA ∈ Γ(TO (TM,TM)) along a pair of
vector fields X,Y ∈ X(M) by

(5) (LX×YA)(p, q) :=
d

dτ

∣∣∣∣
τ=0

((FlXτ ,Fl
Y
τ )

∗A)(p, q).

We abbreviate LX×XA by LXA. By Lemma 10 (i) LXA cannot be
associated to any covariant derivative on M . See [11, Appendix A]
for further details about transport operators. We finally note that,
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trivially, the restriction of a transport operator associated to a covariant
derivative is associated to the restriction of the covariant derivate.

5. Pullback and Lie derivatives. In this section we will define
pullback along a diffeomorphism and Lie derivatives of generalized
tensor fields. Let M,N be oriented manifolds.

Definition 11. Let μ:M → N be an orientation preserving diffeo-
morphism and R ∈ Êr

s (N). Then the map μ∗R ∈ Êr
s (M) defined by

(μ∗R)(ω) := μ∗(R(μ∗ω)) for ω ∈ Â0(M) is called the pullback of R
along μ.

Remark 12. Essentially, this is the only sensible definition in our
context; in fact, assuming that μ∗: Êr

s (N) → Êr
s (M) commutes with

contractions one can by Proposition 7 contract with dual smooth
tensor fields which reduces everything to the choice of the pullback
of scalar fields. The latter we naturally (or for consistency with

the scalar case of [12]) assume to be given by μ∗: Ê0
0 (N) → Ê0

0 (M),
(μ∗F )(ω) := F (μ∗ω) ◦ μ.

Lemma 13. The map μ∗: Êr
s (N) → Êr

s (M) of Definition 11 preserves

moderateness and negligibility and thus defines a map μ∗ : Ĝr
s (N) →

Ĝr
s (M).

Proof. Given R ∈ Êr
s (N) and Φ ∈ Ãk(M), by Definition 11

moderateness and negligibility of μ∗R are established by evaluating
Lie derivatives of the tensor field t ∈ T r

s (M) defined by

t(p) := (μ∗R)(Φ(ε, p))(p) = μ∗(R(μ∗(Φ(ε, p))))(p)

on a compact set K ⊂⊂M . Given an arbitrary vector field X ∈ X(M),
LXt is given by μ∗(Lμ∗Xμ∗t), where

(μ∗t)(p) = R(μ∗(Φ(ε, μ−1(p))))(p) = R((μ∗Φ)(ε, p))(p).

By Proposition 3, μ∗Φ is in Ãk(N); thus, the growth conditions on LXt
(and similarly for any number of Lie derivatives) are obtained directly
from those of R with help of Lemma 2 (ii).
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Given R ∈ Êr
s (M), we can define its Lie derivative LXR ∈ Êr

s (M)
along a complete vector field X ∈ X(M) in a geometric manner via its

flow, namely as (LXR)(ω) :=
d
dt |t=0((Fl

X
t )∗R)(ω) for ω ∈ Â0(M). By

the chain rule, this is seen to be equal to −dR(ω)(LXω)+LX(R(ω)) (see
[11, Section 6] for the smoothness argument). Thus, the Lie derivative

is formally the same as for elements of Ĝ(M) [12, Definition 3.8]. For
non-complete vector fields we use this formula for defining the Lie
derivative.

Definition 14. For X ∈ X(M), we define the Lie derivative LXR of

R ∈ Êr
s (M) as (LXR)(ω) := −dR(ω)(LXω) + LX(R(ω)).

Lemma 15. The Lie derivative LX : Êr
s (M) → Êr

s (M) commutes
with the tensor product and with contractions.

Proof. Let R = F ⊗ t ∈ Êr
s (M) ∼= Ê(M)⊗ T r

s (M) and R′ = F ′ ⊗ t′.
A direct calculation shows that LXR = LXF ⊗ t + F ⊗ LXt, and
consequently, LX(R ⊗ R′) = LXR ⊗ R′ + R ⊗ LXR

′. Contracting
with a smooth dual tensor field v, the general case follows from

LX(R · v)(ω) = LX((R · v)(ω)) − d(R · v)(ω)(LXω)

= LX(R(ω) · v)− dR(ω)(LXω) · v
= LX(R(ω)) · v +R(ω) · LXv − dR(ω)(LXω) · v
= ((LXR) · v +R · LXv)(ω).

Corollary 16. LX : Êr
s (M) → Êr

s (M) preserves moderateness and
negligibility.

Proof. By Proposition 7, we know that R ∈ Êr
s (M) is moderate or

negligible if and only if R · t is so for all t ∈ T s
r (M). By Lemma 15,

(LXR)·t = LX(R·t)−R·LXt, so the claim follows because LX : Ê(M) →
Ê(M) preserves moderateness and negligibility [12, Theorem 4.6].

It follows that LX is also defined on Ĝr
s (M).
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6. Embedding of distributional tensor fields. Using a
transport operator, we can approximate a locally integrable (r, s)-
tensor field t at a point p ∈ M by t(p) ∼

∫
Ar

s(q, p)t(q)ω(q) dq, where

ω ∈ Â0(M) has support in a small ball around p. This approximation
is valid if A(q, q) is the identity for all q in a neighborhood of p ∈ M ,
see Proposition 22 below for a precise statement. In order to obtain a
distributional formula which we can use for the embedding we examine
the action of t on a dual tensor field u of rank (s, r):

t(p) · u(p) ∼
∫
(Ar

s(q, p)t(q) · u(p))ω(q) dq

=

∫
(t(q) ·As

r(p, q)u(p))ω(q) dq

= 〈t(q), As
r(p, q)u(p)⊗ ω(q)〉.

These considerations lead to the following definition of an embedding
of D′r

s (M) into Ĝr
s (M).

Definition 17. LetM be an oriented manifold with covariant deriva-
tive ∇ and A ∈ Γ(TO (TM,TM)) a transport operator associated to

∇. Then we define an embedding ιrs : D′r
s (M) → Êr

s (M) by setting

((ιrs)(ω) · v)(p) := 〈t, A(p, ·)v(p) ⊗ ω〉

where t ∈ D′r
s (M), ω ∈ Â0(M), v ∈ T s

r (M) and p ∈M .

If the rank is clear from the context we simply write ι instead of
ιrs; this way we may index the embedding by the covariant derivative
used, as in ι∇. It is easily seen that ι is a presheaf morphism, i.e., it
commutes with restriction (one can show that Ĝr

s (M) is a fine sheaf).
As seen from the next lemma in the case μ = id, two transport operators
associated to the same covariant derivative give the same embedding
into the quotient.

We recall that, given a diffeomorphism μ:M → N , one can de-
fine the pullback of a covariant derivative ∇ on N by (μ∗∇)XY :=
μ∗(∇μ∗Xμ∗Y ) for X,Y ∈ X(M), which gives a covariant derivative
μ∗∇ on M .
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Lemma 18. Let μ:M → N be an orientation preserving diffeomor-
phism, and suppose there are covariant derivatives ∇̃ on M and ∇ on
N . Let the embedding ι on M and N use any transport operator asso-
ciated to ∇̃ and ∇, respectively. Then ι∇̃ ◦ μ∗ − μ∗ ◦ ι∇ has values in

N̂ r
s (M) if and only if ∇̃ = μ∗∇.

Proof. We first assume that ∇̃ = μ∗∇. Fix K ⊂⊂ M for testing.
We may assume that K is contained in an open convex set U0. Let
L be a compact neighborhood of K in U0. Given Φ ∈ Ã0(M), there
exists ε0 > 0 such that Φ(ε, p) has support in U0 for all ε < ε0 and

p ∈ L. Now let Ã and A denote any transport operators associated to
∇̃ and ∇, respectively. We then claim that, for all p ∈ L, t ∈ D′r

s (N),

v ∈ T s
r (M) and ω ∈ Â0(M) with support in U0, the expression

(ι∇̃(μ∗t)(ω) · v)(p) = 〈μ∗t, Ã(p, ·)v(p) ⊗ ω〉
= 〈t, μ∗(Ã(p, ·)v(p))⊗ μ∗ω〉

equals

(μ∗(ι∇t)(ω) · v)(p) = (μ∗((ιt)(μ∗ω)) · v)(p)
= μ∗((ιt)(μ∗ω) · μ∗v)(p)
= ((ιt)(μ∗ω) · μ∗v)(μ(p))
= 〈t, A(μ(p), ·)μ∗v(μ(p)) ⊗ μ∗ω〉.

These expressions are equal if

μ∗(Ã(p, ·)v(p))(μ(q)) = A(μ(p), μ(q))(μ∗v)(μ(p))

for q ∈ U0. But this is clear in the case ∇̃ = μ∗∇ because then μ
preserves geodesics, convex sets and parallel displacement.

For the converse, by writing ι∇̃ ◦ μ∗ − μ∗ ◦ ι∇ = (ι∇̃ − ιμ∗∇) ◦ μ∗ +
ιμ∗∇ ◦μ∗−μ∗ ◦ ι∇ and because μ∗: Êr

s (N) → Êr
s (M) is bijective we only

have to show that ι∇̃ − ιμ∗∇ ⊆ N̂ r
s (M) implies ∇̃ = μ∗∇, which will

be accomplished by Theorem 25 below.

Because homotheties preserve Levi-Civita connections [22, Chapter
3, Lemma 64] we immediately obtain the following (cf., [11, Proposi-
tions 6.6 and 6.8]).
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Corollary 19. If μ is a homothety between Riemannian manifolds,
then ιrs ◦ μ∗ − μ∗ ◦ ιrs has negligible values, where the embeddings use
transport operators associated to the Levi-Civita derivatives. Conse-
quently, ιrs ◦LX −LX ◦ ιrs maps into N̂ r

s (M) for all Killing vector fields
X.

That the embedding commutes with Lie derivatives along Killing
vector fields follows from the fact that the flow FlXt of a Killing vector
field X is an isometry, hence (FlXt )∗ commutes with ιrs. For any tensor
distribution u ∈ D′r

s (M), we thus have in testing, as in the proof of
Lemma 18,(

((FlXt )∗(ιrsu))(ω) · v
)
(p) =

(
ιrs((Fl

X
t )∗u)(ω) · v

)
(p),

which gives the claim after taking the derivative with respect to t at
t = 0.

Remark 20. The (non-trivial) proof that ιrs(t) is smooth is to a
large extent identical to the corresponding result in [11, Section 7],
the necessary modifications being straightforward (we simply have one
slot less to deal with).

We will now show that the embedding ιrs has the properties required
for an embedding of distributions into Colombeau algebras, namely, it
has moderate values, for smooth tensor fields it reproduces σr

s and it is
injective.

Proposition 21. The embeddings have the following properties.

(i) ιrs(D′r
s (M)) ⊆ (Êr

s )mM .

(ii) (ιrs − σr
s )(T r

s (M)) ⊆ N̂ r
s (M).

(iii) For v ∈ D′r
s (M), ιrs(v) ∈ N̂ r

s (M) implies v = 0.

Proof. (i) For testing we fix K ⊂⊂ M and l ∈ N0. For any vector

fields X1, . . . , Xl ∈ X(M) and a smoothing kernel Φ ∈ Ã0(M) by
Proposition 7 we need to calculate LX1 · · ·LXl

(p 
→ 〈t, As
r(p, ·)u(p) ⊗

Φ(ε, p)〉) on K for arbitrary u ∈ T r
s (M). By the chain rule (for a

detailed argument on why t commutes with the Lie derivative see the
proof of [11, Proposition 6.8]) this is given by terms of the form

(6) 〈t, v(p, ·)⊗ L′
Y1

· · ·L′
Yk
Φ(ε, p)〉
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for some Yi ∈ X(M) (i = 1, . . . , k ∈ N) and v ∈ Γ(pr∗2(T
s
r(M))); the

latter consists of Lie derivatives of u transported by Lie derivatives
of A. By the definition of smoothing kernels, for ε small enough and
p in a relatively compact neighborhood of K, the support of Φ(ε, p)
for p ∈ K lies in a (bigger) relatively compact neighborhood L of
K. Because t is continuous and linear and T s

r (M) ⊗C∞(M) Ω
n
c (M)

carries the usual inductive limit topology (as in [11, Section 2]), the
modulus of (6) can be estimated by a finite sum of seminorms of
Γc,L(T

s
r(M) ⊗ ΛnT∗M) applied to the argument of t in (6). These

seminorms are given by s 
→ supx∈L ‖LZ1 · · ·LZps(x)‖ for some vec-
tor fields Zj ∈ X(M), j = 1, . . . , p ∈ N (the norm is with re-
spect to any Riemannian metric on M). It thus remains to estimate
‖LZ1 · · ·LZp(v(p, ·)⊗ L′

Y1
· · ·L′

Yk
Φ(ε, p)). This in turn reduces to an

estimate of L- and L′-derivatives of Φ, which immediately gives the
desired moderateness estimate by definition of the space of smoothing
kernels.

(ii) In order to show the claim we have to verify (using Proposition
7) that for arbitrary u ∈ T s

r (M), K ⊂⊂M and m ∈ N0 there is some

k ∈ N such that, for all Φ ∈ Ãk(M), we have the estimate

(7) sup
p∈K

∣∣∣∣
∫
M

(t · (As
r(p, ·)u(p)))(q)Φ(ε, p)(q) dq − (t · u)(p)

∣∣∣∣ = O(εm).

By Lemma 5 we may assume that K is contained in the domain
of a chart (U,ϕ) and Φ ∈ Ãk(U). Defining f ∈ C∞(U × U) by
f(p, q) := t(q) ·As

r(p, q)u(p), we can write (7) as

sup
p∈K

∣∣∣∣
∫
U

(
f(p, q)− f(p, p)

)
Φ(ε, p)(q) dq

∣∣∣∣.
Setting f̃ := f ◦ (ϕ−1 × ϕ−1) and x := ϕ(p), the integral is given by∫
ϕ(U)

(f̃(x, y) − f̃(x, x))φ̃(ε, x)(y) dy where φ̃ ∈ Ãk(ϕ(U)) is the local

expression of Φ. It is easily verified that this is O(εk+1) uniformly for
x ∈ ϕ(K), so for k + 1 ≥ m the required estimates are satisfied.

(iii) is shown in Corollary 23 below.

Although we will not treat association in full detail the following is
a first step in this direction (cf., [11, Section 9] for the type of results
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that can be obtained). Let

ρ : T r
s (M) −→ D′r

s (M), ρ(t)(u ⊗ ω) :=

∫
(t · u)ω

be the embedding of T r
s (M) into D′r

s (M). Given a tensor distribution

T ∈ D′r
s (M) and a smoothing kernel Φ ∈ Ã0(M) we set Tε := [p 
→

(ιrsT )(Φ(ε, p))(p)] ∈ T r
s (M). Tε can be seen as a regularization of T

which gets more accurate for smaller ε. More precisely, we will now
show that ρ(Tε) converges to T weakly in D′r

s (M) for ε→ 0.

Fix u ⊗ ω ∈ T s
r (M) ⊗C∞(M) Ω

n
c (M). We may assume that ω (and

thus u) has support in a fixed compact set K contained in a chart
(U,ϕ): using partitions of unity we can write u ⊗ ω =

∑
i
χiu ⊗ χiω

where the χi are smooth functions on M with suppχi ⊆ Ui. Then
〈ρ(Tε) − T, u ⊗ ω〉 =

∑
i〈ρ(Tε) − T, χiu ⊗ χiω〉 converges to 0 if the

result holds for the case where K is contained in a chart (U,ϕ).

We abbreviate ũj1···jsi1···ir (p, q) := (As
r(p, q)u(p))

j1···js
i1···ir and note that

uj1···jsi1···ir (p) = ũj1···jsi1···ir (p, p). Given any neighborhood L of K which is
relatively compact in U there is, as in the proof of Lemma 5, some
ε0 > 0 and a smoothing kernel Φ1 ∈ Ã0(U) such that for all p ∈ L and
ε < ε0 the support of Φ(ε, p) is contained in U and Φ(ε, p)|U = Φ1(ε, p).

Let Φ1 have local expression φ̃. Let ψ ∈ D(ϕ(U)) be determined by
ϕ∗ω = ψ dx1∧· · ·∧dxn. Then, for ε < ε0 (denoting the local expressions
of T i1···ir

j1···js and ũi1···isj1···jr by the same letters)

〈ρ(Tε), u ⊗ ω〉 =
∫
M

〈T (q), As
r(p, q)u(p)⊗ Φ(ε, p)(q)〉ω(p)

=

∫
M

〈T i1···ir
j1···js (q), (A

s
r(p, q)u(p))

j1···js
i1···ir

· Φ1(ε, p)(q)〉ω(p)

=

∫
ϕ(U)

〈T i1···ir
j1···js (y), ũ

j1···js
i1···ir (x, y)

· φ̃(ε, x)(y)〉ψ(x) dnx

=

∫
ϕ(U)

〈T i1···ir
j1···js (y), ũ

j1···js
i1···ir (x, y) · ψ(x) · φ̃(ε, x)(y)〉d

nx

= 〈T i1···ir
j1···js (y),

∫
ϕ(U)

ũj1···jsi1···ir (x, y) · ψ(x) · φ̃(ε, x)(y) d
nx〉
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and

〈T, u⊗ ω〉 = 〈T i1···ir
j1···js (p), u

j1···js
i1···ir (p) · ω(p)〉

= 〈T i1···ir
j1···js (y), u

j1···js
i1···ir (y) · ψ(y)〉.

Integration here commutes with the distributional action, as can
be seen from writing the above as the tensor product of the dis-
tribution T i1···ir

j1···js with the distribution 1. Now, for each choice of

j1, . . . , js, i1, . . . , ir we abbreviate f(x, y) := ũj1···jsi1···ir (x, y) · ψ(x) and

note that f(y, y) = uj1···jsi1···ir (y) · ψ(y). Because as a function in y,∫
ϕ(U) f(x, y)φ̃(ε, x)(y) dx−f(y, y) has support in a compact set in ϕ(U),

for each component of Tε−T by [25, Proposition 21.1] there existm > 0
and C > 0 such that

〈(Tε − T )i1···irj1···js , u
j1···js
i1···ir · ω〉

≤ sup
|α|≤m
y∈ϕ(U)

∥∥∥∥∂α
(∫

ϕ(U)

f(x, y)φ̃(ε, x)(y) dx− f(y, y)

)∥∥∥∥
which is O(ε) by [20, Corollary 5.3] or the proof of [11, Proposition
9.10]. Summarizing, we have shown:

Proposition 22. Given T ∈ D′r
s (M) and Φ ∈ Ã0(M) the regular

distribution given by p 
→ (ιrsT )(Φ(ε, p))(p) converges weakly to T in
D′r

s (M) for ε→ 0.

Corollary 23. For T ∈ D′r
s (M), ιrs(T ) ∈ N̂ r

s (M) implies T = 0.

Proof. For suitable k ∈ N, u ⊗ ω ∈ T s
r (M) ⊗C∞(M) Ω

n
c (M) and

Φ ∈ Ãk(M),

|〈T, u⊗ ω〉 = | lim
ε→0

〈(ιrsT )(Φ(ε, p))(p), (u⊗ ω)(p)〉|

=

∣∣∣∣ limε→0

∫
M

〈T (q), As
r(p, q)u(p)⊗ Φ(ε, p)(q)〉ω(p)

∣∣∣∣
≤ lim

ε→0
sup

p∈suppω
|〈T (q), As

r(p, q)u(p)⊗ Φ(ε, p)(q)〉| ·
∣∣∣∣
∫
M

ω(p)

∣∣∣∣
which is O(εm) because of negligibility of T .
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7. Commutation relations.

Proposition 24. The operations μ∗ and LX on Êr
s (M) extend the

usual pullback and Lie derivative of smooth tensor fields: μ∗ ◦ σr
s =

σr
s ◦ μ∗ and LX ◦ σr

s = σr
s ◦ LX .

Proof. For t ∈ T r
s (N) and ω ∈ Â0(M), we have

μ∗(σr
s (t))(ω) = μ∗(σr

s(t)(μ∗ω)) = μ∗t = σr
s(μ

∗t)(ω)

and for t ∈ T r
s (M), X ∈ X(M) and ω ∈ Â0(M),

LX(σr
s (t))(ω) = −d(σr

s(t))(ω)(LXω) + LX(σr
s (t)(ω)) = LXt

= σr
s(LXt)(ω).

In Corollary 19 we already saw that the embedding of distributional
tensor fields commutes with pullback along homotheties and conse-
quently with Lie derivatives along Killing vector fields.

Lemma 18 allows reformulating the question of whether pullback
along an arbitrary (orientation preserving) diffeomorphism μ:M → N
commutes with ιrs, for if one endows M with the pullback metric μ∗h,
this question reduces to checking whether the embeddings (ιg)rs and
(ιμ

∗h)rs arising from the Riemannian metrics g and μ∗h are equal. We
then have the following main result.

Theorem 25. Let ∇ and ∇̃ be covariant derivatives on M with
corresponding embeddings ι and ι̃, respectively. Then

(i) (ιrs − ι̃rs)(D′r
s (M)) ⊆ N̂ r

s (M) implies ∇ = ∇̃.

(ii) ι does not commute with arbitrary Lie derivatives.

The proof consists of several steps. First, the assumptions are
written as conditions having the same form, namely negligibility of
the generalized function (ω, p) 
→ 〈T, Z(p, ·) ⊗ ω〉 ∈ E(M) for all
T ∈ D′r

s (M) and some Z ∈ Γ(pr∗2(T
s
r(M))). Then, choosing T

appropriately, we obtain that derivatives of Z in the second slot vanish.
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Finally, the derivatives of Z are calculated explicitly. This involves
the derivatives of the transport operator, which are related to the
connection as seen in Lemma 10.

Beginning with the first step, we show that both ι−ι̃ and ι◦LX−LX◦ι
give rise to expressions of the same form. In the first case, the equality
ι = ι̃ in the quotient means that, for all T ∈ D′r

s (M), the generalized

function R := (ι− ι̃)T ∈ (Êr
s )m(M) given by

(8) (R(ω) · v)(p) = 〈T, (A(p, ·)− Ã(p, ·))v(p) ⊗ ω〉

for v ∈ T s
r (M) and ω ∈ Ωn

c (M) is negligible, where A and Ã are trans-

port operators associated to ∇ and ∇̃, respectively. Note that the dif-
ference (p, q) 
→ (A(p, q)− Ã(p, q))v(p) is an element of Γ(pr∗2(T

s
r(M)))

and vanishes on the diagonal in M ×M .

In the second case, from the proof of [11, Proposition 6.8] (in
particular, equations (6.13) and (6.14) therein) we immediately obtain
the identity

(9) ((ι ◦ LX − LX ◦ ι)(T )(ω) · v)(p) = 〈T, (LX×XA)(p, ·)v(p) ⊗ ω〉

where the term on the right hand side is exactly the additional term
of the Lie derivative of generalized tensor fields in [11] which makes
it commute with the embedding already there in the basic space.
As in our case, pullback of generalized tensor fields cannot act on
the transport operator and this term does not cancel. Note that
also (p, q) 
→ (LX×XA)(p, ·)v(p) is an element of Γ(pr∗2(T

s
r(M))) and

vanishes on the diagonal.

Thus, in both cases (i) and (ii) for each v ∈ T s
r (M), we have found

some Z ∈ Γ(pr∗2(T
s
r(M))) such that, for all T ∈ D′r

s (M), the generalized

function R · v ∈ Êm(M) defined by

ω 
−→ [p 
−→ 〈T, Z(p, ·)⊗ ω〉]

is negligible (i.e., an element of N̂ (M)). The next proposition and the
subsequent corollary allow us to get information about Z by the right
choices of the distribution, T .

The idea behind the following proof is the following: locally, negligi-
bility of (10) means that an expression like 〈T, f(x, ·)TxSεϕ〉 converges
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to 0. As a simple case, consider n = 1, x = 0 and f depending on the
second slot only with f(0) = 0. Then 〈T, f ·Sεϕ〉 → 0 on the one hand,
but, on the other hand, we can write this as (neglecting the remainder
of the Taylor expansion, which vanishes asymptotically):

〈T (y), (f(0) + f ′(0) · y + · · ·+ f (k)(0) · yk/k!)Sεϕ〉 −→ 0

As the support of Sεϕ gets arbitrarily small we can only hope to get
information about f at 0. It vanishes there, but we can determine its
derivatives by taking for T the principal value of 1/y: this gives the
terms

f(0) · 〈1/y, Sεϕ〉, f ′(0) · 〈1, Sεϕ〉, . . . f (k)(0)〈yk−1/k!, Sεϕ〉.

If ϕ now has vanishing moments of order k − 1 and is even, the only
remaining term is f ′(0) so we can conclude f ′(0) = 0.

In the general case, the proof is more involved. In what follows,
E ′(Ω) ⊆ D(Ω) is the space of compactly supported distributions on Ω
and E(Ω), EM (Ω) andN (Ω) are the basic space of Gd(Ω) in C-formalism
[9] and its subspaces of moderate and negligible elements, respectively.

Proposition 26. Let Ω ⊆ Rn be open and f ∈ C∞(Ω× Ω). Then

(i) For each T ∈ D′(Ω), the mapping in E(Ω) given by

(11) (ϕ, x) 
−→ 〈T, f(x, ·)ϕ(.− x)〉

is moderate, i.e., an element of EM (Ω).

(ii) If, for all compactly supported distributions T ∈ E ′(Ω), the
mapping (11) is in N (Ω), then all first order partial derivatives in the
second slot of f vanish on the diagonal, i.e., ∂i(y 
→ f(x, y))|x = 0 for
all x ∈ Ω for all i = 1, . . . , n.

Proof. (i) resembles the statement that the embedding of distribu-
tions into E(Ω) has moderate values; the proof is virtually the same
(see [8, Theorem 7.4 (i)]), inserting f(x, ·) at the appropriate places.
This results in an application of the chain rule and the appearance of
some extra constants (suprema of derivatives of f on compact sets),
but leaves moderateness intact.
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(ii) Let x be an arbitrary point of Ω ⊆ Rn. Choose some η > 0 with
η < dist (x, ∂Ω) and a smooth bump function χ ∈ D(R) with χ = 1 on
Bη/2(0) and suppχ ⊆ Bη(0).

Consider the distribution t 
→ sign t · |t|n−2. For n > 1, this is a
locally integrable function; for n = 1, this means the principal value of
1/t. This distribution thus is given for all n ∈ N by

(12)
〈sign t · |t|n−2, ω〉 = lim

δ→0

∫ ∞

δ

tn−2(ω(t)− ω(−t)) dt

for all ω ∈ D(R).

We introduce the distribution

P := δ ⊗ · · · ⊗ δ ⊗ χ(t)sign t · |t|n−2 ⊗ δ ⊗ · · · ⊗ δ ∈ D′(Rn)

or, more explicitly,

〈P, ω〉 = 〈sign t · |t|n−2, χ(t)ω(0, . . . , t, . . . , 0)〉 for all ω ∈ D(Rn)

where χ(t)sign t·|t|n−2 and t appear at the kth position for an arbitrary
k ∈ {1, . . . , n} which shall be fixed from now on.

u := TxP = P (. − x) then is a compactly supported distribution on
Ω: because suppP ⊆ {0} × · · · × Bη(0) × · · · × {0} ⊆ Bη(0), we have
suppu ⊆ Bη(x) ⊆ Ω.

With K = {x} and arbitrary m ∈ N, by negligibility of (11), there is
some q ∈ N (which can be chosen arbitrarily high) such that for any
fixed ϕ ∈ Aq(R

n), we have

(13) 〈u, f(x, ·)TxSεϕ〉 = O(εm) (ε → 0).

Choose ϕ1 ∈ D([0,∞)) which is constant in a neighborhood of 0 and
satisfies ∫ ∞

0

sj/nϕ1(s) ds =

{
n/ωn j = 0

0 j = 1, 2, 3, . . . , q,

where ωn is the area of the (n − 1)-dimensional sphere in Rn. Such
a function exists by a straightforward adaption of the proof of [10,
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Proposition 1.4.30], and we set ϕ := ϕ1 ◦ ‖ ‖n ∈ D(Rn). Then ϕ is in
Aq(R

n), as a simple calculation shows.

Choosing r > 0 such that suppϕ ⊆ Br(0), let ε < η/(2r) from now on,
which implies suppTxSεϕ ⊆ Bη/2(x) ⊆ Ω and supp [t 
→ ϕ1(t

n/εn)] ⊆
Bη/2(0). By equation (12), the expression 〈u, f(x, ·)TxSε〉 on the left-
hand side of (13) is given by

(14) 〈P, f(x, x + .)Sεϕ〉

= lim
δ→0

∫ η/2

δ

χ(t)tn−2(f̃(t)− f̃(−t))ε−nϕ1((t/ε)
n) dt

which we can write as

lim
δ→0

∫ η/2

δ

q∑
l=0

tn−2 f̃
(l)(0)

l!
(tl − (−t)l)ε−nϕ1(t

n/εn) dt

+ lim
δ→0

∫ η/2

δ

tn−2

∫ 1

0

(1− v)q

q!

(
f̃ (q+1)(vt)− (−1)q+1f̃ (q+1)(−vt)

)
dv

· tq+1ε−nϕ1(t
n/εn) dt.

The terms for even l and odd l ≤ 3 vanish and the term for l = 1 gives
exactly 2f̃ ′(0)/ωn. Finally, after substituting t = εs1/n, the remainder
term is given by

εq

n

∫ (η/(2ε))n

0

∫ 1

0

(1− v)q

q!

(
f̃ (q+1)(εvs1/n)

− (−1)q+1f̃ (q+1)(−εvs1/n)
)
· sq/nϕ1(s) dv ds,

and the integral is bounded by a finite constant independently of
ε. Concluding, from the Taylor expansion on the one hand and the
assumption on the other hand, we have

〈u, f(x, ·)TxSεϕ〉 = 2f̃ ′(0)/ωn +O(εq)

and

〈u, f(x, ·)TxSεϕ〉 = O(εm).
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Together, this gives f̃ ′(0) = O(εmin(q,m)) where m and q can be chosen

arbitrarily high. Thus, f̃ ′(0) = D2f(x, x) · ek = 0, which concludes the
proof because x and k were arbitrary.

Now the corresponding result on a manifold follows.

Corollary 27. Let Z ∈ Γ(pr∗2(T
s
r(M))) satisfy Z(p, p) = 0 for all

p ∈M . Then

(i) For each T ∈ D′r
s (M), the mapping from Â0(M) ×M into R

defined by

(15) (ω, p) 
−→ 〈T, Z(p, ·)⊗ ω〉
is moderate, i.e., an element of Êm(M).

(ii) If for all T ∈ D′r
s (M) the mapping (15) is negligible, then

LY (Z(p, ·))(p) vanishes for all Y ∈ X(M) and p ∈M .

Proof. As in Proposition 26, (i) follows in the same way as moder-
ateness of embedded distributions (see [12, Section 5]).

(ii) Let (U,ψ) be a chart on M and {bλ}λ a basis of T r
s (U) with

dual basis {bλ}λ of T s
r (U). Denote the coordinates of Z on U by

Zλ ∈ C∞(U × U), i.e., Z(p, q) = Zλ(p, q)b
λ(q) for all p, q ∈ U .

We will show that, for any compactly supported distribution tU ∈
E ′(ψ(U)), the mapping defined by (ϕ, x) 
→ 〈tU , Zλ(ψ

−1(x), ·)ϕ(.− x)〉
is an element of NC(ψ(U)), i.e., negligible in the local diffeomorphism
invariant scalar algebra in the C-setting. For this purpose, define
S ∈ D′r

s (U) ∼= T r
s (U) ⊗C∞(M) D′(U) by S := bλ ⊗ t (where t ∈ D′(U)

corresponds to tU as in Section 2), which has compact support and
thus a trivial extension to a distributional tensor field T ∈ D′r

s (M)

with T |U = S. By assumption, the map Â0(M) ×M → R given by
(ω, p) 
→ 〈T, Z(p, ·) ⊗ ω〉 is negligible; thus, also its restriction to U

which is the map Â0(U) × U → R given by (ω, p) 
→ 〈T, Z(p, ·) ⊗
ω〉 = 〈T |U , Z(p, ·)|U ⊗ ω〉 = 〈t, Zλ(p, ·)ω〉. This implies that the
corresponding map A0(ψ(U))× ψ(U) → R given by

(ϕ, x) 
−→ 〈t, Zλ(ψ
−1(x), ·)ψ∗(ϕ(· − x) dy1 ∧ · · · ∧ dyn)〉

= 〈t, ψ∗(Zλ(ψ
−1(x), ψ−1(·))ϕ(· − x) dy1 ∧ · · · ∧ dyn)〉

= 〈tU , (Zλ ◦ (ψ−1 × ψ−1))(x, ·)ϕ(· − x)〉
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is in NC(ψ(U)) for any choice of tU ∈ E ′(ψ(U)). Proposition 26 now
implies that ∂i(y 
→ Zλ(ψ

−1(x), ψ−1(y)))|x = 0 for all x in ψ(U) and
all i. Noting that Z(p, p) = 0, by assumption, the local formula for
LY (Z(p, ·))(p) evaluates to 0.

Returning to the proof of Theorem 25 and assuming (8) and (9)
to be negligible for all choices of T , Corollary 27 implies in the case
(r, s) = (0, 1) for all X , Y , Z ∈ X(M) and p ∈M the identities

(i) LY (q 
−→ (A(p, q)−B(p, q))Z(p) = 0

and

(ii) LY (q 
−→ (LX×XA)(p, q)Z(p))(p) = 0.

Given a vector field X ∈ X(M), by its local flow on U we mean the
map α : D (X) → ϕ(U) determined by the ODE

(16) α(0, x) = x, α̇(t, x) = X(α(t, x))

where X ∈ C∞(ϕ(U),Rn) is the local representation of X on U and
D (X), the maximal domain of definition of α, is an open subset
of R × ϕ(U). For p ∈ U , its flow along X is given by FlXt p =
Tϕ−1(α(t, ϕ(p))) for all t with (t, ϕ(p)) ∈ D (X). Furthermore, α is
smooth. By differentiating (16), one sees that, for all (t, x) ∈ D (X),
the local flow α satisfies

(17)
α(0, x) = x, α′(0, x) = id

α′′(0, x) = 0, α̇′(0, x) = X ′(x).

For (i), LX(q 
→ A(p, q)Z(p))(p) is given by the derivative at t = 0
of TFlX−tA(p,Fl

X
t p)Z(p). This means we have to differentiate the local

expression Dα(−t, α(t, x))a(x, α(t, x))Z(x), which results in

− α̇′(−t, α(t, x))a(x, α(t, x))Z(x)
+ α′′(−t, α(t, x))X(α(t, x))a(x, α(t, x))Z(x)

+ α′(−t, α(t, x))a′(x, α(t, x))(0, X(α(t, x)))Z(x)
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which by (17) and Lemma 10 at t = 0 evaluates to −X ′(x)Z(x) −
Γ(x)(X(x), Z(x)) = −∇ZX(x). As we can choose X , Z and x freely,
this immediately implies that both covariant derivatives are equal,
which proves Theorem 25 (i).

Now for (ii). By equation (5) LY (q 
→ LX×XA(p, q)Z(p))(p) is given
by

(18)
d

ds

∣∣∣∣
s=0

TFlY−s

d

dt

∣∣∣∣
t=0

TFlXt qFl
X
−t

·A(FlXt p,FlXt FlYs p) · TpFl
X
t · V (p).

We will first calculate the inner expression, which (setting q := FlYs p)
is given by

(19) TFlXt qFl
X
−t ·A(FlXt p,FlXt q) · TpFl

X
t · V (p).

Note that for p, q ∈ U and the modulus of s, t small enough the flows in
(19) and (18) stay inside U ; thus, we have for (19) the local expression

F (t, x, y) := α′(−t, α(t, y))a(α(t, x), α(t, y)) · α′(t, x)Z(x).

Here α (and β below) denotes the local flow of X (and Y , respectively).
The derivative with respect to t of this is

Ḟ (t, x, y) =
(
− α̇′(−t, α(t, y))a(α(t, x), α(t, y))α′(t, x)

+ α′′(−t, α(t, y))X(α(t, y))a(α(t, x), α(t, y))α′(t, x)
+ α′(−t, α(t, y))a′(α(t, x), α(t, y))(
X(α(t, x)), X(α(t, y))

)
α′(t, x)

+ α′(−t, α(t, y))a(α(t, x), α(t, y))α̇′(t, x)
)
Z(x).

Evaluating at t = 0, we obtain by (17) that F ′(0, x, y) equals(
−X ′(y)a(x, y) + a′(x, y)(X(x), X(y)) + a(x, y)X ′(x)

)
Z(x).

Note that, for x = y, this expression vanishes by Lemma 10. Now we
set y = β(t, x); then (18) is locally given by the derivative at s = 0 of

G(s, x) := β′(−s, β(s, x))
(
−X ′(β(s, x))a(x, β(s, x))

+ a′(x, β(s, x))(X(x), X(β(s, x)) + a(x, β(s, x))X ′(x)
)
Z(x).



NONLINEAR TENSOR DISTRIBUTIONS 681

The derivative of G is

Ġ(s, x) = −β̇′(−s, β(s, x))F ′(0, x, β(s, x))
+ β′′(−s, β(s, x))Y (β(s, x))F ′(0, x, β(s, x))
+ β′(−s, β(s, x))(−X ′′(β(s, x))Y (β(s, x))a(x, β(s, x))

−X ′(β(s, x))a′(x, β(s, x))(0, Y (β(s, x)))

+ a′′(x, β(s, x))((X(x), X(β(s, x))), (0, Y (β(s, x))))

+ a′(x, β(s, x))(0, X ′(β(s, x))Y (β(s, x)))

+ a′(x, β(s, x))(0, Y (β(s, x)))X ′(x))Z(x)

and, at s = 0, the first two terms vanish, while for the rest we obtain
(omitting x notationally) that Ġ(0, x) is given by

(−X ′′Y −X ′a′(0, Y ) + a′′((X,Y ), (0, Y )) + a′(0, X ′Y ) + a′(0, Y )X ′)Z,

which by Lemma 10 equals

(20) −X ′′Y Z +X ′Γ(Y, Z)
− 1/2(Γ′ · (X + Y )(Y, Z) + (Γ′ · Y )(Y −X,Z)

− Γ(Y −X,Γ(Y, Z))− Γ(Y,Γ(Y −X,Z)))

− Γ(X ′Y, Z)− Γ(Y,X ′Z)
= −X ′′Y Z +X ′Γ(Y, Z)− (Γ′ · Y )(Y, Z) + Γ(Y,Γ(Y, Z))

− 1/2((Γ′ ·X)(Y, Z)−(Γ′· Y )(X,Z)+Γ(X,Γ(Y, Z))

+ Γ(Y,Γ(X,Z)))− Γ(X ′Y, Z)− Γ(Y,X ′Z).

By assumption, this vanishes for all possible choices of X , Y , Z and x.
Setting X = 0 gives (Γ′ · Y )(Y, Z) = Γ(Y,Γ(Y, Z)) and, applying this
formula to Γ′ · (X + Y )(X + Y, Z) for any X,Y, Z, we obtain

(Γ′ ·X)(Y, Z) + (Γ′ · Y )(X,Z) = Γ(X,Γ(Y, Z)) + Γ(Y,Γ(X,Z))

and thus, inserting this into (20),

−X ′′Y Z +X ′Γ(Y, Z)− (Γ′ ·X)(Y, Z)− Γ(X ′Y, Z)− Γ(Y,X ′Z) = 0

for all choices of X,Y, Z, x. In particular, choosing X constant in a
neighborhood of x gives (Γ′ · X)(Y, Z) = 0; thus, Γ′ = 0 and we can



682 EDUARD NIGSCH

drop this term. Then, choosing X such that X ′ = id around x implies
Γ(Y, Z) = 0. It remains that X ′′Y Z = 0, which clearly cannot hold for
arbitrary X,Y, Z. This proves the assertion that ιrs cannot commute
with arbitrary Lie derivatives.

We thus have established Theorem 25.
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