ON THE mod p^{7} DETERMINATION OF $\binom{2 p-1}{p-1}$

ROMEO MEŠTROVIĆ

$$
\begin{aligned}
& \text { ABSTRACT. In this paper we prove that for any prime } \\
& p \geq 11, \\
& \qquad\binom{2 p-1}{p-1} \equiv 1-2 p \sum_{k=1}^{p-1} \frac{1}{k}+4 p^{2} \sum_{1 \leq i<j \leq p-1} \frac{1}{i j}\left(\bmod p^{7}\right) \\
& \text { holds. This is a generalization of the famous Wolstenholme's } \\
& \text { theorem which asserts that }\binom{2 p-1}{p-1} \equiv 1 \quad\left(\bmod p^{3}\right) \text { for all } \\
& \text { primes } p \geq 5 \text {. Our proof is elementary, and it does not } \\
& \text { use a standard technique involving the classic formula for } \\
& \text { power sums in terms of the Bernoulli numbers. Notice that } \\
& \text { the above congruence reduced modulo } p^{6}, p^{5} \text { and } p^{4} \text { yields } \\
& \text { related congruences obtained by Tauraso, Zhao and Glaisher, } \\
& \text { respectively. }
\end{aligned}
$$

1. Introduction and statement of results. Wolstenholme's theorem (e.g., see [4], [14]) asserts that if p is a prime greater than 3 , then the binomial coefficient $\binom{2 p-1}{p-1}$ satisfies the congruence

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1 \quad\left(\bmod p^{3}\right) \tag{1.1}
\end{equation*}
$$

for any prime $p \geq 5$. It is well known (e.g., see [5, page 89]) that this theorem is equivalent to the assertion that the numerator of the fraction

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}
$$

is divisible by p^{2} for any prime $p \geq 5$.

[^0]Further, by a special case of Glaisher's congruence ([2, page 21], [3, page 323]; also cf., [10, Theorem 2]), for any prime $p \geq 5$ we have

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1-2 p \sum_{k=1}^{p-1} \frac{1}{k} \equiv 1-\frac{2 p^{3}}{3} B_{p-3} \quad\left(\bmod p^{4}\right) \tag{1.2}
\end{equation*}
$$

where B_{k} is the k th Bernoulli number. Granville [4] established broader generalizations of Wolstenholme's theorem. More recently, Helou and Terjanian [6] established many Wolstenholme type congruences modulo p^{k} with a prime p and $k \in\{4,5,6\}$. One of their main results [6, Proposition 2, pages 488-489] is a congruence of the form $\binom{n p}{m p} \equiv f(n, m, p)\binom{n}{m}\left(\bmod p^{6}\right)$, where $p \geq 3$ is a prime number, $m, n, \in \mathbf{N}$ with $0 \leq m \leq n$, and f is the function on m, n and p involving Bernoulli numbers $B_{k}(k \in \mathbf{N})$. In particular, for $p \geq 5$, $m=1$ and $n=2$, using the fact that

$$
\frac{1}{2}\binom{2 p}{p}=\binom{2 p-1}{p-1}
$$

this congruence yields [6, Corollary 1]

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1-p^{3} B_{p^{3}-p^{2}-2}+\frac{p^{5}}{3} B_{p-3}-\frac{6 p^{5}}{5} B_{p-5} \quad\left(\bmod p^{6}\right) \tag{1.3}
\end{equation*}
$$

Recently, Tauraso [13, Theorem 2.4] proved that for any prime $p>5$

$$
\binom{2 p-1}{p-1} \equiv 1+2 p \sum_{k=1}^{p-1} \frac{1}{k}+\frac{2 p^{3}}{3} \sum_{k=1}^{p-1} \frac{1}{k^{3}} \quad\left(\bmod p^{6}\right)
$$

In this paper we improve the above congruence as follows.

Theorem 1.1. Let $p \geq 11$ be a prime. Then

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1-2 p \sum_{k=1}^{p-1} \frac{1}{k}+4 p^{2} \sum_{1 \leq i<j \leq p-1} \frac{1}{i j} \quad\left(\bmod p^{7}\right) \tag{1.4}
\end{equation*}
$$

Remark 1.2. Note that the congruence (1.4) for $p=3$ and $p=5$ reduces to the identity, while for $p=7$ (1.4) is satisfied modulo 7^{6}.

Applying a technique of Helou and Terjanian [6] based on Kummer type congruences, the congruence (1.4) may be expressed in terms of the Bernoulli numbers as follows.

Corollary 1.3. Let $p \geq 11$ be a prime. Then

$$
\begin{align*}
\binom{2 p-1}{p-1} \equiv & 1-p^{3} B_{p^{4}-p^{3}-2}+p^{5}\left(\frac{1}{2} B_{p^{2}-p-4}-2 B_{p^{4}-p^{3}-4}\right) \\
& +p^{6}\left(\frac{2}{9} B_{p-3}^{2}-\frac{1}{3} B_{p-3}-\frac{1}{10} B_{p-5}\right) \quad\left(\bmod p^{7}\right) . \tag{1.5}
\end{align*}
$$

Note that the congruence (1.3) can easily be deduced from the congruence (1.5) by reducing the moduli and using the Kummer congruences.

Corollary 1.4. (cf., [13, Theorem 2.4]). Let $p \geq 7$ be a prime. Then

$$
\begin{aligned}
\binom{2 p-1}{p-1} & \equiv 1-2 p \sum_{k=1}^{p-1} \frac{1}{k}-2 p^{2} \sum_{k=1}^{p-1} \frac{1}{k^{2}} \\
& \equiv 1+2 p \sum_{k=1}^{p-1} \frac{1}{k}+\frac{2 p^{3}}{3} \sum_{k=1}^{p-1} \frac{1}{k^{3}} \quad\left(\bmod p^{6}\right)
\end{aligned}
$$

Corollary 1.5. ([16, Theorem 3.2], [10, p. 385]). Let $p \geq 7$ be a prime. Then

$$
\binom{2 p-1}{p-1} \equiv 1+2 p \sum_{k=1}^{p-1} \frac{1}{k} \equiv 1-p^{2} \sum_{k=1}^{p-1} \frac{1}{k^{2}} \quad\left(\bmod p^{5}\right)
$$

A prime p is said to be a Wolstenholme prime if it satisfies the congruence $\binom{2 p-1}{p-1} \equiv 1\left(\bmod p^{4}\right)$. By the congruence (1.2) we see that a prime p is a Wolstenholme prime if and only if p divides the numerator of B_{p-3}. The two known such primes are 16843 and 2124679, and McIntosh and Roettger [11] reported that these primes are the only two Wolstenholme primes less than 10^{9}. However, by using the argument based on the prime number theorem, McIntosh [10, page 387] conjectured that there are infinitely many Wolstenholme primes, and that no prime satisfies the congruence $\binom{2 p-1}{p-1} \equiv 1\left(\bmod p^{5}\right)$.

Remark 1.6. In [12, Corollary 1] the author proved that for any Wolstenholme prime p

$$
\begin{align*}
\binom{2 p-1}{p-1} & \equiv 1-2 p \sum_{k=1}^{p-1} \frac{1}{k}-2 p^{2} \sum_{k=1}^{p-1} \frac{1}{k^{2}} \\
& \equiv 1+2 p \sum_{k=1}^{p-1} \frac{1}{k}+\frac{2 p^{3}}{3} \sum_{k=1}^{p-1} \frac{1}{k^{3}} \quad\left(\bmod p^{7}\right) \tag{1.6}
\end{align*}
$$

holds, and he conjectured [12, Remark 1] that any of the previous congruences for a prime p yields that p is necessarily a Wolstenholme prime. Note that this conjecture concerning the first above congruence may be confirmed by using our congruence (1.4). Namely, if a prime p satisfies the first congruence of (1.6), then by (1.4) it must be

$$
\begin{align*}
\binom{2 p-1}{p-1} & \equiv 1-2 p \sum_{k=1}^{p-1} \frac{1}{k}-2 p^{2} \sum_{k=1}^{p-1} \frac{1}{k^{2}} \\
& \equiv 1-2 p \sum_{k=1}^{p-1} \frac{1}{k}+4 p^{2} \sum_{1 \leq i<j \leq p-1} \frac{1}{i j}\left(\bmod p^{7}\right) \tag{1.7}
\end{align*}
$$

Using the identity

$$
2 \sum_{1 \leq i<j \leq p-1} \frac{1}{i j}=\left(\sum_{k=1}^{p-1} \frac{1}{k}\right)^{2}-\sum_{k=1}^{p-1} \frac{1}{k^{2}}
$$

the second congruence in (1.7) immediately reduces to

$$
2 p^{2}\left(\sum_{k=1}^{p-1} \frac{1}{k}\right)^{2} \equiv 0 \quad\left(\bmod p^{7}\right)
$$

whence it follows that

$$
\sum_{k=1}^{p-1} \frac{1}{k} \equiv 0 \quad\left(\bmod p^{3}\right)
$$

Finally, substituting this into the first Glaisher's congruence in (1.2), we find that

$$
\binom{2 p-1}{p-1} \equiv 0 \quad\left(\bmod p^{4}\right)
$$

Hence, p must be a Wolstenholme prime, and so our conjecture is confirmed related to the first congruence of (1.6).

The situation is more complicated in relation to the conjecture concerning the second congruence of (1.6). Then, comparing this congruence and (1.4), as in the previous case, we obtain

$$
2 \sum_{k=1}^{p-1} \frac{1}{k}-p\left(\sum_{k=1}^{p-1} \frac{1}{k}\right)^{2}+p \sum_{k=1}^{p-1} \frac{1}{k^{2}}+\frac{p^{2}}{3} \sum_{k=1}^{p-1} \frac{1}{k^{3}} \equiv 0 \quad\left(\bmod p^{6}\right)
$$

However, from the above congruence we are unable to deduce that p must be a Wolstenholme prime.

Remark 1.7. It follows from Corollary 1.5 that $p^{3} \mid \sum_{k=1}^{p-1} 1 / k$ and $p^{2} \mid \sum_{k=1}^{p-1} 1 / k^{2}$ for any Wolstenholme prime p. This argument together with a technique applied in the proof of Theorem 1.1 suggests the conjecture that such a prime p satisfies the congruence (1.4) modulo p^{8}. However, a direct calculation shows that this is not true for the Wolstenholme prime 16843.

As noticed in Remark 1.2, the congruence (1.4) for $p=3$ and $p=5$ reduces to the identity. However, our computation via Mathematica shows that no prime in the range $7 \leq p<500000$ satisfies the congruence (1.4) with the modulus p^{8} instead of p^{7}. Nevertheless, using the heuristic argument for the "probability" that a prime p satisfies (1.4) modulo p^{8} about $1 / p$, we conjecture that there are infinitely many primes satisfying (1.4) modulo p^{8}.
2. Proof of Theorem 1.1 and Corollaries 1.4 and 1.5. For the proof of Theorem 1.1, we will need some elementary auxiliary results.

For a prime $p \geq 3$ and a positive integer $n \leq p-2$, we denote

$$
R_{n}(p):=\sum_{k=1}^{p-1} \frac{1}{k^{n}} \quad \text { and } \quad H_{n}(p):=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq p-1} \frac{1}{i_{1} i_{2} \cdots i_{n}}
$$

with the convention that $H_{1}(p)=R_{1}(p)$. In the sequel we shall often write R_{n} and H_{n} in the proofs instead of $R_{n}(p)$ and $H_{n}(p)$, respectively.

Observe that, by Wolstenholme's theorem, $p^{2} \mid R_{1}(p)$ for any prime $p \geq 5$, which can be generalized as follows.

Lemma 2.1. ([1, Theorem 3]; also see [17] or [15, Theorem 1.6]). For any prime $p \geq 5$ and a positive integer $n \leq p-3$, we have

$$
R_{n}(p) \equiv 0 \quad\left(\bmod p^{2}\right) \quad \text { if } 2 \nmid n
$$

and

$$
R_{n}(p) \equiv 0 \quad(\bmod p) \quad \text { if } 2 \mid n
$$

Lemma 2.2. For any prime $p \geq 7$, we have

$$
\begin{equation*}
H_{3}(p) \equiv \frac{R_{3}(p)}{3}-\frac{R_{1}(p) R_{2}(p)}{2} \quad\left(\bmod p^{6}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{4}(p) \equiv-\frac{R_{4}(p)}{4}+\frac{\left(R_{2}(p)\right)^{2}}{8} \quad\left(\bmod p^{4}\right) \tag{2.2}
\end{equation*}
$$

In particular, $p^{2}\left|H_{3}(p), p\right| H_{2}(p)$ and $p \mid H_{4}(p)$.
Proof. Substituting the shuffle relation $H_{2}=\left(R_{1}^{2}-R_{2}\right) / 2$ into the identity $3 H_{3}=R_{3}-R_{1} R_{2}+H_{2} R_{1}$, we find that $H_{3}=\left(R_{3} / 3\right)-$ $\left(R_{1} R_{2}\right) / 2+\left(R_{1}^{3} / 6\right)$. This equality together with the fact that $p^{2} \mid R_{1}$ yields the congruence (2.1), and thus $p^{2} \mid H_{3}$.

Similarly, by Newton's formula [8], we have the identity

$$
4 H_{4}=-R_{4}+H_{1} R_{3}-H_{2} R_{2}+H_{3} R_{1}
$$

Since by Lemma 2.1, $p^{4} \mid R_{1} R_{3}=H_{1} R_{3}$, and since $p^{2} \mid H_{3}$, we also have $p^{4} \mid H_{3} R_{1}$. Substituting this and $H_{2}=\left(R_{1}^{2}-R_{2}\right) / 2$ into the above identity, we obtain

$$
4 H_{4} \equiv-R_{4}-\frac{R_{1}^{2} R_{2}}{2}+\frac{R_{2}^{2}}{2} \quad\left(\bmod p^{4}\right)
$$

Since by Lemma 2.1, $p^{5} \mid R_{1}^{2} R_{2}$, we can exclude the term $R_{1}^{2} R_{2} / 2$ in the above congruence to obtain (2.2), and so $p \mid H_{4}$. This completes the proof.

Lemma 2.3. For any prime p and any positive integer r, we have

$$
\begin{equation*}
2 R_{1} \equiv-\sum_{i=1}^{r} p^{i} R_{i+1} \quad\left(\bmod p^{r+1}\right) \tag{2.3}
\end{equation*}
$$

Proof. Multiplying the identity

$$
1+\frac{p}{i}+\cdots+\frac{p^{r-1}}{i^{r-1}}=\frac{p^{r}-i^{r}}{i^{r-1}(p-i)}
$$

by $-p / i^{2}(1 \leq i \leq p-1)$, we obtain

$$
-\frac{p}{i^{2}}\left(1+\frac{p}{i}+\cdots+\frac{p^{r-1}}{i^{r-1}}\right)=\frac{-p^{r+1}+p i^{r}}{i^{r+1}(p-i)} \equiv \frac{p}{i(p-i)} \quad\left(\bmod p^{r+1}\right)
$$

Therefore,

$$
\left(\frac{1}{i}+\frac{1}{p-i}\right) \equiv-\left(\frac{p}{i^{2}}+\frac{p^{2}}{i^{3}}+\cdots+\frac{p^{r}}{i^{r+1}}\right) \quad\left(\bmod p^{r+1}\right)
$$

whence, after summation over $i=1, \ldots, p-1$, we immediately obtain (2.3). This concludes the proof.

Lemma 2.4. For any prime $p \geq 7$, we have

$$
2 R_{1}(p) \equiv-p R_{2}(p) \quad\left(\bmod p^{4}\right)
$$

and, for any prime $p \geq 11$,

$$
2 R_{3}(p) \equiv-3 p R_{4}(p) \quad\left(\bmod p^{4}\right)
$$

holds.

Proof. Note that, by Lemma 2.3,

$$
2 R_{1} \equiv-p R_{2}-p^{2} R_{3}-p^{3} R_{4} \quad\left(\bmod p^{4}\right)
$$

Since, by Lemma 2.1, $p^{2} \mid R_{3}$ and $p \mid R_{4}$ for any prime $p \geq 7$, the above congruence reduces to the first congruence in our lemma.

Since for each $1 \leq k \leq p-1$

$$
\frac{1}{k^{3}}+\frac{1}{(p-k)^{3}}=\frac{p^{3}-3 p^{2} k+3 p k^{2}}{k^{3}(p-k)^{3}}
$$

it follows that

$$
\begin{align*}
2 R_{3}= & \sum_{k=1}^{p-1}\left(\frac{1}{k^{3}}+\frac{1}{(p-k)^{3}}\right) \\
= & p^{3} \sum_{k=1}^{p-1} \frac{1}{k^{3}(p-k)^{3}}-3 p^{2} \sum_{k=1}^{p-1} \frac{1}{k^{2}(p-k)^{3}} \tag{2.4}\\
& +3 p \sum_{k=1}^{p-1} \frac{1}{k(p-k)^{3}} .
\end{align*}
$$

First observe that, applying Lemma 2.1, for each prime $p \geq 11$ we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{1}{k^{3}(p-k)^{3}} \equiv-\sum_{k=1}^{p-1} \frac{1}{k^{6}} \equiv 0 \quad(\bmod p) . \tag{2.5}
\end{equation*}
$$

Further, in view of the fact that $1 /(p-k) \equiv-(p+k) / k^{2}\left(\bmod p^{2}\right)$, and that for each prime $p \geq 11, p \mid R_{6}$ and $p^{2} \mid R_{5}$ by Lemma 2.1, we have

$$
\begin{align*}
\sum_{k=1}^{p-1} \frac{1}{k^{2}(p-k)^{3}} & =\sum_{k=1}^{p-1} \frac{1}{(p-k)^{2} k^{3}} \\
& \equiv \sum_{k=1}^{p-1} \frac{(p+k)^{2}}{k^{7}} \quad\left(\bmod p^{2}\right) \tag{2.6}\\
& \equiv \sum_{k=1}^{p-1} \frac{2 p}{k^{6}}+\sum_{k=1}^{p-1} \frac{1}{k^{5}} \equiv 0 \quad\left(\bmod p^{2}\right) .
\end{align*}
$$

Substituting (2.5) and (2.6) into (2.4), we get

$$
\begin{equation*}
2 R_{3} \equiv 3 p \sum_{k=1}^{p-1} \frac{1}{k(p-k)^{3}} \quad\left(\bmod p^{4}\right) \tag{2.7}
\end{equation*}
$$

Next, from the identity

$$
\frac{1}{k(p-k)^{3}}+\frac{1}{k^{4}}=\frac{p^{3}}{k^{4}(p-k)^{3}}-\frac{3 p^{2}}{k^{3}(p-k)^{3}}+\frac{3 p}{k^{2}(p-k)^{3}},
$$

for $k=1,2, \ldots, p-1$, we obtain

$$
\frac{1}{k(p-k)^{3}}+\frac{1}{k^{4}} \equiv \frac{3 p^{2}}{k^{6}}+\frac{3 p}{k^{2}(p-k)^{3}} \quad\left(\bmod p^{3}\right)
$$

After summation over $k=1, \ldots, p-1$, the above congruence gives

$$
\sum_{k=1}^{p-1} \frac{1}{k(p-k)^{3}}+R_{4} \equiv 3 p^{2} R_{6}+3 p \sum_{k=1}^{p-1} \frac{1}{k^{2}(p-k)^{3}} \quad\left(\bmod p^{3}\right)
$$

Since by Lemma 2.1, $p \mid R_{6}$ for any prime $p \geq 11$, substituting this and (2.6) into the above congruence, we obtain

$$
\sum_{k=1}^{p-1} \frac{1}{k(p-k)^{3}} \equiv-R_{4} \quad\left(\bmod p^{3}\right)
$$

Substituting this into (2.7), we finally obtain

$$
2 R_{3} \equiv-3 p R_{4} \quad\left(\bmod p^{4}\right)
$$

This completes the proof.
Proof of Theorem 1.1. For any prime $p \geq 11$, we have

$$
\begin{aligned}
\binom{2 p-1}{p-1}= & \frac{(p+1)(p+2) \cdots(p+k) \cdots(p+(p-1))}{1 \cdot 2 \cdots k \cdots p-1} \\
= & \left(\frac{p}{1}+1\right)\left(\frac{p}{2}+1\right) \cdots\left(\frac{p}{k}+1\right) \cdots\left(\frac{p}{p-1}+1\right) \\
= & 1+\sum_{i=1}^{p-1} \frac{p}{i}+\sum_{1 \leq i_{1}<i_{2} \leq p-1} \frac{p^{2}}{i_{1} i_{2}}+\cdots \\
& +\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq p-1}^{p-1} \frac{p^{k}}{i_{1} i_{2} \cdots i_{k}}+\cdots+\frac{p^{p-1}}{(p-1)!} \\
& =1+\sum_{k=1}^{p-p^{k} H_{k}=1+\sum_{k=1}^{6} p^{k} H_{k}+\sum_{k=7}^{p-1} p^{k} H_{k}}
\end{aligned}
$$

By Lemmas 2.1 and 2.2 , we have $R_{1} \equiv R_{3} \equiv R_{5} \equiv H_{3} \equiv 0\left(\bmod p^{2}\right)$ and $R_{2} \equiv R_{4} \equiv R_{6} \equiv H_{2} \equiv H_{4} \equiv 0(\bmod p)$ for any prime $p \geq 11$. Since, by Newton's formula, $5 H_{5}=R_{5}+\sum_{i=1}^{4}(-1)^{i} H_{i} R_{5-i}$ and $6 H_{6}=-R_{6}-\sum_{i=1}^{5}(-1)^{i} H_{i} R_{6-i}$, it follows from the previous
congruences that $p^{2} \mid H_{5}$ and $p \mid H_{6}$. Therefore, $p^{7} \mid \sum_{k=5}^{p-1} p^{k} H_{k}$ for any prime $p \geq 11$, and so the above expansion yields

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1+p H_{1}+p^{2} H_{2}+p^{3} H_{3}+p^{4} H_{4} \quad\left(\bmod p^{7}\right) \tag{2.8}
\end{equation*}
$$

Recall that $H_{1}=R_{1}$ and $H_{2}=\left(R_{1}^{2}-R_{2}\right) / 2$. The congruences from Lemma 2.2 yield $H_{3} \equiv\left(R_{3} / 3\right)-\left(R_{1} R_{2} / 2\right)\left(\bmod p^{4}\right)$ and $H_{4} \equiv$ $-\left(R_{4} / 4\right)+\left(R_{2}^{2} / 8\right)\left(\bmod p^{3}\right)$. Substituting all the previous expressions for $H_{i}, i=1,2,3,4$, into (2.8), we find that

$$
\begin{align*}
\binom{2 p-1}{p-1} \equiv & 1+p R_{1}+\frac{p^{2}}{2}\left(R_{1}^{2}-R_{2}\right) \tag{2.9}\\
& +\frac{p^{3}}{6}\left(2 R_{3}-3 R_{1} R_{2}\right)+\frac{p^{4}}{8}\left(R_{2}^{2}-2 R_{4}\right) \quad\left(\bmod p^{7}\right)
\end{align*}
$$

Further, by Lemma 2.4, we have

$$
\begin{equation*}
2 R_{1} \equiv-p R_{2} \quad\left(\bmod p^{4}\right) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
2 R_{3} \equiv-3 p R_{4} \quad\left(\bmod p^{4}\right) \tag{2.11}
\end{equation*}
$$

The congruences (2.10) and (2.11) yield $p^{4} R_{2}^{2} \equiv-2 p^{3} R_{1} R_{2}\left(\bmod p^{7}\right)$ and $p^{4} R_{4} \equiv-(2 / 3) p^{3} R_{3}\left(\bmod p^{7}\right)$, respectively. Substituting these congruences into the last term on the right hand side of (2.9), we obtain

$$
\begin{align*}
\binom{2 p-1}{p-1} \equiv 1 & +p R_{1}+\frac{p^{2}}{2}\left(R_{1}^{2}-R_{2}\right) \tag{2.12}\\
& -\frac{3 p^{3}}{4} R_{1} R_{2}+\frac{p^{3}}{2} R_{3} \quad\left(\bmod p^{7}\right)
\end{align*}
$$

It remains to eliminate R_{3} from (2.12). Note that, by Lemma 2.3, $2 R_{1} \equiv-p R_{2}-p^{2} R_{3}-p^{3} R_{4}-p^{4} R_{5}-p^{5} R_{6}\left(\bmod p^{6}\right)$. Since, by Lemma 2.2, $p^{2} \mid R_{5}$ and $p \mid R_{6}$, the previous congruence reduces to

$$
\begin{equation*}
2 R_{1} \equiv-p R_{2}-p^{2} R_{3}-p^{3} R_{4} \quad\left(\bmod p^{6}\right) \tag{2.13}
\end{equation*}
$$

We use again the congruence (2.11) in the form $p^{3} R_{4} \equiv-(2 / 3) p^{2} R_{3}$ $\left(\bmod p^{6}\right)$, which by inserting in (2.13) yields $2 R_{1} \equiv-p R_{2}-(1 / 3) p^{2} R_{3}$ $\left(\bmod p^{6}\right)$. Multipying by $3 p$, this implies

$$
\begin{equation*}
p^{3} R_{3} \equiv-6 p R_{1}-3 p^{2} R_{2} \quad\left(\bmod p^{7}\right) \tag{2.14}
\end{equation*}
$$

Substituting this into the last term of (2.12), we immediately get

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1-2 p R_{1}-2 p^{2} R_{2}+\frac{p^{2}}{4} R_{1}\left(2 R_{1}-3 p R_{2}\right) \quad\left(\bmod p^{7}\right) \tag{2.15}
\end{equation*}
$$

Now we write (2.10) as

$$
2 R_{1}-3 p R_{2} \equiv 8 R_{1} \quad\left(\bmod p^{4}\right)
$$

Since $p^{2} \mid R_{1}$, and so $p^{4} \mid p^{2} R_{1}$, multiplying the above congruence by $(1 / 4) p^{2} R_{1}$, we find that

$$
\frac{p^{2}}{4} R_{1}\left(2 R_{1}-3 p R_{2}\right) \equiv 2 p^{2} R_{1}^{2} \quad\left(\bmod p^{7}\right)
$$

Replacing this into (2.15), we obtain

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1-2 p R_{1}+2 p^{2}\left(R_{1}^{2}-R_{2}\right) \quad\left(\bmod p^{7}\right) \tag{2.16}
\end{equation*}
$$

which by the identity $\left(R_{1}^{2}-R_{2}\right) / 2=H_{2}$ yields the desired congruence. This completes the proof.

Proof of Corollary 1.4. The first congruence in Corollary 1.4 for $p \geq 11$ is immediate from (2.16), using the fact that $p^{2} \mid R_{1}$, and so $p^{6} \mid p^{2} R_{1}^{2}$. Since from (2.14) we have $p^{2} R_{2} \equiv-2 p R_{1}-\left(p^{3} / 3\right) R_{3}$ $\left(\bmod p^{6}\right)$, inserting this into the first congruence in Corollary 1.4, we immediately obtain

$$
\binom{2 p-1}{p-1} \equiv 1+2 p \sum_{k=1}^{p-1} \frac{1}{k}+\frac{2 p^{3}}{3} \sum_{k=1}^{p-1} \frac{1}{k^{3}} \quad\left(\bmod p^{6}\right)
$$

which is just the second congruence in Corollary 1.4.
A calculation shows that both congruences are also satisfied for $p=7$, and the proof is completed.

Proof of Corollary 1.5. Let $p \geq 7$ be any prime. By Corollary 1.4, we have $\binom{2 p-1}{p-1} \equiv 1-2 p R_{1}-2 p^{2} R_{2}\left(\bmod p^{5}\right)$. Substituting into this $-p R_{2} \equiv 2 R_{1}\left(\bmod p^{4}\right)($ Lemma 2.4), we obtain

$$
\binom{2 p-1}{p-1} \equiv 1+2 p \sum_{k=1}^{p-1} \frac{1}{k} \quad\left(\bmod p^{5}\right)
$$

as desired.
3. Proof of Corollary 1.3. As noticed in the Introduction, in the proof of Corollary 1.3, we will apply a method of Helou and Terjanian [6] based on Kummer type congruences.

Lemma 3.1. Let p be a prime, and let m be any even positive integer. Then the denominator d_{m} of the Bernoulli number B_{m}, written in reduced form, is given by

$$
d_{m}=\prod_{p-1 \mid m} p
$$

where the product is taken over those primes p such that $p-1$ divides m.

Proof. The assertion is an immediate consequence of the von StaudtClausen theorem (e.g., see [7, page 233, Theorem 3]) which asserts that $B_{m}+\sum_{p-1 \mid m} 1 / p$ is an integer for all even m, where the summation is over all primes p such that $p-1$ divides m.

For a prime p and a positive integer n, we denote

$$
R_{n}(p)=R_{n}=\sum_{k=1}^{p-1} \frac{1}{k^{n}} \quad \text { and } \quad P_{n}(p)=P_{n}=\sum_{k=1}^{p-1} k^{n}
$$

Lemma 3.2. ([6, p. 8]). Let p be a prime greater than 5, and let n, r be positive integers. Then

$$
\begin{equation*}
P_{n}(p) \equiv \sum_{s-\operatorname{ord}_{p}(s) \leq r} \frac{1}{s}\binom{n}{s-1} p^{s} B_{n+1-s} \quad\left(\bmod p^{r}\right) \tag{3.1}
\end{equation*}
$$

where $\operatorname{ord}_{p}(s)$ is the largest power of p dividing s, and the summation is taken over all integers $1 \leq s \leq n+1$ such that $s-\operatorname{ord}_{p}(s) \leq r$.

The following result is well known as the Kummer congruences.
Lemma 3.3. ([7]). Suppose that $p \geq 3$ is a prime and m, n, r are positive integers such that m and n are even, $r \leq n-1 \leq m-1$ and $m \not \equiv 0(\bmod p-1)$. If $n \equiv m\left(\bmod \varphi\left(p^{r}\right)\right)$, where $\varphi\left(p^{r}\right)=p^{r-1}(p-1)$ is Euler's totient function, then

$$
\begin{equation*}
\frac{B_{m}}{m} \equiv \frac{B_{n}}{n} \quad\left(\bmod p^{r}\right) \tag{3.2}
\end{equation*}
$$

The following congruences are also due to Kummer.

Lemma 3.4. ([9]; also see [6, p. 20]). Let $p \geq 3$ be a prime and let m, r be positive integers such that m is even, $r \leq m-1$ and $m \not \equiv 0$ $(\bmod p-1)$. Then

$$
\begin{equation*}
\sum_{k=0}^{r}(-1)^{k}\binom{m}{k} \frac{B_{m+k(p-1)}}{m+k(p-1)} \equiv 0 \quad\left(\bmod p^{r}\right) \tag{3.3}
\end{equation*}
$$

Lemma 3.5. For any prime $p \geq 11$, we have
(i) $R_{1}(p) \equiv-\frac{p^{2}}{2} B_{p^{4}-p^{3}-2}-\frac{p^{4}}{4} B_{p^{2}-p-4}+\frac{p^{5}}{6} B_{p-3}+\frac{p^{5}}{20} B_{p-5}$ $\left(\bmod p^{6}\right)$.
(ii) $R_{1}^{2}(p) \equiv \frac{p^{4}}{9} B_{p-3}^{2}\left(\bmod p^{5}\right)$.
(iii) $R_{2}(p) \equiv p B_{p^{4}-p^{3}-2}+p^{3} B_{p^{4}-p^{3}-4}\left(\bmod p^{5}\right)$.

Proof. If s is a positive integer such that $\operatorname{ord}_{p}(s)=e \geq 1$, then for $p \geq 11$, it holds that $s-e \geq p^{e}-e \geq 10$. This shows that the condition $s-\operatorname{ord}_{p}(s) \leq 6$ implies that $\operatorname{ord}_{p}(s)=0$, and thus, for such a s must be $s \leq 6$. Therefore,

$$
\begin{equation*}
P_{n}(p) \equiv \sum_{s=1}^{6} \frac{1}{s}\binom{n}{s-1} p^{s} B_{n+1-s} \quad\left(\bmod p^{6}\right) \quad \text { for } n=1,2, \ldots \tag{3.4}
\end{equation*}
$$

By Euler's theorem [5], for $1 \leq k \leq p-1$, and positive integers n, e, we have $1 / k^{\varphi\left(p^{e}\right)-n} \equiv k^{n}\left(\bmod p^{e}\right)$, where $\varphi\left(p^{e}\right)=p^{e-1}(p-1)$ is the Euler's totient function. Hence, $R_{\varphi\left(p^{e}\right)-n}(p) \equiv P_{n}(p)\left(\bmod p^{e}\right)$. In particular, if $n=\varphi\left(p^{6}\right)-1=p^{5}(p-1)-1$, then by Lemma 3.1, $p^{6} \mid p^{6} B_{p^{5}(p-1)-6}$ for each prime $p \geq 11$. Therefore, using the fact that $B_{p^{5}(p-1)-1}=B_{p^{5}(p-1)-3}=B_{p^{5}(p-1)-5}=0$, (3.4) yields

$$
\begin{aligned}
& R_{1}(p) \equiv P_{p^{5}(p-1)-1}(p) \equiv \frac{1}{2}\left(p^{5}(p-1)-1\right) p^{2} B_{p^{5}(p-1)-2} \\
&+ \frac{1}{4} \frac{\left(p^{5}(p-1)-1\right)\left(p^{5}(p-1)-2\right)\left(p^{5}(p-1)-3\right)}{6} \\
& \times p^{4} B_{p^{5}(p-1)-4}\left(\bmod p^{6}\right)
\end{aligned}
$$

whence we have

$$
\begin{equation*}
R_{1}(p) \equiv-\frac{p^{2}}{2} B_{p^{6}-p^{5}-2}-\frac{p^{4}}{4} B_{p^{6}-p^{5}-4} \quad\left(\bmod p^{6}\right) \tag{3.5}
\end{equation*}
$$

By the Kummer congruences (3.2) from Lemma 3.3, we have

$$
\begin{aligned}
B_{p^{6}-p^{5}-2} & \equiv \frac{p^{6}-p^{5}-2}{p^{4}-p^{3}-2} B_{p^{4}-p^{3}-2} \equiv \frac{2 B_{p^{4}-p^{3}-2}}{p^{3}+2} \\
& \equiv\left(1-\frac{p^{3}}{2}\right) B_{p^{4}-p^{3}-2} \quad\left(\bmod p^{4}\right)
\end{aligned}
$$

Substituting this into (3.5), we obtain

$$
\begin{equation*}
R_{1}(p) \equiv-\frac{p^{2}}{2} B_{p^{4}-p^{3}-2}+\frac{p^{5}}{4} B_{p^{4}-p^{3}-2}-\frac{p^{4}}{4} B_{p^{6}-p^{5}-4} \quad\left(\bmod p^{6}\right) \tag{3.6}
\end{equation*}
$$

Similarly, we have

$$
B_{p^{4}-p^{3}-2} \equiv \frac{p^{4}-p^{3}-2}{p-3} B_{p-3} \equiv \frac{2}{3} B_{p-3} \quad(\bmod p)
$$

and

$$
\begin{aligned}
B_{p^{6}-p^{5}-4} & \equiv \frac{p^{6}-p^{5}-4}{p^{2}-p-4} B_{p^{2}-p-4} \equiv \frac{4 B_{p^{2}-p-4}}{p+4} \\
& \equiv\left(1-\frac{p}{4}\right) B_{p^{2}-p-4} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Substituting the above two congruences into (3.6), we get

$$
\begin{align*}
R_{1}(p) \equiv & -\frac{p^{2}}{2} B_{p^{4}-p^{3}-2}+\frac{p^{5}}{6} B_{p-3}-\frac{p^{4}}{4} B_{p^{2}-p-4} \tag{3.7}\\
& +\frac{p^{5}}{16} B_{p^{2}-p-4} \quad\left(\bmod p^{6}\right) .
\end{align*}
$$

Finally, since

$$
B_{p^{2}-p-4} \equiv \frac{p^{2}-p-4}{p-5} B_{p-5} \equiv \frac{4}{5} B_{p-5} \quad(\bmod p)
$$

the substitution of the above congruence into (3.7) immediately gives the congruence (i).

Further, (3.7) immediately gives

$$
\begin{equation*}
R_{1}^{2}(p) \equiv \frac{p^{4}}{4} B_{p^{4}-p^{3}-2}^{2} \quad\left(\bmod p^{5}\right) \tag{3.8}
\end{equation*}
$$

Again by the Kummer congruences (3.2) from Lemma 3.3, we have

$$
B_{p^{4}-p^{3}-2} \equiv \frac{p^{4}-p^{3}-2}{p-3} B_{p-3} \equiv \frac{2}{3} B_{p-3} \quad(\bmod p) .
$$

Substituting this into (3.8), we immediately obtain the congruence (ii).
In order to prove the congruence (iii), note that if $n-3 \not \equiv 0$ $(\bmod p-1)$, then by Lemma 3.1, for even $n \geq 6, p^{5} \mid p^{5} B_{n-4}$ holds, and we know that $B_{n-1}=B_{n-3}=0$ for such a n. Therefore, reducing the modulus in (3.4) to p^{5}, and using the same argument as in the beginning of the proof of (i), for all even $n \geq 2$,

$$
\begin{equation*}
P_{n}(p) \equiv p B_{n}+\frac{p^{3}}{6} n(n-1) B_{n-2} \quad\left(\bmod p^{5}\right) \tag{3.9}
\end{equation*}
$$

holds. In particular, for $n=p^{4}-p^{3}-2$ and using $P_{\varphi\left(p^{4}\right)-2}(p) \equiv R_{2}(p)$ $\left(\bmod p^{4}\right),(3.9)$ reduces to

$$
\begin{equation*}
R_{2}(p) \equiv P_{p^{4}-p^{3}-2}(p) \equiv p B_{p^{4}-p^{3}-2}+p^{3} B_{p^{4}-p^{3}-4} \quad\left(\bmod p^{5}\right) . \tag{3.10}
\end{equation*}
$$

This completes the proof.
Proof of Corollary 1.3. The congruence (1.5) of Corollary 1.3 follows directly by substituting congruences (i), (ii) and (iii) of Lemma 3.5 into the congruence (1.4) of Theorem 1.1.

REFERENCES

1. M. Bayat, A generalization of Wolstenholme's theorem, Amer. Math. Month. 104 (1997), 557-560.
2. J.W.L. Glaisher, Congruences relating to the sums of products of the first n numbers and to other sums of products, Quart. J. Math. 31 (1900), 1-35.
3. \qquad , On the residues of the sums of products of the first $p-1$ numbers and their powers, to modulus p^{2} or p^{3}, Quart. J. Math. 31 (1900), 321-353.
4. A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, in Organic mathematics, CMS Conf. Proc. 20, American Mathematical Society, Providence, RI, 1997.
5. G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford, 1979.
6. C. Helou and G. Terjanian, On Wolstenholme's theorem and its converse, J. Numb. Theor. 128 (2008), 475-499.
7. K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer-Verlag, New York, 1982.
8. N. Jacobson, Basic algebra I, 2nd Edition, W.H. Freeman Publishing Company, New York, 1995.
9. E.E. Kummer, Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen, J. reine angew. Math. 41 (1851), 368-372.
10. R.J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arith. 71 (1995), 381-389.
11. R.J. McIntosh and E.L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), 2087-2094.
12. R. Meštrović, Congruences for Wolstenholme primes, preprint (2011), arXiv:1108.4178v1 [mathNT].
13. R. Tauraso, More congruences for central binomial coefficients, J. Numb. Theor. 130 (2010), 2639-2649.
14. J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-39.
15. J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Numb. Theor. 4 (2008), 73-106.
16. \qquad , Bernoulli numbers, Wolstenholme's theorem, and p^{5} variations of Lucas' theorem, J. Numb. Theor. 123 (2007), 18-26.
17. X. Zhou and T. Cai, A generalization of a curious congruence on harmonic sums, Proc. Amer. Math. Soc. 135 (2007), 1329-1333.

Maritime Faculty, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro
Email address: romeo@ac.me

[^0]: 2010 AMS Mathematics subject classification. Primary 11B75, Secondary 11A07, 11B65, 11B68, 05A10.

 Keywords and phrases. Congruence, prime power, Wolstenholme's theorem, Wolstenholme prime, Bernoulli numbers.

 Received by the editors on October 18, 2011.

