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ABSTRACT. The notion of Reiter’s Segal algebra in com-
mutative group algebras is generalized to a notion of Segal
algebra in more general classes of commutative Banach alge-
bras. Then we introduce a family of Segal algebras in commu-
tative Banach algebras under considerations and study some
properties of them.

1. Introduction. In this paper, G stands for a locally compact
abelian group (LCA group) with character group Ĝ. For a commutative
semi-simple Banach algebraB, ΦB denotes the Gelfand space of B with
the Gelfand topology, and K(ΦB) is the set of all compact subsets of
ΦB. The set K(ΦB) forms a directed set with respect to the inclusion
order: K1 ≤ K2 ⇔ K1 ⊆ K2 (K1,K2 ∈ K(ΦB)). If x ∈ B, x̂ stands for

the Gelfand transform of x. For a subset E of B, Ê := {x̂ : x ∈ E}
and Bc := {x ∈ B : x̂ has compact support}. We denote by (B̂, ‖ ‖B̂)
a Banach function algebra on ΦB which is isometrically isomorphic to
(B, ‖ ‖B) through the Gelfand transform. In the case B = L1(Ĝ),

(B̂, ‖ ‖B̂) is the Fourier algebra on G, which will be denoted by
(A(G), ‖ ‖A(G)), or (A, ‖ ‖A).
In the rest of this paper, B stands for a non-unital commutative

semi-simple Banach algebra which satisfies the following conditions:

(αB) B is regular.

(βB) There exists a bounded approximate identity of B composed of
elements in Bc.
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For such a B above, we will define Segal algebras in B, which are
generalizations of Reiter’s Segal algebras in L1(G).

In Section 2, definitions and results concerning Reiter’s Segal algebras
in L1(G) are stated briefly. In Section 3, the notion of Segal algebras
in L1(G) are generalized to the notion of Segal algebras in B, and the
results on Segal algebras in L1(G) stated in Section 2 are generalized to
the results on Segal algebras in B. In Section 4, definitions and some
basic properties of the multipliers of Segal algebras in B are stated for
later use.

In Section 5 we introduce the notion “local A-functions,” and in
Sections 5 9, by making use of local A-functions, we introduce some
classes of Segal algebras in A (which seems new even in the case of
classical Segal algebras in group algebras), and study properties of them
in detail.

In Section 10, as another application of local A-functions, we give
Theorem 10.3, which characterizes the multiplier algebra of the smallest
translation invariant Segal algebra in the Fourier algebra A = A(G) on
a non-compact LCA group G, and some new results follow from this
theorem.

2. Segal algebras and normed ideals in L1(G). In this section,
we state the definitions and results concerning the theory of Reiter’s
Segal algebras in L1(G), which are necessary to state our results later.
Although Reiter’s Segal algebras are defined in group algebras on
locally compact groups, we restrict ourselves to the commutative cases
in this paper (cf., [17, 18]).

2.1. Definition. A subspace S of L1(G) is said to be a Segal algebra
if it satisfies the following conditions:

(S0) S is dense in L1(G).

(S1) S is a Banach space under some norm, which dominates ‖ · ‖1;
‖f‖1 ≤ ‖f‖S (f ∈ S).
(S2) fy is in S and ‖f‖S = ‖fy‖S for all f ∈ S and y ∈ G, where

fy(x) = f(x− y) (x ∈ G).

(S3) For all f ∈ S, y → fy is a continuous map of G into S.
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Here we cite a few examples of Segal algebras from [18].

2.2. Examples. (1) Let S := {f ∈ C(R) : M(f) < ∞}, where
M(f) :=

∑
n∈Z sup0≤x≤1 |f(x + n)|. Then S is an ideal of L1(R) and

M(·) is a complete algebra norm on S but not translation invariant.
So, if we renorm M(·) by ‖ · ‖S , where ‖f‖S := sup {M(fy) : y ∈ R},
then ‖ ‖S is a translation invariant norm on S which is equivalent to
M(·), and (S, ‖ ‖S) becomes a Segal algebra in L1(R).

(2) Sp(G). For each p (1 < p < ∞), put

Sp(G) := {f ∈ L1(G) : ‖f‖p < ∞} ‖f‖Sp := ‖f‖1 + ‖f‖p.
Then (Sp(G), ‖ ‖Sp) is a Segal algebra in L1(G).

(3) Aμ,p(G), Ap(G). Let μ be an unbounded positive Radon measure

on Ĝ. For each p (1 ≤ p < ∞), put

Aμ,p(G) := {f ∈ L1(G) : f̂ ∈ Lp(μ)}, ‖f‖μ,p := ‖f‖1 + ‖f̂‖Lp(μ).

Then (Aμ,p(G), ‖ ‖μ,p) is a Segal algebra in L1(G). In particular, in

case μ is a Haar measure mĜ of Ĝ, we denote this Segal algebra by
(Ap(G), ‖ ‖Ap) instead of (AmĜ,p(G), ‖ ‖mĜ,p) for simplicity.

Cigler [3] introduced the notion of normed ideal in L1(G), which
is a generalization of the notion of the Segal algebra in L1(G), and
gave necessary and sufficient conditions for a normed ideal to be a
Segal algebra. Also, Dunford [5] and Riemersma [19] gave alternative
necessary and sufficient conditions for a normed ideal to be a Segal
algebra.

2.3. Definition (cf., [3]). Let N be a linear subspace of L1(G). N
is called a normed ideal in L1(G) if N satisfies the following conditions:

(a) N is a dense ideal in L1(G),

(b) N is a Banach space under some norm ‖ ‖N such that

‖f‖1 ≤ ‖f‖N (f ∈ N ),

‖f ∗ g‖N ≤ ‖f‖1‖g‖N (f ∈ L1(G), g ∈ N ).

Next we state fundamental properties of normed ideals and Segal
algebras in L1(G).
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2.4. Lemma (cf., [3]). Let N be a normed ideal in L1(G). Then the
following conditions hold.

(i) If U is a neighborhood of γ0 ∈ Ĝ, then there is an f ∈ N such

that supp f̂ ⊂ U and f̂(γ) = 1 for every γ in a neighborhood of γ0.

(ii) If K,U ⊂ Ĝ such that K is compact and U is open with K ⊂ U ,
then there is an e ∈ N such that ê(γ) = 1 (γ ∈ K) and supp ê ⊂ U .

(iii) L1(G)c is contained in N , where L1(G)c := {f ∈ L1(G) :

supp f̂ is compact}.
2.5. Theorem A ([3, 5, 19]). For a normed ideal N in L1(G), the

following conditions are equivalent:

(a) N is a Segal algebra.

(b) For any closed ideal J in N , there is a closed ideal I in L1(G)
such that J = I ∩N .

(c) N = N0, where N0 is the norm closure of L1(G)c in N .

(d) N has approximate units, that is, for all f ∈ N and for all ε > 0,
there exists

e ∈ N such that ‖f − f ∗ e‖N < ε.

(e) N = {f ∗ g : f ∈ L1(G), g ∈ N}.
2.6. Theorem B (cf., [17, 18]). Let S be a Segal algebra in L1(G).

(i) The ideal theory of S is the same as that of L1(G). More
precisely, if I is a closed ideal of L1(G), then I ∩ S is a closed ideal
of S, and conversely each closed ideal of S is of this form for a unique
closed ideal I of L1(G).

(ii) Ĝ and ΦS are homeomorphic to each other. More precisely, the

map: Ĝ ∼= ΦL1(G) → ΦS : ϕ → ϕ|S is a homeomorphism.

2.7. Theorem C (cf., [22]). (i) If S is a Segal algebra in L1(G),
and if {eλ}λ∈Λ is a bounded approximate identity of L1(G) composed
of elements in L1(G)c, then {eλ}λ∈Λ is an approximate identity of S
which is bounded with respect to the norm defined by

‖f‖op := sup {‖f ∗ g‖S : g ∈ S, ‖g‖S ≤ 1} (f ∈ S).
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(ii) If a Segal algebra S has a bounded approximate identity, then
S = L1(G) holds.

2.8. Theorem D (cf., [22]). If (S1, ‖ ‖S1) and (S2, ‖ ‖S2) are Segal
algebras in L1(G), then S := S1 ∩ S2 is a Segal algebra in L1(G) with
respect to the norm ‖ ‖S = ‖ ‖S1 + ‖ ‖S2 .

3. Definitions and fundamental properties of Segal algebras
in B. Burnham [2] defined abstract Segal algebras (ASA) in general
Banach algebras, which are generalizations of Cigler’s normed ideals in
group algebras. In this section, we will define “Segal algebras in B,”
which are generalizations of Reiter’s Segal algebras in L1(G).

3.1. Definition (cf., [7]). An ideal N in B is called a Banach ideal
if N satisfies the following two conditions.

(a) N is a Banach space under some norm ‖ ‖N which dominates the
original norm: ‖a‖B ≤ ‖a‖N (a ∈ N ).

(b) ‖ax‖N ≤ ‖a‖B‖x‖N (a ∈ B, x ∈ N ).

3.2. Definition (cf., [3]). A Banach ideal (N , ‖ ‖N ) in B is called
a Segal algebra in B if N satisfies the following properties.

(i) N is dense in B,

(ii) N has approximate units, that is, N satisfies for all x ∈ N and
for all ε > 0, there exists

e ∈ N such that ‖x− xe‖N < ε.

One will see immediately that an abstract Segal algebra in B is a
Segal algebra in B if and only if it possesses approximate units (cf.,
Burnham [2]).

3.3. Examples. The following are examples of Banach algebras B
satisfying the conditions (αB) and (βB).

(1) Group algebras L1(G) of non-discrete LCA groups G.

(2) Beurling algebras L1
ω(G) on a non-discrete LCA groups G with
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a weight function ω satisfying the Beurling-Domar condition (cf., [4,
18]).

(3) Lipschitz algebra Lip0
1(R) (cf., [14]).

(4) Commutative C∗-algebrasC0(X) on non-compact locally compact
Hausdorff spaces X .

3.4. Lemma ([3, 18]). Suppose that N is a dense Banach ideal in
B. Then the following hold.

(i) If U is a neighborhood of ϕ0 ∈ ΦB , then there is an e ∈ N such
that ê(ϕ) = 1 for all ϕ in a neighborhood of ϕ0 and supp ê ⊂ U .

(ii) If K,U ⊂ ΦB such that K is compact and U is open with
K ⊂ U , then there is an eK ∈ N such that êK(ϕ) = 1 (ϕ ∈ K)
and supp êK ⊂ U .

(iii) Bc ⊂ N .

Proof. (i) Since N is dense in B, there exists an x ∈ N such that
x̂(ϕ0) = 0. Choose a y ∈ B such that ŷ(ϕ0) = 0 with supp ŷ ⊂ U .
We can choose a z ∈ B such that ẑ(ϕ) = 1/(x̂(ϕ)ŷ(ϕ)) for all ϕ in a
neighborhood of ϕ0 since B is regular. Letting e = xyz ∈ N , it is easy
to see that e is a desired element.

(ii) For each ϕ ∈ K, there exists an aϕ ∈ N and a neighborhood Vϕ

of ϕ such that supp âϕ ⊂ U and âϕ = 1 on Vϕ by (i). We can choose
a finite number of elements ϕ1, . . . , ϕn ∈ K such that ∪n

i=1Vϕi ⊃ K.
Then, if we define eK ∈ N by 1 − eK = (1 − aϕ1) · · · (1 − aϕn), it is
easy to see that eK is a desired element.

(iii) Let x ∈ Bc be arbitrary, and put K := supp x̂. Then, by (ii),
there is an e ∈ N such that ê = 1 on K; hence, x = xe ∈ N . Thus, Bc

is contained in N .

Under the above definition of Segal algebras in B, all the theorems
(A, B, C and D) of the previous section are also valid for Segal algebras
in B. Although the proofs are similar to those in the case of Reiter’s
Segal algebras in L1(G), we show them for the sake of completeness.

3.5. Theorem A′ (cf., [2, 3, 5]). Let {eλ}λ∈Λ be a bounded
approximate identity of B composed of elements in Bc. If N is a dense
Banach ideal in B, the following five conditions are equivalent:

(a) N is a Segal algebra in B.
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(b) For any closed ideal J of N , there exists a closed ideal I of B
such that J = I ∩N .

(c) N = N0, where N0 is the norm closure of Bc in N .

(d) {eλ}λ∈Λ is an approximate identity of N .

(e) N = {ax : a ∈ B, x ∈ N}.

Proof. (a) ⇒ (b). Let J be a closed ideal of N . One can prove easily
by a routine argument that the closure J of J in B is a closed ideal
in B, and we omit the proof. For each x ∈ J ∩ N and ε > 0, there
exists an e ∈ N such that ‖x−xe‖N < ε/2. Choose a y ∈ J such that
‖x− y‖B ≤ ε/(2‖e‖N ). Then we have

‖x− ye‖N ≤ ‖x− xe‖N + ‖xe− ye‖N
≤ ε/2 + ‖x− y‖B‖e‖N
≤ ε/2 +

ε

2‖e‖N ‖e‖N
= ε.

The facts ye ∈ J and that J is closed in N yield x ∈ J , which implies
J ∩N ⊆ J . Since the reverse inclusion is obvious, we have J = J ∩N .

(b) ⇒ (c). Since N0 is a closed ideal of N , there exists by (b) a
closed ideal I of B such that N0 = I ∩ N . Since N0 contains Bc,
N0 and hence I is dense in B, which implies that I = B. Therefore,
N0 = I ∩ N = B ∩ N = N .

(c) ⇒ (d). Let x ∈ N and 0 < ε(≤ 1) be arbitrary. Then there is an
xε ∈ Bc such that ‖x− xε‖N < ε/(2(C0 + 1)), where C0 is a bound of
{eλ}λ∈Λ. Choose an e ∈ N and a λ0 ∈ Λ such that xεe = xε and

‖eλe− e‖B <
ε

2(‖xε‖N + 1)
(λ ≥ λ0).

Then we have

‖eλxε − xε‖N = ‖eλxεe− xεe‖N
≤ ‖eλe− e‖B‖xε‖N
≤ ε

2(‖xε‖N + 1)
‖xε‖N

≤ ε

2
(λ ≥ λ0),
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and hence we have

‖eλx− x‖N = ‖eλ(x− xε) + (eλxε − xε) + (xε − x)‖N
≤ ‖eλ‖B‖x− xε‖N + ‖eλxε − xε‖N + ‖xε − x‖N
≤ (C0 + 1)

ε

2(C0 + 1)
+ ε/2 = ε (λ ≥ λ0).

Thus, we get that {eλ}λ∈Λ is an approximate identity of N .

(d) ⇒ (e). Suppose (d). Then an application of the Cohen factoriza-
tion theorem yields (e).

(e) ⇒ (a). Let x ∈ N be arbitrary. By (e), there exist an a ∈ B and
a y ∈ N such that x = ay. For each ε > 0, there exists a λ ∈ Λ such
that ‖a− aeλ‖B < ε/‖y‖N . Then we have

‖eλx−x‖N = ‖eλay− ay‖N ≤ ‖y‖N‖a− aeλ‖B ≤ ‖y‖N (ε/‖y‖N ) = ε.

Since {eλ} ⊆ Bc ⊆ N , N has approximate units, and hence (a) holds.

3.6. Theorem B′. Let S be a Segal algebra in B.

(i) The ideal theory of S is the same as that of B. More precisely, if
I is a closed ideal of B, then I∩S is a closed ideal of S, and conversely
each closed ideal of S is of this form for a unique closed ideal I of B.

(ii) ΦB and ΦS are homeomorphic to each other. More precisely, the
map: ΦB → ΦS : ϕ → ϕ|S is a homeomorphism.

For proofs of this theorem, we refer to [2, 6].

3.7. Remark. Theorem B′ (i) does not necessarily hold for abstract
Segal algebras. In fact, N := L∞(T) is an abstract Segal algebra
(which is the same as a normed ideal) in B = L1(T) for the circle
group T. But the closed ideal C(T) of N cannot be represented in the
form N ∩ I with any closed ideal I of B (cf., [3, page 277]).

3.8. Theorem C′. (i) Let S be a Segal algebra in B, and let {eλ}λ∈Λ

be a bounded approximate identity of B composed of elements in Bc.
Then {eλ}λ∈Λ is an approximate identity of S which is bounded with
respect to the multiplication operator norm

‖x‖op := sup {‖xy‖S : y ∈ S, ‖y‖S ≤ 1} (x ∈ S).
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(ii) If a Segal algebra S in B has a bounded approximate identity,
then S = B holds.

Proof. (i) {eλ}λ∈Λ is an approximate identity of S by Theorem A′.
It is bounded with respect to the multiplication operator norm since,
for each λ0 ∈ Λ,

‖eλ0‖op = sup
x∈S,‖x‖S≤1

‖eλ0x‖S

≤ sup
x∈S,‖x‖S≤1

‖eλ0‖B‖x‖S

≤ sup
λ∈Λ

‖eλ‖B < ∞.

(ii) For the proof, we refer to [2].

3.9. Theorem D′. If (S1, ‖ ‖S1) and (S2, ‖ ‖S2) are Segal algebras
in B, then S := S1∩S2 is a Segal algebra in B with respect to the norm
‖ ‖S = ‖ ‖S1 + ‖ ‖S2 .

Proof. It is easy to see that (S, ‖ ‖S) is a dense Banach ideal in B, and
we omit a proof. If we take a bounded approximate identity {eλ}λ∈Λ of
B which is composed of elements in Bc by the condition (βB), then by
Theorem A′, {eλ}λ∈Λ is an approximate identity of (Si, ‖ ‖S), i = 1, 2.
Let x ∈ S and ε > 0 be arbitrary, and choose λi (i = 1, 2) such that
‖x− eλx‖Si ≤ ε/2 (λ ≥ λi) for i = 1, 2. Therefore, if we take a λ3 ∈ Λ
such that λ3 ≥ λi (i = 1, 2), then

‖x− xeλ‖S = ‖x− xeλ‖S1 + ‖x− xeλ‖S2

≤ ε/2 + ε/2 = ε (λ ≥ λ3).

Thus, {eλ}λ∈Λ is an approximate identity of (S, ‖ ‖S). Hence, the
assertion of the theorem follows from Theorem A′.

If S is a Segal algebra in B, we can identify ΦS with ΦB by the
homeomorphism ΦB → ΦS : ϕ → ϕ|S (cf., Theorem B′). By this
identification, the Gelfand transform of an element x ∈ S is just equal
to the Gelfand transform of x as an element of B.
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4. Multiplier algebras of Segal algebras in B.

4.1. Definition. Let S1 and S2 be Segal algebras in B. A map T of
S1 to S2 is called a multiplier of S1 to S2 if T is a bounded linear map
satisfying (Tx)y = x(Ty) (x, y ∈ S1). The set of all multipliers of S1

to S2 is denoted by M(S1,S2), and M(S1,S1) will simply be denoted
by M(S1).

4.2. Lemma (cf., [16, Theorem 1.2.2]). Let S1 and S2 be Segal
algebras in B, and let T be a linear map of S1 to S2. Then the following
conditions are equivalent:

(a) T ∈ M(S1,S2).

(b) There exists a unique continuous function σ on ΦB satisfying

T̂ x = x̂σ (x ∈ S1).

Furthermore, if S1 and S2 satisfy the conditions S2 ⊆ S1 and ‖x‖S1 ≤
‖x‖S2 (x ∈ S2), then (b) is equivalent to the following (b′).

(b′) There exists a unique bounded continuous function σ on ΦB

satisfying T̂ x = x̂σ (x ∈ S1).

Proof. (a) ⇒ (b). Let ϕ ∈ ΦB and x, y ∈ S1 be such that x̂(ϕ) = 0,
ŷ(ϕ) = 0. Since (Tx)y = x(Ty), it follows that

T̂ x(ϕ)

x̂(ϕ)
=

T̂ y(ϕ)

ŷ(ϕ)
.

For each ϕ ∈ ΦB, choose x ∈ S1 such that x̂(ϕ) = 0, and define

σ(ϕ) := T̂ x(ϕ)/x̂(ϕ).

The preceding equation shows that the definition is independent of x
and hence σ is a well-defined continuous function on ΦB. Moreover,
if x̂(ϕ) = 0 and ŷ(ϕ) = 0, then T̂ x(ϕ)ŷ(ϕ) = x̂(ϕ)T̂ y(ϕ) = 0 implies

that T̂ x(ϕ) = 0. Hence, the equation T̂ x(ϕ) = σ(ϕ)x̂(ϕ) is valid for
all ϕ ∈ ΦB and x ∈ S1. If τ is a continuous function on ΦB for which
T̂ x = τx̂ (x ∈ S1), then [σ(ϕ) − τ(ϕ)]x̂(ϕ) = 0 for all x ∈ S1 and
ϕ ∈ ΦB. This implies that σ(ϕ) = τ(ϕ) (ϕ ∈ ΦB). Thus σ is unique.
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(b) ⇒ (a). Since σ is a continuous function on ΦB such that T̂ x = σx̂
(x ∈ S1), it is easy to see that T satisfies the equation (Tx)y = x(Ty)
(x, y ∈ S1). The boundedness of T is an easy consequence of the routine
argument applying the closed graph theorem.

Suppose that S1 and S2 satisfy S2 ⊆ S1 and ‖x‖S1 ≤ ‖x‖S2 (x ∈ S2).
We set Kϕ,i := sup{|x̂(ϕ)| : x ∈ Si, ‖x‖Si ≤ 1} for each ϕ ∈ ΦB and
i = 1, 2. Then we have 0 < Kϕ,2 ≤ Kϕ,1 ≤ 1 (ϕ ∈ ΦB). For each
x ∈ S1 and ϕ ∈ ΦB,

|σ(ϕ)x̂(ϕ)| = |T̂ x(ϕ)| ≤ Kϕ,2‖Tx‖S2 ≤ Kϕ,2‖T ‖‖x‖S1.

In particular, restricting our attention to only those x ∈ S1 such that
‖x‖S1 ≤ 1, we obtain

|σ(ϕ)| ≤ inf {Kϕ,2‖T ‖/|x̂(ϕ)| : x̂(ϕ) = 0, ‖x‖S1 ≤ 1}
= Kϕ,2‖T ‖/ sup{|x̂(ϕ)| : x̂(ϕ) = 0, ‖x‖S1 ≤ 1}
=

Kϕ,2

Kϕ,1
‖T ‖ ≤ ‖T ‖.

Thus, ‖σ‖∞ ≤ ‖T ‖ < ∞ follows. This implies (b) ⇒ (b)′. The converse
is trivial.

4.3. Definition. Let S1 and S2 be Segal algebras in B. For each
T ∈ M(S1,S2) there exists a unique continuous function σ on ΦB such

that T̂ x = σx̂ (x ∈ S1) by Lemma 4.2. We denote this σ by T̂ . The

space of all T̂ of T ∈ M(S1,S2) will be denoted by M̂(S1,S2).

It is easy to see that the map T → T̂ is a bijection of M(S1,S2) to

M̂(S1,S2).

4.4. Lemma [1]. Suppose {eλ}λ∈Λ is a bounded approximate identity
of B composed of elements in Bc such that supλ∈Λ ‖eλ‖B < C0. For
every K ∈ K(ΦB), we can choose an eK ∈ Bc satisfying êK(ϕ) = 1
(ϕ ∈ K) so that supK∈K(ΦB) ‖eK‖B < C0.

In particular, {eK}K∈K(ΦB) is a bounded approximate identity of B
since B is Tauberian.

Proof. Put ε = C0 − supλ∈Λ ‖eλ‖B. For any K ∈ K(ΦB), there exist
a uK ∈ Bc and a λ0 ∈ Λ such that ûK = 1 on K and ‖uK−uKeλ0‖B <
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ε/2 by (αB) and (βB). Put eK := eλ0 + uK − uKeλ0 ∈ Bc. Then
êK(ϕ) = êλ0(ϕ) + ûK(ϕ)− ûK(ϕ)êλ0(ϕ) = 1 (ϕ ∈ K) and

‖eK‖B ≤ ‖eλ0‖B+‖uK−uKeλ0‖B ≤ sup
λ∈Λ

‖eλ‖B+ε/2 = C0−ε/2 < C0

hold. Thus, we get supK∈K(ΦB) ‖eK‖B < C0.

4.5. Proposition. Suppose that B has a bounded approximate
identity {eλ}λ∈Λ composed of elements in Bc such that supλ∈Λ ‖eλ‖B <
C0. Then, for any Segal algebra S in B, we have:

(i) Tx ∈ S, ‖Tx‖S ≤ C0‖T ‖‖x‖S (x ∈ S, T ∈ M(B)).

(ii) M̂(B) ⊆ M̂(S).

Proof. (i) Let T ∈ M(B), x ∈ Bc and ε > 0 be arbitrary. Put
Kx := supp x̂. Then, by Lemma 4.4, there exists an eKx ∈ Bc such
that ‖eKx‖B < C0 and êKx = 1 on Kx and

‖Tx‖S = ‖T (eKxx)‖S = ‖(TeKx)x‖S ≤ ‖TeKx‖B‖x‖S
≤ ‖eKx‖B‖T ‖‖x‖S ≤ C0‖T ‖‖x‖S.

Therefore, T |Bc is a bounded linear operator of Bc to Bc with respect
to the norm ‖ ‖S . Since Bc is dense in S, we can conclude that T |S is
a bounded linear operator of S of norm at most C0‖T ‖.

(ii) If T̂ ∈ M̂(B), we have T̂ x̂ ∈ Ŝ (x ∈ S) by (i). Therefore,

T̂ ∈ M̂(S) by Lemma 4.2.

In the rest of this paper, A stands for a regular Banach function al-
gebra on a locally compact, non-compact Hausdorff space X satisfying
the following conditions:

(αA) A is natural in the sense that any non-zero complex homomor-
phism ϕ of A is represented in the form ϕ(f) = f(x) (f ∈ A) by a
unique element x ∈ X .

(βA) A has a bounded approximate identity {eλ}λ∈Λ satisfying eλ ∈
Ac (λ ∈ Λ) and supλ∈Λ ‖eλ‖A < C0.

By Lemma 4.4, (βA) can be replaced by
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(β′
A) A is has a bounded approximate identity {eK}K∈K(X) satisfying:

eK ∈ Ac with eK(x) = 1 (x ∈ K), K ∈ K(X), and supK∈K(X) ‖eK‖A <
C0.

Obviously, the Banach function algebra (B̂, ‖ ‖B̂) on ΦB is of this
type. Under these circumstances, if S1 and S2 are Segal algebras in A,
the multiplier space of S1 to S2 is M(S1,S2) = {τ ∈ C(X) : fτ ∈ S2

(f ∈ S1)} with the operator norm ‖ ‖M(S1,S2). Analogously, the
multiplier algebra of a Segal algebra S is M(S) = {τ ∈ Cb(X) : fτ ∈ S
(f ∈ S)} with the operator norm ‖ ‖M(S).

In the following sections, we introduce new classes of Segal algebras
in A and investigate their properties in detail.

5. Segal algebras induced by local A-functions. I.

5.1. Definition. Let σ be a complex-valued continuous function
on X satisfying fσ ∈ A for all f ∈ Ac, where Ac = {f ∈ A :
supp f is compact in X}. We call such a σ a local A-function, and
the set of local A-functions is denoted by Aloc.

We remark that the terminology local A-function is proper since we
will see in Proposition 7.2 that “σ ∈ C(X) belongs to Aloc if and
only if for every x ∈ X there exists an f ∈ A such that σ = f on a
neighborhood of x.”

5.2. Examples. (i) If S is a Segal algebra in A, each σ ∈ M(S, A) is
a continuous function on X satisfying σf ∈ A (f ∈ S). Since Ac ⊆ S,
it follows that σ is a local A-function. In the same way, we have that
every σ ∈ M(S) is a bounded local A-function by Lemma 4.2.

Conversely, it turns out that every local A-function belongs to
M(S, A) for some Segal algebra S in A (Theorem 5.4 (ii)). Also, every
bounded local A-function belongs to M(S) for some Segal algebra S in
A (Corollary 6.3).

(ii) If f ∈ A and f(x) = 0 for all x ∈ X , then f−1 ∈ Aloc. Indeed,
for every x ∈ X there is a g ∈ A such that f−1 = g on a neighborhood
of x. Hence f−1 ∈ Aloc follows from Proposition 7.2.
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(iii) If X is a disjoint union of a family of open compact subsets
{Xλ : λ ∈ Λ} of X , then any function on X which is constant on each
Xλ is a local A-function. In fact, this follows from Proposition 7.2 since
A possesses local units (see the condition (β′

A)).

As a special case, when X is discrete, any complex function on X is
a local A-function.

5.3. Definition. For each complex continuous function τ on X and
a non-negative integer n, we put

Aτ(n) := {f ∈ A : fτk ∈ A (0 ≤ k ≤ n)}

‖f‖τ(n) :=
n∑

k=0

‖fτk‖A (f ∈ Aτ(n)).

Note that (Aτ(0), ‖ ‖τ(0)) is nothing but (A, ‖ ‖A).

5.4. Theorem. Suppose τ ∈ Aloc. Then we have:

(i) τ ∈ M(A) if and only if Aτ(1) = A.

(ii) For each positive integer n, (Aτ(n), ‖ ‖τ(n)) is a Segal algebra in
A and τ ∈ M(Aτ(n), A).

Proof. (i) Suppose τ ∈ M(A). Then fτ ∈ A (f ∈ A), and hence
Aτ(1) = A. Conversely, if Aτ(1) = A, we have fτ ∈ A (f ∈ A) and
τ ∈ M(A) follows.

(ii) It is easy to see that Aτ(n) is a linear subspace of A and ‖ ‖τ(n)
is a norm on Aτ(n). For each g ∈ A and f ∈ Aτ(n), we have (gf)τk =

g(fτk) ∈ A (k = 1, . . . , n) with ‖gf‖τ(n) =
∑n

k=0 ‖(gf)τk‖A ≤
‖g‖A‖f‖τ(n). That Aτ(n) is dense in A follows from the facts that
Ac ⊆ Aτ(n) and A satisfies (βA).

Next we will show that ‖ ‖τ(n) is complete. To see this, let {fi}∞i=1 be
a Cauchy sequence in Aτ(n). Then limi,j→∞ ‖fi − fj‖τ(n) = 0 implies

limi,j→∞ ‖fiτk − fjτ
k‖A = 0 for k = 0, . . . , n, and hence there exist

an f ∈ A and a gk ∈ A(1 ≤ k ≤ n) such that limi→∞ ‖fi − f‖A =
limi→∞ ‖fiτk − gk‖A = 0 (k = 1, . . . , n). Since limi→∞ fi(x) = f(x)
and limi→∞ fi(x)τ

k(x) = gk(x) (x ∈ X), it follows that fτk = gk ∈ A
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(k = 1, . . . , n), and hence f ∈ Aτ(n). Therefore,

lim
i→∞

‖fi − f‖τ(n) = lim
i→∞

n∑
k=0

‖fiτk − fτk‖A

= lim
i→∞

n∑
k=0

‖fiτk − gk‖A = 0.

Let {eλ}λ∈Λ be a bounded approximate identity of A composed of
elements of Ac. We show that {eλ}λ∈Λ is an approximate identity
of Aτ(n). Let f ∈ Aτ(n) be arbitrary. Since ‖eλf − f‖τ(n) =∑n

k=0 ‖eλ(fτk) − fτk‖A, we obtain the desired result by taking the
limit with respect to λ ∈ Λ.

We have shown that (Aτ(n), ‖ ‖τ(n)) is a dense Banach ideal with
an approximate identity, which implies the first assertion of (ii). That
τ ∈ M(Aτ(n), A) follows from τf ∈ A (f ∈ Aτ(n)).

5.5. Theorem. For f ∈ A such that supp f is σ-compact but not
compact, f /∈ ∩{Aτ(1) : τ ∈ Aloc} holds.

Proof. Since supp f is σ-compact, there exists a sequence {Kn}
of compact subsets of X such that supp f = ∪∞

n=1Kn. Let U1 be
a relatively compact open subset of X such that K1 ⊆ U1. Since
supp f is not compact, we can choose an n1 ∈ N (1 < n1) such that
∅ = ∪n1

i=1Ki \ U1. Let U2 be a relatively compact open subset of X
such that U1 ∪ (∪n1

i=1Ki) ⊆ U2. Suppose that we have chosen {nk}Nk=1

and {Uk}N+1
k=1 such that

1 < n1 < · · · < nN ,

∅ = ∪nk

i=1Ki \ Uk,

and

Uk ∪
(
∪nk

i=1 Ki

)
⊆ Uk+1 (1 ≤ k ≤ N).

Choose an nN+1 ∈ N(nN < nN+1) and a relatively compact open
subset UN+2 of X so that

∅ = ∪nN+1

i=1 Ki \ UN+1 and UN+1 ∪ (∪nN+1

i=1 Ki) ⊆ UN+2.
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By induction on n, we have an increasing sequence {Un} of relatively
compact open subsets ofX which constitutes an open covering of supp f
such that

supp f ∩ U1 � supp f ∩ U2 ⊆ supp f ∩ U2 � supp f ∩ U3 ⊆ · · · .

For each n, take an element yn ∈ supp f ∩ (Un+1 \ Un). Since
{x ∈ X : f(x) = 0} is dense in supp f and supp f ∩ (Un+1 \ Un)
is an open neighborhood of yn ∈ supp f , we can find an element
zn ∈ supp f ∩ (Un+1 \ Un) such that f(zn) = 0, and put

Gn = (Un+1 \ Un) ∩ {x ∈ X : f(x) = 0},

and we can choose an fn ∈ A so that fn(zn) = 1/f(zn) and supp fn ⊆
Gn by Lemma 3.4.

We next consider a complex function τ on X defined by

τ(x) =
∞∑

n=1

fn(x) (x ∈ X).

Since G1, G2, G3, · · · are mutually disjoint, τ is well defined. Here we
assert that supp τ = ∪∞

n=1supp fn. In fact, for each n ∈ N, we have

(1) τ(x) =

n∑
i=1

fi(x) (x ∈ Un+1),

and hence supp τ ∩ Un+1 = ∪n
i=1supp fi. From this, it follows that

supp τ ∩ (∪∞
n=1Un+1) = ∪∞

i=1supp fi and, with the relation supp τ ⊆
supp f ⊆ ∪∞

n=1Un+1, we have supp τ = ∪∞
i=1supp fi.

To see τ ∈ C(X), it suffices to show that τ is continuous at all points
of supp τ . If x ∈ supp τ , we have x ∈ supp fn for some n from above.
Since supp fn ⊂ Gn and τ = fn on Gn, τ is continuous at x.

If g ∈ Ac, supp g ∩ supp f is compact. Since {Un}∞n=1 is an open
covering of supp f , there is a positive integer n such that supp g ∩
supp f ⊆ Un+1. Then supp g ⊆ (Un+1 ∩ supp f) ∪ (X \ supp f) and
τ =

∑n
k=1 fk on Un+1 ∪ (X \ supp f) by (1). This implies that

τg = (
∑n

k=1 fk)g ∈ A, and hence τ ∈ Aloc.
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Finally we show f /∈ Aτ(1). Suppose on the contrary that f ∈
Aτ(1). Then τf ∈ A ⊆ C0(X), and hence there exists a compact
subset K of X such that |τ(x)f(x)| < 1/2 (x ∈ X \ K). Since
{Un ∪ (X \ supp f) : n = 1, 2, 3, . . .} is an increasing sequence of open
subsets of X which constitutes a covering of X , there exists an n0 ∈ N
such that K ⊆ Un0 ∪ (X \ supp f). Since zn0 /∈ Un0 ∪ (X \ supp f),
|τ(zn0)f(zn0)| < 1/2 must hold. On the other hand, |τ(zn0 )f(zn0)| =
|fn0(zn0)f(zn0)| = 1 holds by the definition of τ . Thus, we arrive at a
contradiction. Therefore, f /∈ Aτ(1).

5.6. Corollary. If X is a disjoint union of σ-compact open closed
subsets of X, then

Ac = ∩{Aτ(1) : τ ∈ Aloc}

holds.

Proof. Let f ∈ A \ Ac be arbitrary. To prove the corollary, it
suffices to show that f /∈ ∩{Aτ(1) : τ ∈ Aloc}. Suppose that X
is a disjoint union of a family {Xλ}λ∈Λ of σ-compact open closed
subsets of X . For each positive integer n, {x ∈ X : |f(x)| ≥ 1/n}
is compact and hence covered by a union of a finite subfamily of
{Xλ}λ∈Λ. Therefore, there is a countable subfamily {Xλn}∞n=1 such
that ∪∞

n=1Xλn ⊇ {x ∈ X : f(x) = 0}. In this case, each Xλn is σ-
compact and ∪∞

n=1Xλn is closed in X by the assumption on {Xλ}λ∈Λ.
From this, it follows that supp f is a closed subset of a σ-compact set
∪∞
n=1Xλn . Thus, supp f is σ-compact since a closed subset of a σ-

compact set is also σ-compact. Therefore, f /∈ ∩{Aτ(1) : τ ∈ Aloc}
from Theorem 5.5.

5.7. Remark. Corollary 5.6 is applicable for A with discrete X and
for A which is the Fourier algebra on a non-compact LCA group.

5.8. Proposition. For a Segal algebra S in A, the following are
equivalent.

(a) M(S, A) = M(A).

(b) There is no τ ∈ Aloc satisfying S ⊂ Aτ(1) � A.
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Proof. (a) ⇒ (b). If (b) does not hold, there is a τ ∈ Aloc satisfying
S ⊂ Aτ(1) � A. Then τ ∈ M(S, A) \ M(A) by Theorem 5.4, that is,
(a) does not hold.

(b) ⇒ (a). If (a) does not hold, there is a τ ∈ M(S, A)\M(A). Then
it is easy to see by Theorem 5.4 that S ⊂ Aτ(1) � A. Thus (b) does
not hold.

5.9. Corollary. Let A be the Fourier algebra on a non-compact and
non-discrete LCA group G. Suppose that S = Sp(Ĝ) (1 < p < ∞) or

S = Ap(Ĝ) (1 ≤ p < ∞) (cf., Example 2.2). Then there is no τ ∈ Aloc

satisfying Ŝ ⊆ Aτ(1) � A.

Proof. Since M(S, L1(Ĝ)) = M(L1(Ĝ)) holds (see [16, Corollary

3.5.1] for S = Sp(Ĝ) and [7, Theorem 3.4] for S = Ap(Ĝ)), we have
the assertion of the corollary from Proposition 5.8.

In contrast to Corollary 5.9, for S = Aν,p(Ĝ) of Example 2.2 (3), we
have the following result.

5.10. Proposition. Let A be the Fourier algebra on an infinite dis-
crete abelian group G, and suppose that τ ∈ Aloc with 0 < infx∈Gτ(x) ≤
supx∈G τ(x) = ∞. We define an unbounded Radon measure ν on G by
ν := τmG, where mG is the normalized Haar measure on G. Then we
have Âν,1(Ĝ) ⊆ Aτ(1) � A.

Proof. The first inclusion follows from

f ∈ Âν,1(Ĝ) ⇐⇒
∫
G

|f(x)| dτ(x)mG(x) < ∞
=⇒ fτ ∈ L1(G) ⊆ L2(G) ⊆ A
=⇒ f ∈ Aτ(1).

Since τ /∈ M(A), Aτ(1) � A follows from Theorem 5.4 (i).
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6. Segal algebras induced by local A-functions. II.

6.1. Definition. Suppose τ ∈ Aloc, and define Aτ(∞) by

Aτ(∞) :=
{
f ∈ A : fτk ∈ A (k = 0, 1, 2, . . . ),

∞∑
k=0

‖fτk‖A < ∞
}
,

and put

‖f‖τ(∞) :=

∞∑
k=0

‖fτk‖A (f ∈ Aτ(∞)).

6.2. Theorem. Let τ ∈ Aloc with ‖τ‖∞ < 1/C0, where C0 is the
constant in (βA). Then we have the following:

(i) (Aτ(∞), ‖ ‖τ(∞)) is a Segal algebra in A.

(ii) τ ∈ M(Aτ(∞)) and ‖τ‖M(Aτ(∞)) ≤ 1.

(iii) If τ /∈ M(A), we have Aτ(∞) � A.

Proof. (i) It is easy to see that Aτ(∞) is a linear subspace of A
and ‖ ‖τ(∞) is a norm on Aτ(∞). For each g ∈ A and f ∈ Aτ(∞),

(gf)τk = g(fτk) ∈ A (k = 0, 1, 2, . . . ) hold. Since

∞∑
k=0

‖(gf)τk‖A =

∞∑
k=0

‖g(fτk)‖A ≤
∞∑
k=0

‖g‖A‖fτk‖A

= ‖g‖A‖f‖τ(∞) < ∞,

we have gf ∈ Aτ(∞) and ‖gf‖τ(∞) ≤ ‖g‖A‖f‖τ(∞). The space
Aτ(∞) is dense in A since Ac ⊆ Aτ(∞). In fact, if f ∈ Ac, then

fτk ∈ A (k = 1, 2, 3, . . . ) holds by the definition of local A-functions.
Put K := supp f . By the condition (β′

A), we have an eK ∈ Ac with
eK(x) = 1 on K and ‖eK‖A < C0. If we put g = eKτ , we have
‖g‖∞ < 1−ε for some ε > 0. By the spectral radius formula, there is an

n0 ∈ N such that ‖gn0‖1/n0

A < 1− ε. Since fτk = fgk (k = 0, 1, 2, . . . ),
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we have

∞∑
k=0

‖fτk‖A =

∞∑
k=0

‖fgk‖A =

∞∑
j=0

n0−1∑
k=0

‖fgk+jn0‖A

≤
∞∑
j=0

‖gn0‖jA
( n0−1∑

k=0

‖fgk‖A
)

≤
∞∑
j=0

((1− ε)n0)j
( n0−1∑

k=0

‖fgk‖A
)

< ∞.

Hence, f ∈ Aτ(∞). To see ‖ ‖τ(∞) is complete, let {fn} be a Cauchy
sequence in Aτ(∞). Then

‖fn − fm‖τ(∞) =

∞∑
k=0

‖fnτk − fmτk‖A −→ 0 (n,m → ∞).

It follows that, for each k(k = 0, 1, 2, . . . ), {fnτk} is a Cauchy sequence
in A, and so there exists a gk ∈ A such that limn→∞ ‖fnτk − gk‖A = 0.
Since g0(x) = limn→∞ fn(x) and gk(x) = limn→∞ fn(x)τ

k(x) =
g0(x)τ

k(x) (x ∈ X), we get g0τ
k = gk ∈ A (k = 1, 2, 3, . . . ).

Now let us show that g0 ∈ Aτ(∞). Since {fn} is a Cauchy sequence
in Aτ(∞), it forms a bounded set in Aτ(∞), that is, there is an M > 0

such that
∑∞

k=0 ‖fnτk‖A ≤ M (n = 0, 1, 2, . . . ). For each k0 ∈ N, if

we choose an n0 ∈ N so that
∑k0

k=0 ‖g0τk − fn0τ
k‖A < 1, we have

k0∑
k=0

‖g0τk‖A ≤
k0∑
k=0

‖g0τk − fn0τ
k‖A +

k0∑
k=0

‖fn0τ
k‖A < 1 +M,

which implies
∑∞

k=0 ‖g0τk‖A ≤ 1 +M and hence g0 ∈ Aτ(∞).

We claim that ‖fn − g0‖τ(∞) → 0 (n → ∞). Given ε > 0, let n1 ∈ N
be such that ‖fn − fn1‖τ(∞) < ε/3 (n1 ≤ n). Choose a k1 ∈ N so that∑∞

k=k1+1 ‖g0τk‖A < ε/6 and
∑∞

k=k1+1 ‖fn1τ
k‖A < ε/6. Choose also

an n2 ∈ N (n2 ≥ n1) so that
∑k1

k=0 ‖g0τk − fnτ
k‖A < ε/3 (n ≥ n2).
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Then we have

‖fn − g0‖τ(∞) ≤
k1∑
k=0

‖fnτk − g0τ
k‖A

+

∞∑
k=k1+1

(‖fnτk − fn1τ
k‖A + ‖g0τk‖A + ‖fn1τ

k‖A
)

≤ 1

3
ε+

1

3
ε+

1

6
ε+

1

6
ε = ε (n ≥ n2).

Hence, limn→∞ ‖fn − g0‖τ(∞) = 0. Therefore, ‖ ‖τ(∞) is complete.

Finally, let {eλ}λ∈Λ be a bounded approximate identity of A com-
posed of elements in Ac with a bound C0 (see (βA)). We will observe
that {eλ}λ∈Λ is an approximate identity of Aτ(∞). Let f ∈ Aτ(∞)

and ε > 0 be arbitrary. Choose a positive integer n0 such that
(C0 + 1)

∑∞
k=n0+1 ‖fτk‖A < ε/2. Choose a λ0 ∈ Λ such that∑n0

k=0 ‖eλfτk − fτk‖A < ε/2 (λ ≥ λ0). Then we obtain

‖eλf − f‖τ(∞) ≤
n0∑
k=0

‖eλfτk − fτk‖A

+

∞∑
k=n0+1

‖eλfτk‖A +

∞∑
k=n0+1

‖fτk‖A

≤ ε/2 + (C0 + 1)

∞∑
k=n0+1

‖fτk‖A ≤ ε (λ ≥ λ0).

Thus, (Aτ(∞), ‖ ‖τ(∞)) is a dense Banach ideal of A with an approxi-
mate identity, which implies (i).

(ii) If f ∈ Aτ(∞), then fτ ∈ Aτ(∞) and ‖fτ‖τ(∞) ≤ ‖f‖τ(∞). So
τ ∈ M(Aτ(∞)) and ‖τ‖M(Aτ(∞)) ≤ 1.

(iii) Let τ /∈ M(A). Then we have Aτ(1) � A by Theorem 5.4 (i).
Since Aτ(∞) ⊆ Aτ(1), it follows that Aτ(∞) � A.

6.3. Corollary. Let σ ∈ Aloc ∩ Cb(X). Then σ ∈ M(S) for some
Segal algebra S in A.

Proof. Put τ = σ/C, where C = C0(‖σ‖∞ + 1). Then we have
τ ∈ Aloc with ‖τ‖∞ < 1/C0. By Theorem 6.2 (ii), Aτ(∞) is a Segal
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algebra in A with τ ∈ M(Aτ(∞)), and hence σ = Cτ ∈ M(S) with
S = Aτ(∞).

6.4. Theorem. Suppose that S is a Segal algebra in A satisfying
M(S) � M(A). If σ ∈ M(S) \ M(A), then there exists a τ ∈ Aloc

which satisfies:

(i) ‖τ‖∞ < 1/C0 and S ⊆ Aτ(∞) � A,

(ii) σ ∈ M(Aτ(∞))).

Proof. σ ∈ Aloc as we saw in Example 5.2 (i). Choose an ε > 0 so
that ‖εσ‖∞ < 1/C0 and ‖σ‖op := sup0	=f∈S ‖fσ‖S/‖f‖S < 1/ε. Put
τ = εσ. Then τ /∈ M(A), and we have by Theorem 6.2 that Aτ(∞) � A
with τ ∈ M(Aτ(∞)). Hence, σ ∈ M(Aτ(∞)). We claim that S ⊆ Aτ(∞).

To see this, let f ∈ S be arbitrary. Since fτk = εk(fσk) ∈ S ⊆ A for
all k = 0, 1, 2, . . . , and

∞∑
k=0

‖fτk‖A ≤
∞∑
k=0

‖fτk‖S =

∞∑
k=0

‖f(εkσk)‖S

≤ ‖f‖S
∞∑
k=0

(
‖εσ‖op

)k

< ∞.

It follows that f ∈ Aτ(∞). Hence, S ⊆ Aτ(∞) as required.

6.5. Proposition. Suppose τ ∈ M(A) with ‖τ‖∞ < 1/C0, and let

ρτ = limn→∞ ‖τn‖1/nM(A), the spectral radius of τ . Then we have the

following.

(i) Aτ(∞) coincides with A for ρτ < 1.

(ii) Aτ(∞) is a proper Segal algebra in A satisfying M(A) �
M(Aτ(∞)) for ρτ > 1.

Proof. (i) By the condition on τ and the spectral radius formula, there

exists an n0 ∈ N and an ε (0 < ε < 1) such that ‖τn0‖1/n0

M(A) ≤ (1 − ε).
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Then, for each f ∈ A, we have

∞∑
n=0

‖fτn‖A =

∞∑
j=0

n0−1∑
k=0

‖τn0j+kf‖A

≤
∞∑
j=0

‖τn0‖jM(A)

n0−1∑
k=0

‖fτk‖A

≤
∞∑
j=0

(1− ε)n0j
n0−1∑
k=0

‖fτk‖A < ∞.

Hence, f ∈ Aτ(∞). Thus, Aτ(∞) = A holds.

(ii) Suppose that M(A) � M(Aτ(∞)) does not hold. Then by
Proposition 4.5 (ii), we have M(A) = M(Aτ(∞)). In this case two
norms ‖ ‖M(Aτ(∞)) and ‖ ‖M(A) are equivalent and ‖τ‖M(Aτ(∞)) ≤ 1 by
Theorem 6.2 (ii), and hence we arrive at the following contradiction:
1 < ρτ = limn→∞(‖τn‖M(A))

1/n = limn→∞(‖τn‖M(Aτ(∞)))
1/n ≤ 1.

Thus, we have M(A) � M(Aτ(∞)), and this also implies Aτ(∞) � A.

6.6. Remarks. Suppose that A is the Fourier algebra on a non-
compact LCA group G. In this case we note that, for any ε > 0, we
can set a C0 in the condition (βA)

′ so that 1 < C0 < 1 + ε by [20,
Theorem 2.6.8].

(i) There exists a σ ∈ M(A) such that ρσ = 2 and −1 ≤ σ(g) ≤ 1
for all g ∈ G (cf., the proof of [20, Theorem 5.3.4]). Put τ := 2σ/3.
Then we have ρτ = 4/3 and ‖τ‖∞ ≤ 2/3. To this τ we can apply
Proposition 6.5 (ii).

(ii) There exists a τ ∈ M(A) such that 0 < infx∈G |τ(x)| and
τ−1 /∈ M(A) by [20, Theorem 5.3.4]. But, in this case, τ−1 ∈ Aloc

(Example 5.2 (ii)), and by Corollary 6.3, there exists a Segal algebra S
in A such that τ−1 ∈ M(S).

7. Characterizations of local A-functions. In the rest of this
paper we study BSE-1 and BED-properties of commutative Banach
algebras. We now give some definitions and notations for later use.

For a subset F of X , span (F ) is a linear span of F in A∗, the
dual space of A. Any element p ∈ span (F ) is represented by p =
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∑
x∈F p̂(x)δx, where p̂(x) = 0 except for a finite number of x in F and

δx(f) = f(x) (f ∈ A, x ∈ X). For a complex-valued function τ on F ,
we define τp by τp :=

∑
x∈F τ(x)p̂(x)δx ∈ span (F ).

For σ ∈ C(X) and a proper subset F of X , define

‖σ‖BSE (S) : = sup

{∣∣∣∣ ∑
x∈X

p̂(x)σ(x)

∣∣∣∣ : p ∈ span (X), ‖p‖S∗ ≤ 1

}
,

‖σ‖BSE (S),F : = sup

{∣∣∣∣ ∑
x∈X

p̂(x)σ(x)

∣∣∣∣ : p ∈ span (X \ F ), ‖p‖S∗ ≤ 1

}
.

We define CBSE (S)(X) and C0
BSE (S)(X) by

CBSE (S)(X) : = {σ ∈ C(X) : ‖σ‖BSE (S) < ∞},
C0

BSE (S)(X) : = {σ ∈ CBSE (S)(X) : lim
K∈K(X)

‖σ‖BSE (S),K = 0}.

Then (CBSE (S)(X), ‖ ‖BSE (S)) is a Banach function algebra on X , and
C0

BSE (S)(X) is its closed ideal. We say that S is BSE if CBSE (S)(X) =

M(S), and BED if C0
BSE (S)(X) = S.

For simplicity, we write ‖σ‖BSE, ‖σ‖BSE,F , CBSE(X) and C0
BSE(X) in-

stead of ‖σ‖BSE(S), ‖σ‖BSE(S),F , CBSE (S)(X) and C0
BSE (S)(X), respec-

tively, in the case of S = A. For the details of these and related subjects
we refer to [14, 21].

The next lemma will be applied in this section and in Section 10.

7.1. Lemma. Let E be a non-empty closed subset of X. Put
I(E) = {f ∈ A : f(x) = 0 (x ∈ E)}. Then we have the following.

(i) ‖p‖(A/I(E))∗ = ‖p‖A∗ (p ∈ span (E)).

(ii) ‖τ |E‖BSE (A/I(E)) = ‖τ‖BSE,X\E (τ ∈ C(X)).

Proof. (i) Suppose p ∈ span (E). Then we have

‖p‖(A/I(E))∗ = sup

{∣∣∣∣ ∑
x∈E

p̂(x)f(x)

∣∣∣∣ : f ∈ A, ‖f + I(E)‖A/I(E) ≤ 1

}

= sup

{∣∣∣∣ ∑
x∈E

p̂(x)f(x)

∣∣∣∣ : f ∈ A, ‖f‖A ≤ 1

}
= ‖p‖A∗ .



SEGAL ALGEBRAS 563

(ii) Suppose τ ∈ C(X). Then we have, using (i),

‖τ |E‖BSE (A/I(E))

= sup

{∣∣∣∣ ∑
x∈E

p̂(x)τ(x)

∣∣∣∣ : p ∈ span (E), ‖p‖(A/I(E))∗ ≤ 1

}

= sup

{∣∣∣∣ ∑
x∈E

p̂(x)τ(x)

∣∣∣∣ : p ∈ span (E), ‖p‖A∗ ≤ 1

}

= ‖τ‖BSE,X\E .

7.2. Proposition. Let τ be a complex-valued continuous function
on X. The following conditions are equivalent:

(a) τ ∈ Aloc.

(b) For each positive integer n, (Aτ(n), ‖ ‖τ(n)) is a Segal algebra in
A.

(c) There exists a Segal algebra S in A such that τ ∈ M(S, A).
(d) For every non-empty compact subset K of X, there is an f ∈ A

such that τ(x) = f(x) (x ∈ K).

(e) For any x ∈ X, there exists an f ∈ A such that τ = f on a
neighborhood of x.

If τ ∈ Cb(X), each of the above conditions is equivalent to the following
(c)′.

(c)′ There exists a Segal algebra S in A such that τ ∈ M(S).

Proof. (a) ⇒ (b). This follows from Theorem 5.4 (ii).

(b) ⇒ (c). Suppose that (b) holds. We have τ ∈ M(Aτ(1), A) and (c)
holds with S = Aτ(1).

(c)⇒ (d). Suppose (c). For eachK ∈ K(X), we have an eK ∈ Ac ⊆ S
with eK = 1 on K by (β′

A). Put f = τeK . Then f ∈ A by (c), and
f(x) = τ(x)eK (x) = τ(x) for all x ∈ K.

(d) ⇒ (e). Given x ∈ X , choose a compact neighborhood Ux of x.
By (d), there exists an f ∈ A such that τ = f on Ux.

(e) ⇒ (a). Let f ∈ Ac be arbitrary. Then fτ belongs locally to A
at any point x ∈ X and at infinity. Since A has local units with small
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supports by Lemma 3.4 (i), it is easy to see that fτ ∈ A by applying
localization lemma [18, Lemma 2.1.8]. Hence, τ ∈ Aloc.

Further, if τ ∈ Cb(X), we see that (a) and (c)′ are equivalent by
Example 5.2 (i) and Corollary 6.3.

The proof of the next lemma is almost the same as that of Lemma
1 (i) of [21], and we omit its proof.

7.3. Lemma. Let σ1, σ2 ∈ C(X) and F be a proper subset of X
such that ‖σi‖BSE,F < ∞ (i = 1, 2). Then we have

‖σ1σ2‖BSE,F ≤ ‖σ1‖BSE,F ‖σ2‖BSE,F .

7.4. Theorem. Let A be the Fourier algebra on a non-compact
LCA group G. For any continuous function σ on G, the following are
equivalent:

(a) σ ∈ Aloc.

(b) ‖σ‖BSE,G\K < ∞ (∅ = K ∈ K(G)).

(c) For every x ∈ G, there is a compact neighborhood V of x such
that ‖σ‖BSE,G\V < ∞.

Proof. (a) ⇒ (b). Let K be a non-empty compact subset of G. Then
there is an eK ∈ Ac such that eK = 1 on K. Suppose that σ ∈ Aloc.
Then σeK ∈ A by the definition of local A-functions, and hence

‖σ‖BSE,G\K = sup

{∣∣∣∣ ∑
x∈K

p̂(x)σ(x)

∣∣∣∣ : p ∈ span (K), ‖p‖A∗ ≤ 1

}

≤ sup

{∣∣∣∣ ∑
x∈G

p̂(x)σ(x)eK (x)

∣∣∣∣ : p ∈ span (G), ‖p‖A∗ ≤ 1

}

= ‖σeK‖BSE < ∞.

(b) ⇒ (c). Trivial.

(c) ⇒ (a). Let x ∈ G be given arbitrarily. By (c) there is a compact
neighborhood V of x such that ‖σ‖BSE,G\V < ∞. By Lemma 7.1,
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we have ‖σ|V ‖BSE (A/I(V )) = ‖σ‖BSE,G\V < ∞, and by [14, Theorem

5.2] there is an f ∈ A such that f = σ on V . Then (a) follows from
Proposition 7.2.

8. Segal algebras induced by local A-functions. III. In this
section, we introduce a notion “rank n (0 ≤ n ≤ ∞) local A-function.”
That τ ∈ Aloc is of rank n will give useful information on Aτ(n) and
M(Aτ(n)).

8.1. Definition. For τ ∈ Aloc, we say τ is a rank 0 local A-function
if A = Aτ(1), and a rank n (1 ≤ n) local A-function if

A � · · · � Aτ(n) = Aτ(n+1).

Further, if τ is not a local A-function of finite rank, that is, Aτ(k) �
Aτ(k+1) for all k = 0, 1, 2, . . . , then we call τ a rank ∞ local A-function.

We remark that Theorem 5.4 (i) implies that τ ∈ Aloc is a rank 0 local
A-function if and only if τ ∈ M(A). Here, we introduce the following
notation:

An
loc := {τ ∈ Aloc : τ is a rank n local A-function}

for each n (0 ≤ n ≤ ∞). In this case, we have a disjoint union
representation of Aloc: Aloc = ∪∞

k=0A
k
loc ∪A∞

loc.

8.2. Proposition. Suppose τ ∈ Aloc.

(i) If τ is a rank n (0 ≤ n < ∞) local A-function, then we have
Aτ(n) = Aτ(n+1) = Aτ(n+2) = · · · , and τ ∈ M(Aτ(n)). In particular,
we have ‖τ‖∞ < ∞ by Lemma 4.2.

(ii) If ‖τ‖∞ = ∞, then τ is a rank ∞ local A-function.

Proof. (i) Let τ be a rank n local A-function. If f ∈ Aτ(n+1),
then we have fτ ∈ Aτ(n) = Aτ(n+1), and hence f ∈ Aτ(n+2). This
implies Aτ(n+1) ⊆ Aτ(n+2). Since Aτ(n+2) ⊆ Aτ(n) is obvious, the
equality Aτ(n+1) = Aτ(n+2) holds. In the same way, we have Aτ(n+2) =
Aτ(n+3) = Aτ(n+4) = · · · .
Moreover, since fτ ∈ Aτ(n) (f ∈ Aτ(n)), it follows that τ is an element

of M(Aτ(n)).
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(ii) Since a finite rank local A-function must be a bounded function
on X , (ii) follows from (i).

In the rest of this section, we consider the following problems.

(i) For a given natural number n, are there rank n local A-functions?

(ii) For a given natural number n, how can we construct a rank n
local A-function?

Put Lip1(R) = {f ∈ Cb(R) : ρ(f) < ∞} and Lip01(R) = {f ∈
Lip1(R) ∩ C0(R) : limM→∞ ρM (f) = 0}, where

ρ(f) = sup

{∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ : −∞ < x < y < ∞
}
,

ρM (f) = sup

{∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ : x = y, |x|, |y| ≥ M

}
.

Then Lip01(R) is a regular semi-simple Banach function algebra under
the usual pointwise addition, multiplication, scalar product and the
norm ‖f‖Lip1

= ‖f‖∞ + ρ(f). We can easily show with a routine
argument that the Gelfand space of Lip01(R) is naturally identified
with R, and the Gelfand transform of Lip01(R) is the identity mapping.
Moreover, Lip01(R) satisfies the conditions (αA) and (βA) (cf., [14]).

8.3. Theorem. Suppose A = Lip01(R). Then we have the following.

(i) M(A) = Lip1(R).

(ii) ∅ = Aloc ∩ Cb(R) \M(A) = A1
loc.

Proof. (i) The inclusion (CBSE(R) =)M(A) ⊆ Lip1(R) holds due to
the proof of Theorem 5.9 in [14]. To prove the reverse inclusion, let
f ∈ A and g ∈ Lip1(R) be arbitrary. Then fg ∈ C0(R) and

ρ(fg) = sup

{∣∣∣∣f(y)g(y)− f(x)g(x)

y − x

∣∣∣∣ : −∞ < x < y < ∞
}

≤ sup

{
|f(y)|

∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣
+

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣|g(x)| : −∞ < x < y < ∞
}

≤ ‖f‖∞ρ(g) + ρ(f)‖g‖∞ < ∞,
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and

ρM (fg) ≤ sup

{
|f(y)|

∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣
+

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣|g(x)| : x = y, |x|, |y| ≥ M

}
≤ sup

|y|≥M

|f(y)|ρ(g) + ρM (f)‖g‖∞ −→ 0 (M → ∞).

Therefore, fg ∈ A. Hence, g ∈ M(A).

(ii) Let σ be a continuously differentiable function on R satisfying
σ(x) = |x| sinx2/(1 + |x|)3/2 (|x| ≥ 1) and |σ′(x)| ≤ 1 (|x| ≤ 1). Then
it is easy to see that σ ∈ Aloc ∩Cb(R). Further, since

|σ′(x)| =
∣∣∣∣ 3
2 (1 + |x|)1/2(|x| sinx2)− (1 + |x|)3/2(sinx2 + 2x2 cosx2)

(1 + |x|)3
∣∣∣∣

if |x| ≥ 1,

we have σ′ /∈ Cb(R). Hence σ /∈ Lip1(R) = M(A). Thus, we have
σ ∈ Aloc ∩ Cb(R) \M(A).

To show the equality in (ii), let τ ∈ Aloc∩Cb(R)\M(A) and f ∈ Aτ(1)

be arbitrary. Then fτ ∈ A and

(2)

ρ(fτ) = sup

{∣∣∣∣ (fτ)(y)− (fτ)(x)

y − x

∣∣∣∣ : −∞ < x < y < ∞
}

= sup

{∣∣∣∣f(y)τ(y)− τ(x)

y − x
+

f(y)− f(x)

y − x
τ(x)

∣∣∣∣ :
−∞ < x < y < ∞

}
< ∞.

Since f ∈ A and τ ∈ Cb(R), sup{|[f(y)− f(x)]/(y − x)τ(x)| : −∞ <
x < y < ∞} < ∞ follows, and with (2), we get

(3) sup

{∣∣∣∣f(y)τ(y)− τ(x)

y − x

∣∣∣∣ : −∞ < x < y < ∞
}

< ∞.
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It follows from (2) and (3) that
(4)

ρ(fτ2) = sup

{∣∣∣∣(fτ2)(y)− (fτ2)(x)

y − x

∣∣∣∣ : −∞ < x < y < ∞
}

= sup

{∣∣∣∣(fτ)(y) − (fτ)(x)

y − x
τ(y) +

(
f(x)

τ(y) − τ(x)

y − x

)
τ(x)

∣∣∣∣ :
−∞ < x < y < ∞

}
< ∞.

Furthermore, as fτ ∈ A, we have

(5)

ρM (fτ) = sup

{∣∣∣∣(fτ)(y) − (fτ)(x)

y − x

∣∣∣∣ : x = y, |x|, |y| ≥ M

}

= sup

{∣∣∣∣f(y)τ(y)− τ(x)

y − x
+

f(y)− f(x)

y − x
τ(x)

∣∣∣∣ :
x = y, |x|, |y| ≥ M

}
−→ 0 (M → ∞).

Since sup{|[f(y)− f(x)]/(y − x)τ(x)| : x = y, |x|, |y| ≥ M} → 0
(M → ∞), we have by (5) that

(6) sup

{∣∣∣∣f(y)τ(y)− τ(x)

y − x

∣∣∣∣ : x = y, |x|, |y| ≥ M

}
−→ 0 (M → ∞).

It follows from (5) and (6) that

ρM (fτ2) = sup

{∣∣∣∣(fτ2)(y)− (fτ2)(x)

y − x

∣∣∣∣ : x = y, |x|, |y| ≥ M

}(7)

= sup

{∣∣∣∣(fτ)(y) − (fτ)(x)

y − x
τ(y)

+

(
f(x)

τ(y) − τ(x)

y − x

)
τ(x)

∣∣∣∣ :
x = y, |x|, |y| ≥ M

}
−→ 0 (M → ∞).

From (4) and (7), τ2f ∈ A follows. Thus, we obtain that Aτ(1) = Aτ(2).
Moreover, since τ /∈ M(A), it follows from Theorem 5.4 (i) that
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Aτ(1) � A, and hence τ is a rank 1 local A-function. Thus, we conclude
that Aloc ∩ Cb(R) \ M(A) ⊆ A1

loc. The reverse inclusion is trivial, so
the equality holds.

8.4. Theorem. Suppose that A = A(G) is the Fourier algebra on a
non-compact LCA group G. Then there exists a rank 1 local A-function.

8.5. Lemma. Let G = G1×G2 be the direct product of LCA groups
G1 and G2. Let π1 be the natural projection of G onto G1. Let A(G1)
be the Fourier algebra on G1. For any continuous function σ on G1, put
σ̃ := σ ◦ π1. Suppose that σ ∈ A(G1)loc. Then we have the following.

(i) σ̃ ∈ Aloc.

(ii) σ ∈ M(A(G1)) if and only if σ̃ ∈ M(A).

Proof. (i) Let K ∈ K(G) be given arbitrarily. Put K1 = π1(K). Then
K1 is compact. By Proposition 7.2 there is an f ∈ A(G1) such that

f = σ on K1. It is easy to see that f̃ ∈ M(A) and f̃ = σ̃ on K. For

a function eK in Ac such that eK = 1 on K, we have f̃ eK ∈ A with
f̃ eK = σ̃ on K. Thus, σ̃ ∈ Aloc follows from Proposition 7.2, again.

(ii) It is easy to see that σ̃ ∈ M(A(G1)) for a σ ∈ M(A). Conversely,
suppose that σ̃ ∈ M(A). Since σ̃ is constant on each coset of G2, σ̃

is the Fourier-Stieltjes transform of a measure μ̃ ∈ M(Ĝ) concentrated

in Ĝ1 × {0} by [20, Theorem 2.7.1]. Define a measure μ by μ(E) =

μ̃(E × {0}) (E : Borel set of Ĝ1). Then we have μ ∈ M(Ĝ1) with
μ̂ = σ. Hence, σ ∈ M(A(G1)).

8.6. Lemma. If G is a non-compact LCA group which has a compact
open subgroup G0, then there exists a function φ ∈ Aloc such that

(i) φ is constant on each coset of G0, and φ(x) ∈ {−1, 1} for all
x ∈ G,

(ii) φ /∈ M(A),

(iii) φ2 ∈ M(A).

Proof. G/G0 is an infinite discrete group and hence not a Sidon
set. Therefore, there exists a function ϕ on G/G0 into {−1, 1} such
that ϕ /∈ M(A(G/G0)) by [20, Theorem 5.7.4]. Let π be the natural
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projection of G onto G/G0. Put φ = ϕ ◦ π. Then we see the following.

(i) Since φ is constant on each coset of G0, we have φ ∈ Aloc by
Proposition 7.2.

(ii) That φ /∈ M(A) follows from ϕ /∈ M(A(G/G0)) is well known,
and we omit the proof.

(iii) φ2 = 1G ∈ M(A).

8.7. Lemma. Let A = A(R) be the Fourier algebra on R. Suppose
ϕ is a C∞-function on R such that ϕ(x) = 1 if x ∈ [1,∞) and
ϕ(x) = −1 if x ∈ (−∞,−1], then we have ϕ /∈ M(A) and ϕ2 ∈ M(A).

Proof. It is easy to see that ϕ ∈ Aloc by Proposition 7.2. To
show ϕ /∈ M(A), suppose on the contrary that ϕ ∈ M(A). Then
1 + ϕ ∈ M(A). Since 1 + ϕ(x) = 0 for all x ≤ −1, it follows from the
theorem of F. and M. Riesz that 1 + ϕ ∈ A and so 1 + ϕ vanishes at
infinity. But since 1+ϕ = 2 for all x ≥ 1, we arrive at a contradiction.
On the other hand, since ϕ2 − 1 is a C∞-function on R with compact
support, it follows that ϕ2 − 1 ∈ A and so ϕ2 ∈ M(A).

8.8. Lemma. Suppose G = Rd × L, where d ≥ 1 and L is an
LCA group. Then there exists a φ ∈ Aloc such that φ /∈ M(A) and
φ2 ∈ M(A).

Proof. We write G = r × H , where H = Rd−1 × L, and let π be
the natural projection of G onto R. Let ϕ be the function on R in
Lemma 8.7, and put φ := ϕ ◦ π. Then we can conclude by Lemmas
8.5 and 8.7 that φ is a function in Aloc which satisfies φ /∈ M(A) and
φ2 ∈ M(A).

Proof of Theorem 8.4. By the structure theorem of LCA groups (cf.,
[12, Theorem 24.30]), G is isomorphic to Rd × L, where 0 ≤ d and
L is an LCA group which has a compact open subgroup. Then, using
Lemma 8.6, if d = 0 and Lemma 8.8 if d ≥ 1, we can choose a φ ∈ Aloc

which satisfies φ /∈ M(A) and φ2 ∈ M(A). Then it is easy to see that
φ is a local A-function of rank 1.
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8.9. Theorem. (i) If τ ∈ M(A) satisfies τ(x) = 0 (x ∈ G) and
τ−1 /∈ M(A), then we have τ−1 ∈ A∞

loc.

(ii) If A = A(G) is the Fourier algebra on a non-compact LCA group
G, then we have A∞

loc ∩ Cb(G) = ∅.

Proof. (i) Suppose that τ ∈ M(A) satisfies τ(x) = 0 for all x ∈ G and
τ−1 /∈ M(A). Then τ−1 ∈ Aloc (cf., Example 5.2 (ii)). Let n ∈ N be
arbitrary. Since τ−1 /∈ M(A), there exists a g ∈ A such that τ−1g /∈ A.
Put f = τn−1g. Then (τ−1)kf = τn−1−kg ∈ A for k(0 ≤ k ≤ n − 1),
but (τ−1)nf = τ−1g /∈ A. Hence, Aτ−1(n) � Aτ−1(n−1). Since n is
arbitrary in N, we have τ−1 ∈ A∞

loc.

(ii) By [20, Theorem 5.3.4], there exists a τ ∈ M(A) such that
1 ≤ τ(x) for all x ∈ G and τ−1 /∈ M(A). Then, by (i), we have
τ−1 ∈ A∞

loc ∩ Cb(G).

8.10. Proposition. Let τ ∈ A1
loc. Then Aτ(1) is the largest one in

the family of Segal algebras S in A satisfying τ ∈ M(S).

Proof. Suppose that S is a Segal algebra in A which satisfies
τ ∈ M(S). From Proposition 8.2 (i), we have τ ∈ M(Aτ(1)). Since
fτ ∈ S (f ∈ S), Aτ(1) = {f ∈ A : τf ∈ A} ⊇ S follows as required.

8.11. Remarks. (i) Let X be a locally compact, non-compact Haus-
dorff space, and let C0(X) be the algebra of all continuous functions
on X which vanishes at infinity provided with the norm ‖ ‖∞. Sup-
pose that A = C0(X). Then we can identify ΦA with X . Further-
more, we have Aloc = C(X)(:= {φ : a continuous function on X}) and
M(A) = Cb(X). Therefore, Aloc ∩ Cb(X) \ M(A) = ∅. This means
that there are no rank n (1 ≤ n < ∞) local A-functions.

(ii) Let A = Lip01(R). For any positive integer n ≥ 2, there are no
rank n local A-functions in Aloc by Theorem 8.3 (ii). Furthermore,
there are no bounded rank ∞ local A-functions by the same theorem.

(iii) If A is the Fourier algebra on a non-compact LCA, Theorems 8.4
and 8.9 say that the set A∩Cb(G) \M(A) is non-empty and contains
rank 1 local A-functions and rank ∞-functions.
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8.12. Problem. Let A be the Fourier algebra on a non-compact
LCA group G. Let n be a positive integer grater than 1. Are there any
rank n local A-functions?

8.13. Definition. For σ, τ ∈ Aloc, we denote σ � τ if and only
if ∩∞

k=1Aσ(k) ⊆ ∩∞
k=1Aτ(k). This relation � is a partial semi-order in

Aloc.

The next theorem characterizes the multiplier algebra of Aτ(n), τ ∈
An

loc.

8.14. Theorem. M(Aτ(n)) = {σ ∈ Aloc : τ � σ} holds for every
n ∈ N and τ ∈ An

loc.

Proof. (⊆). If σ ∈ M(Aτ(n)) and f ∈ Aτ(n), we have σ
kf ∈ Aτ(n) ⊆ A

(k = 1, 2, 3, . . . ). This implies f ∈ ∩∞
k=1Aσ(k), that is, ∩∞

k=1Aτ(k) =
Aτ(n) ⊆ ∩∞

k=1Aσ(k), and hence τ � σ follows.

(⊇). Let σ ∈ Aloc with τ � σ. Then Aτ(n) = ∩∞
k=1Aτ(k) ⊆

∩∞
k=1Aσ(k). In this case, if f ∈ Aτ(n), then σf ∈ A and τkf ∈

Aτ(n). Hence, τk(σf) = σ(τkf) ∈ A for all k = 1, 2, 3, . . . , n. So
σ ∈ M(Aτ(n)).

8.15. Corollary. Suppose τi ∈ Ani

loc (i = 1, 2). Then Aτ1(n1) ⊆
Aτ2(n2) if and only if M(Aτ2(n2)) ⊆ M(Aτ1(n1)).

Proof. Suppose Aτ1(n1) ⊆ Aτ2(n2). By Theorem 8.14, we have

M(Aτ2(n2)) = {σ ∈ Aloc : τ2 � σ}
= {σ ∈ Aloc : Aτ2(n2) = ∩∞

k=1Aτ2(k) ⊆ ∩∞
k=1Aσ(k)}

⊆ {σ ∈ Aloc : Aτ1(n1) = ∩∞
k=1Aτ1(k) ⊆ ∩∞

k=1Aσ(k)}
= M(Aτ1(n1)).

Conversely, suppose that M(Aτ2(n2)) ⊆ M(Aτ1(n1)). Then τ2 ∈
M(Aτ2(n2)) ⊆ M(Aτ1(n1)) by Proposition 8.2 (i), and hence τ1 � τ2 by
Theorem 8.14, that is, Aτ1(n1) = ∩∞

k=1Aτ1(k) ⊆ ∩∞
k=1Aτ2(k) = Aτ2(n2).
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9. BED- and BSE- properties of Aτ(n)(1 ≤ n ≤ ∞). We suppose
in this section the following condition (γA) on A.

(γA) A is BSE.

For example, Fourier algebras on non-compact LCA groups G and
Lip1(R) satisfy the condition (γA). Since A has a bounded approximate
identity composed of elements in Ac, A is also BED (cf., [14, Theorem
4.7]).

A bounded weak approximate identity of S in the sense of Jones-
Lahr is, by definition, a bounded net {uω}ω∈Ω in S such that
limω∈Ω uω(x)f(x) = f(x) (f ∈ S, x ∈ X) (cf., [15, 21]).

9.1. Definition. (i) Let τ ∈ Aloc and n be a non-negative integer.
We put

M(A)τ(n) := {σ ∈ M(A) : στk ∈ M(A) (0 ≤ k ≤ n)},

‖σ‖τ(n) :=
n∑

k=0

‖στk‖M(A) (σ ∈ M(A)τ(n)).

Note that (M(A)τ(0), ‖ ‖τ(0)) is nothing but (M(A), ‖ ‖M(A)).

9.2. Proposition. For τ ∈ Aloc and n ∈ N, (M(A)τ(n), ‖ ‖τ(n)) is
a Banach ideal of M(A).

Proof. It is easy to see that M(A)τ(n) is a linear subspace and ‖ ‖τ(n)
is a norm on M(A)τ(n), and we will show that ‖ ‖τ(n) is complete.
To see this, let {σi}∞i=1 be a Cauchy sequence in M(A)τ(n). Then

limi,j→∞
∑n

k=0 ‖σiτ
k − σjτ

k‖M(A) = 0, and there exist ρk ∈ M(A)

(k = 0, . . . , n) such that limi→∞ ‖σiτ
k − ρk‖M(A) = 0. Then ρ0(x) =

limi→∞ σi(x) (x ∈ X). Since

ρk(x) = lim
i→∞

(σiτ
k)(x) = lim

i→∞
σi(x)τ

k(x) = ρ0(x)τ
k(x)

(x ∈ X, k = 1, . . . , n),

ρ0τ
k = ρk ∈ M(A) (k = 1, . . . , n) follows. Hence, ρ0 ∈ M(A)τ(n).
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Therefore,

lim
i→∞

‖σi − ρ0‖τ(n) = lim
i→∞

n∑
k=0

‖σiτ
k − ρ0τ

k‖M(A)

= lim
i→∞

n∑
k=0

‖σiτ
k − ρk‖M(A) = 0.

Finally, we see that ρσ ∈ M(A)τ(n) and ‖ρσ‖τ(n) ≤ ‖ρ‖M(A)‖σ‖τ(n)
for all ρ ∈ M(A) and σ ∈ M(A)τ(n). In fact, since (ρσ)τk = ρ(στk) ∈
M(A) (1 ≤ k ≤ n), we have ρσ ∈ M(A)τ(n), and it follows that

‖ρσ‖τ(n) =
n∑

k=0

‖(ρσ)τk‖M(A) ≤ ‖ρ‖M(A)

n∑
k=0

‖στk‖M(A)

= ‖ρ‖M(A)‖σ‖τ(n).

9.3. Theorem. The equalities CBSE (Aτ(n))(X) = M(A)τ(n) =
M(A,Aτ(n)) hold for τ ∈ Aloc and n ∈ N.

Proof. We divide the proof into three parts: (i) CBSE (Aτ(n))
(X) ⊆

M(A)τ(n), (ii) M(A)τ(n) ⊆ M(A,Aτ(n)), and (iii) M(A,Aτ(n)) ⊆
CBSE(Aτ(n))(X).

(i) If σ ∈ CBSE (Aτ(n))(X), there is a bounded net {fω}ω∈Ω in Aτ(n)

such that

(8) lim
ω∈Ω

fω(x) = σ(x) (x ∈ X)

by [21, Theorem 4 (i)]. Then we have, by (8),

(9)
σ(x)τk(x) = lim

ω∈Ω
fω(x)τ

k(x) = lim
ω∈Ω

(fωτ
k)(x)

(k = 1, . . . , n, x ∈ X).

Since supω∈Ω ‖fωτk‖A ≤ supω∈Ω ‖fω‖τ(n) < ∞ (k = 0, . . . , n), we

have by (9) and [21, Theorem 4 (i)] that στk ∈ CBSE(X) = M(A)
(k = 0, . . . , n), that is, σ ∈ M(A)τ(n).
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(ii) If σ ∈ M(A)τ(n), we have στk ∈ M(A) (1 ≤ k ≤ n). Thus, for

each f ∈ A, we have (fσ)τk = f(στk) ∈ A (1 ≤ k ≤ n). This implies
fσ ∈ Aτ(n) (f ∈ A), and hence σ ∈ M(A,Aτ(n)).

(iii) Let {eλ}λ∈Λ be a bounded approximate identity of A. If σ ∈
M(A,Aτ(n)), then {σeλ}λ∈Λ is a bounded net in Aτ(n) such that
limλ∈Λ σeλ(x) = σ(x) (x ∈ X), and hence σ ∈ CBSE (Aτ(n))(X) by
[21, Theorem 4 (i)].

9.4. Theorem. The equality C0
BSE (Aτ(n))

(X) = Aτ(n) holds for

τ ∈ Aloc and n ∈ N. Therefore, Aτ(n) is BED.

Proof. Since Aτ(n)c
is dense in Aτ(n) by Theorem A′, we have Aτ(n) ⊆

C0
BSE (Aτ(n))

(X) by [14, Proposition 4.1]. We must show the reverse

inclusion. Let σ ∈ C0
BSE (Aτ(n))

(X) be arbitrary. By Theorem 9.3,

we have στk ∈ M(A) (k = 0, . . . , n). Since ‖f‖τ(n) ≥ ‖fτk‖A
(f ∈ Aτ(n), k = 0, . . . , n), we have
(10)

‖τkp‖A∗
τ(n)

= sup

{∣∣∣∣ ∑
x∈X

τk(x)p̂(x)f(x)

∣∣∣∣ : f ∈ Aτ(n), ‖f‖τ(n) ≤ 1

}

= sup

{∣∣∣∣ ∑
x∈X

p̂(x)(fτk)(x)

∣∣∣∣ : f ∈ Aτ(n), ‖f‖τ(n) ≤ 1

}

≤ sup

{∣∣∣∣ ∑
x∈X

p̂(x)g(x)

∣∣∣∣ : g ∈ A, ‖g‖A ≤ 1

}

= ‖p‖A∗ (p ∈ span (X), k = 0, . . . , n).

For each K ∈ K(X), we have by (10),

(11) ‖στk‖BSE,K

= sup

{∣∣∣∣ ∑
x∈X

p̂(x)σ(x)τk(x)

∣∣∣∣ : p ∈ span (X \K), ‖p‖A∗ ≤ 1

}

≤ sup

{∣∣∣∣ ∑
x∈X

q̂(x)σ(x)

∣∣∣∣ : q ∈ span (X \K), ‖q‖A∗
τ(n)

≤ 1

}

= ‖σ‖BSE (Aτ(n)),K (k = 0, . . . , n).
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Since σ ∈ C0
BSE (Aτ(n))

(X), we have limK∈K(X) ‖σ‖BSE (Aτ(n)),K = 0. So

we have, by (11),

lim
K∈K(X)

‖τkσ‖BSE,K = 0 (k = 0, . . . , n),

that is, στk ∈ C0
BSE(X) = A (k = 0, . . . , n). This proves σ ∈ Aτ(n).

9.5. Definition. Let τ ∈ Aloc. We define M(A)τ(∞) and ‖ ‖τ(∞) by

M(A)τ(∞) :=

{
σ ∈ M(A) : στk ∈ M(A) (k = 1, 2, 3, . . . ),

∞∑
k=0

‖στk‖M(A) < ∞
}
,

‖σ‖τ(∞) :=

∞∑
k=0

‖στk‖M(A) (σ ∈ M(A)τ(∞)).

9.6. Proposition. For τ ∈ Aloc, (M(A)τ(∞), ‖ ‖τ(∞)) is a Banach
ideal of M(A).

Proof. It is easy to see that (M(A)τ(∞), ‖ ‖τ(∞)) is a normed linear
space, and we verify that ‖ ‖τ(∞) is complete. Let {σn} be a Cauchy

sequence in M(A)τ(∞). Then limi,j→∞
∑∞

k=0 ‖σiτ
k − σjτ

k‖M(A) = 0,

and there exist ρk ∈ M(A) (k = 0, 1, 2, . . . ) such that limn→∞ ‖σnτ
k −

ρk‖M(A) = 0. Then ρ0(x) = limn→∞ σi(x) (x ∈ X), and since ρk(x) =

limn→∞(σnτ
k)(x) = limn→∞ σn(x)τ

k(x) = ρ0(x)τ
k(x) (x ∈ X), we

get ρ0τ
k = ρk ∈ M(A) for k = 1, 2, 3, . . . .

Now we will show that ρ0 ∈ M(A)τ(∞) and ‖σn − ρ0‖τ(∞) → 0
(n → ∞). Since {σn} is a Cauchy sequence in M(A)τ(∞), it forms
a bounded set in M(A)τ(∞), that is, there is a C > 0 such that∑∞

k=0 ‖σnτ
k‖M(A) ≤ C (n = 1, 2, 3, . . . ). For each k0 ∈ N, if we

choose an n0 ∈ N so that
∑k0

k=0 ‖ρ0τk − σn0τ
k‖M(A) < 1, we have

k0∑
k=0

‖ρ0τk‖M(A)≤
k0∑
k=0

‖ρ0τk−σn0τ
k‖M(A)+

k0∑
k=0

‖σn0τ
k‖M(A)<1+C,

which implies
∑∞

k=1 ‖ρ0τk‖M(A) ≤ 1 + C, and hence ρ0 ∈ M(A)τ(∞).
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Our next aim is to prove limn→∞ ‖σn−ρ0‖τ(∞) = 0. Given ε > 0, let
n1 ∈ N be such that ‖σn−σn1‖τ(∞) < ε/3 (n ≥ n1). Choose a k1 ∈ N

so that
∑∞

k=k1+1 ‖ρ0τk‖M(A) < ε/6 and
∑∞

k=k1+1 ‖σn1τ
k‖M(A) < ε/6.

Choose an n2 ∈ N (n2 ≥ n1) so that
∑k1

k=0 ‖ρ0τk − σnτ
k‖M(A) < ε/3

(n ≥ n2). Then we have

‖ρ0 − σn‖τ(∞) =

k1∑
k=0

‖ρ0τk − σnτ
k‖M(A)

+

∞∑
k=k1+1

‖ρ0τk − σnτ
k‖M(A)

≤ ε/3 +

∞∑
k=k1+1

(
‖σnτ

k−σn1τ
k‖M(A)

+ ‖ρ0τk‖M(A) + ‖σn1τ
k‖M(A)

)

≤ 1

3
ε+

1

3
ε+

1

6
ε+

1

6
ε

= ε (n ≥ n2).

Therefore limn→∞ ‖ρ0 − σn‖τ(∞) = 0, and hence ‖ ‖τ(∞) is a complete
norm on M(A)τ(∞).

Finally, for any ρ ∈ M(A) and σ ∈ M(A)τ(∞), we get ρσ ∈ M(A)τ(∞)

and ‖ρσ‖τ(∞) ≤ ‖ρ‖M(A)‖σ‖τ(∞) by quite a similar way as in the proof
of Proposition 9.2.

9.7. Theorem. For τ ∈ Aloc with ‖τ‖∞ < 1/C0, the equalities
CBSE (Aτ(∞))(X) = M(A)τ(∞) = M(A,Aτ(∞)) hold.

Proof. To begin with a proof we note that Aτ(∞) is a Segal algebra
in A by Theorem 6.2 (i). We divide the proof into three parts:
(i) CBSE (Aτ(∞))(X) ⊆ M(A)τ(∞), (ii) M(A)τ(∞) ⊆ M(A,Aτ(∞)) and
(iii) M(A,Aτ(∞)) ⊆ CBSE (Aτ(∞))(X).

(i) Let σ ∈ CBSE (Aτ(∞))(X). There is a bounded net {fω}ω∈Ω in
Aτ(∞) and a C1 > 0 such that

(12) lim
ω∈Ω

fω(x) = σ(x) (x ∈ X), ‖fω‖τ(∞) ≤ C1 (ω ∈ Ω).



578 JYUNJI INOUE AND SIN-EI TAKAHASI

Hence,

(13) σ(x)τk(x) = lim
ω∈Ω

fω(x)τ
k(x) (x ∈ X, k = 1, 2, 3, . . . ).

By (12) and (13), we have στk ∈ CBSE(X) = M(A) (k = 0, 1, 2, . . . ).
Let n0 ∈ N and p0, . . . , pn0 ∈ span (X) be chosen such that ‖pk‖A∗ ≤ 1
(k = 0, . . . , n0). Choose ω0 ∈ Ω such that

(14)

n0∑
k=0

∑
x∈X

|p̂k(x)||σ(x)τk (x)− fω0(x)τ
k(x)| ≤ 1.

Since ‖f‖BSE ≤ ‖f‖A (f ∈ A), it follows that

(15)

n0∑
k=0

‖fωτk‖BSE ≤
n0∑
k=0

‖fωτk‖A ≤ C1 (ω ∈ Ω).

By (14) and (15), we have

n0∑
k=0

∣∣∣∣ ∑
x∈X

p̂k(x)σ(x)τ
k(x)

∣∣∣∣
≤

n0∑
k=0

∣∣∣∣ ∑
x∈X

p̂k(x)(fω0τ
k)(x)

∣∣∣∣
+

n0∑
k=0

∑
x∈X

|p̂k(x)||σ(x)τk(x)− fω0(x)τ
k(x)|

≤ C1 + 1.

This implies that
∑n0

k=0 ‖στk‖BSE ≤ C1 + 1. Taking n0 → ∞, we have∑∞
k=0 ‖στk‖BSE ≤ C1+1. Since A is BSE by the condition (γA) there is

a C2 such that ‖σ‖M(A) ≤ C2‖σ‖BSE (σ ∈ M(A)) by [21, Corollary 6].

Therefore, we have
∑∞

k=0 ‖στk‖M(A) ≤ ∑∞
k=0 C2‖στk‖BSE ≤ C2(1 +

C1), that is, σ ∈ M(A)τ(∞).

(ii) If σ ∈ M(A)τ(∞), we have στk ∈ M(A) (k = 1, 2, 3, . . . ) and∑∞
k=0 ‖στk‖M(A) = ‖σ‖τ(∞) < ∞. Then we have (σf)τk = f(στk) ∈

A (k = 1, 2, 3, . . . ) for an f ∈ A and

∞∑
k=0

‖(σf)τk‖A =
∞∑
k=0

‖f(στk)‖A ≤
∞∑
k=0

‖στk‖M(A)‖f‖A

= ‖σ‖τ(∞)‖f‖A < ∞.
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Thus, σf ∈ Aτ(∞). We have proved that σf ∈ Aτ(∞) (f ∈ A). Hence,
σ ∈ M(A,Aτ(∞)) is observed.

(iii) The proof is the same as that of (iii) in Theorem 9.3, and we
omit the proof.

9.8. Theorem. The equality C0
BSE (Aτ(∞))

(X) = Aτ(∞) holds for

τ ∈ Aloc with ‖τ‖∞ < 1/C0, that is, Aτ(∞) is BED.

Proof. Since Aτ(∞)c
is dense in Aτ(∞) from Theorem A′, the relation

C0
BSE (Aτ(∞))

(X) ⊇ Aτ(∞) follows from [14, Proposition 4.1]. To

show the reverse inclusion, let σ ∈ C0
BSE (Aτ(∞))

(X) be arbitrary.

Then σ ∈ M(A)τ(∞) holds by Theorem 9.7, that is, στk ∈ M(A)

(k = 0, 1, 2, . . . ) and
∑∞

k=0 ‖στk‖M(A) < ∞.

In the same way as in the proof of Theorem 9.4 we get

‖στk‖BSE,K ≤ ‖σ‖BSE (Aτ(∞)),K (k = 0, 1, 2, ...)

for every K ∈ K(X). It follows that

lim
K∈K(X)

‖στk‖BSE,K ≤ lim
K∈K(X)

‖σ‖BSE (Aτ(∞)),K = 0

(k = 0, 1, 2, . . . ).

Hence, στk ∈ C0
BSE(X) = A (k = 0, 1, 2, . . . ). Since A is BSE and

BED, the identity maps of A to C0
BSE(X) and M(A) to CBSE(X) are

Banach algebra isomorphisms, and so there exist C1, C2 > 0 such that

‖f‖A ≤ C1‖f‖BSE (f ∈ A)

and

‖σ‖BSE ≤ C2‖σ‖M(A) (σ ∈ M(A)).

Therefore, we obtain

∞∑
k=0

‖στk‖A ≤ C1

∞∑
k=0

‖στk‖BSE ≤ C1C2

∞∑
k=0

‖στk‖M(A) < ∞.

This implies that σ ∈ Aτ(∞).
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9.9. Proposition. (i) Suppose that S is a Segal algebra in A. Then
CBSE (S)(X) ⊆ CBSE (X) = M(A) hold.

(ii) Suppose that a Segal algebra S in A is BSE and BED. Then S
coincides with A.

Proof. (i) Let f ∈ CBSE (S)(X). There exists a bounded net
{fλ}λ∈Λ in S such that f(x) = limλ∈Λ fλ(x) (x ∈ X) by [21, Theorem
4 (i)]). Since a bounded net in S is also a bounded net in A, we have
f ∈ CBSE(X). Since CBSE(X) = M(A) by the condition (γA) posed in
the beginning of this section, we get the desired inclusion.

(ii) If a Segal algebra S in A is BSE, then ‖ ‖BSE (S) and ‖ ‖M(S) are
equivalent norms in M(S) (cf., [21, page 151, Remark]). If S is BSE
and BED, ‖ ‖BSE (S) and ‖ ‖S are equivalent norms in S. Consequently,
two norms ‖ ‖S and ‖ ‖op (the multiplication operator norm in S)
are equivalent. This implies that S contains a bounded approximate
identity by Theorem C′ (i). Hence S = A follows from Theorem C′

(ii).

9.10. Theorem. Let S be a Segal algebra in A. Then the following
are equivalent:

(a) S has a bounded weak approximate identity in the sense of Jones-
Lahr.

(b) S is BSE, that is, M(S) = CBSE (S)(X).

Moreover, if S satisfies (a) or (b), then M(S) = M(A) holds.

Proof. (a) ⇒ (b). By (a) and [21, Corollary 5], we have

(16) M(S) ⊆ CBSE (S)(X).

On the other hand, by Propositions 4.5 and 9.9, we have

(17) CBSE (S)(X) ⊆ CBSE(X) = M(A) ⊆ M(S).
By (16) and (17), we get CBSE (S)(X) = M(S), which implies (b).

(b) ⇒ (a). This implication follows easily from [21, Corollary 5].
Moreover, if S satisfies (a) (or equivalently (b)), M(A) = M(S) holds
by (16) and (17).
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9.11. Remarks. (a) Sp(G) and Ap(G) of Example 2.2 have bounded
weak approximate identities in the sense of Jones-Lahr [13].

(b) If τ ∈ Aloc \ M(A) and n ∈ N, then Aτ(n) is a proper Segal
algebra which is BED by Theorems 5.4 and 9.4. Therefore Aτ(n) is not
BSE by Proposition 9.9 (ii).

(c) If τ ∈ Aloc with ‖τ‖∞ < 1/C0 and Aτ(∞) � A, then Aτ(∞) is not
BSE. This follows from Theorem 9.8 and Proposition 9.9 (ii).

10. Applications of local A-functions. In this section A stands
for the Fourier algebra on a non-compact LCA group G. For f ∈ A and
y ∈ G the translation of f by y is denoted by fy : fy(x) = f(x−y) (x ∈
G).

As an application of Aloc we show a representation theorem for the
multiplier algebra of the smallest isometrically translation invariant
Segal algebra in A.

10.1. Definition. Let V be a non-empty open subset of G with
compact closure V . We define two subsets ΛV̄ (G) and Λ̃V̄ (G) of A by

ΛV̄ (G) := {f ∈ A : supp f ⊂ V },
Λ̃V̄ (G) := {f ∈ A : there exists y ∈ G s.t. supp f ⊂ V + y}.

Thus, we have Λ̃V̄ (G) = ∪y∈GΛV̄+y(G). One can easily see that Λ̃V̄ (G)
is contained in Ac, and hence contained in every Segal algebra in A.

Suppose that fn ∈ Λ̃V̄ (G), n = 1, 2, . . . , with
∑∞

n=1 ‖fn‖A < ∞.

Then there is an f ∈ A such that ‖f − ∑N
n=1 fn‖A → 0 (N → ∞).

Here we write f =
∑∞

n=1 fn and call it a V -representation of f .

We put SV̄ (G) := {f ∈ A : f has at least one V − representation},
and for f ∈ SV̄ (G), we define ‖f‖V̄ := inf {∑∞

n=1 ‖fn‖A : f =∑∞
n=1 fn(V − representation)}.

Under the above definitions of SV̄ (G) and ‖ ‖V̄ , (SV̄ (G), ‖ ‖V̄ ) is a
Segal algebra in A, which is isometrically translation invariant in the
sense that, if f ∈ SV̄ (G) then fy ∈ SV̄ (G) and ‖f‖V̄ = ‖fy‖V̄ hold for
all y ∈ G. Moreover, it is minimal in the sense that SV̄ (G) is contained
in any isometrically translation invariant Segal algebra in A.
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Actually, it can be easily seen from the definitions of SV̄ (G) that

the smallest isometrically character invariant Segal algebra S1
V̄
(Ĝ)

(constructed in [18, Chapter 6]) is isometrically isomorphic to SV̄ (G)
through the Fourier transform.

10.2. Remark. The smallest isometrically character invariant Segal
algebra in L1(Ĝ) was found and constructed in 1981 by Feichtinger [9],
which is also called the Feichtinger Segal algebra.

10.3. Theorem. Put CV̄
BSE(G) := {τ ∈ C(G) : ‖τ‖V̄ :=

supx∈G ‖τ‖BSE,G\(V̄+x) < ∞}. Then the following hold.

(i) (CV̄
BSE(G), ‖ ‖V̄ ) is a Banach algebra.

(ii) CV̄
BSE(G) = M(SV̄ (G)), and (CV̄

BSE(G), ‖ ‖V̄ ) is isomorphic to
(M(SV̄ (G)), ‖ ‖M(SV̄ (G))).

10.4. Remark. It is known that there are some Wiener amalgam
spaces W (A, �(I)1) and W (A, �(I)∞) such that W (A, �(I)1) is isomor-
phic to SV (G) and its multiplier algebra is given by W (A, �(I)∞) (cf.,
[8, 10, 11]).

10.5. Lemma. ‖f‖A ≤ ‖f‖V̄ (f ∈ SV̄ (G)).

Proof. Let f ∈ SV̄ (G), and let f =
∑∞

n=1 fn be a V -representation.
Then ‖f‖A ≤ ∑∞

n=1 ‖fn‖A. Taking the infimum over all the V -
representations of f in this inequality, we get ‖f‖A ≤ ‖f‖V̄ .

10.6. Lemma. There exists a constant M > 0 which satisfies the
conditions that, for each τ ∈ Aloc and x0 ∈ G, there is an eτ,x0 ∈ A
satisfying

(18) eτ,x0 = τ on V + x0 and ‖eτ,x0‖A ≤ M‖τ‖BSE,G\(V+x0)
.

Proof. Let τ ∈ Aloc and x0 ∈ G be fixed arbitrarily. Since A/I(V ) is
BED by [14, Theorem 5.2], there exists an M1 > 0 such that

(19) ‖g + I(V )‖A/I(V̄ ) ≤ M1‖g|V̄ ‖BSE (A/I(V̄ )) (g ∈ A).
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For each g ∈ A, we have

(20)

‖g + I(V )‖A/I(V̄ ) = inf
{‖g + f‖A : f ∈ I(V )

}
= inf

{‖gx0 + fx0‖A : f ∈ I(V )
}

= inf
{‖gx0 + f‖A : f ∈ I(V + x0)

}
= ‖gx0 + I(V + x0)‖A/I(V̄+x0).

Since ‖p‖(A/I(V̄ ))∗ = ‖p‖A∗ (p ∈ span (V )), by Lemma 7.1 (i), we have

(21) ‖g|V̄ ‖BSE (A/I(V̄ ))

= sup

{∣∣∣∣ ∑
x∈V̄

p̂(x)g(x)

∣∣∣∣ : p ∈ span (V ), ‖p‖A∗ ≤ 1

}

= sup

{∣∣∣∣ ∑
x∈V̄+x0

p̂(x− x0)g(x− x0)

∣∣∣∣ : p ∈ span (V ), ‖p‖A∗ ≤ 1

}

= sup

{∣∣∣∣ ∑
x∈V̄+x0

p̂(x)gx0(x)

∣∣∣∣ : p ∈ span (V + x0), ‖p‖A∗ ≤ 1

}

= ‖gx0|V̄ +x0
‖BSE (A/I(V̄ +x0)).

By (19), (20) and (21), we have

(22)
‖gx0 + I(V + x0)‖A/I(V̄+x0) ≤ M1‖gx0|V̄ +x0

‖BSE (A/I(V̄ +x0))

(g ∈ A).

By Proposition 7.2, there is an f0 ∈ A such that f0 = τ on V + x0.
Moreover, we can choose an eτ,x0 ∈ A such that eτ,x0 = f0 on V + x0

and

(23) ‖eτ,x0‖A ≤ 2‖f0 + I(V + x0)‖A/I(V̄+x0).

By (22) and Lemma 7.1 (ii), we have

(24)

‖f0 + I(V + x0)‖A/I(V̄+x0) ≤ M1‖f0|V +x0
‖BSE (A/I(V̄ +x0))

= M1‖f0‖BSE,G\(V̄+x0)

= M1‖τ‖BSE,G\(V̄+x0).



584 JYUNJI INOUE AND SIN-EI TAKAHASI

From the choices of f0 and eτ,x0, the equality eτ,x0 = τ on V + x0 is
observed. Hence, (18) follows from (23) and (24) with M = 2M1.

Proof of Theorem 10.3. (i) It is easy to see that CV̄
BSE(G) is a normed

linear space with respect to ‖ ‖V̄ , as well as ‖ ‖V̄ is an algebra norm
by Lemma 7.3.

To prove completeness, let {τn} be a Cauchy sequence in CV̄
BSE(G).

For any y ∈ G, we can choose an x ∈ G so that y ∈ V + x. Then we
have

|τn(y)− τm(y)| ≤ ‖τn − τm‖BSE,G\(V̄+x) ≤ ‖τn − τm‖V̄ .
Hence, {τn} is a uniformly convergent sequence in Cb(G). Let τ ∈
Cb(G) be the uniform limit of {τn}. Let ε > 0. Choose an n0 ∈ N such
that ‖τn − τm‖V̄ < ε (n,m ≥ n0). Let x ∈ G and p ∈ span (V + x)
with ‖p‖A∗ ≤ 1. Then we have |∑y∈V̄+x p̂(y)(τn(y) − τm(y))| ≤
ε (n,m ≥ n0). Fixing n and letting m go to infinity we have
|∑y∈V̄+x p̂(y)(τn(y) − τ(y))| ≤ ε. Since x ∈ G, p ∈ span (V + x)
with ‖p‖A∗ ≤ 1 and n(n ≥ n0) are arbitrarily chosen, we have

‖τn−τ‖V̄ = sup
x∈G

sup
p∈span (V̄+x)

‖p‖A∗≤1

∣∣∣∣ ∑
y∈V̄+x

p̂(y)(τn(y)−τ(y))

∣∣∣∣ ≤ ε (n ≥ n0).

Thus, we get τ ∈ CV̄
BSE(G) and ‖τn − τ‖V̄ → 0 (n → ∞). Therefore,

‖ ‖V̄ is complete.

(ii) (⊆). Let τ be in C(G) such that supx∈G ‖τ‖BSE,G\(V̄+x) < ∞.

Let f ∈ SV̄ (G), and let f =
∑∞

n=1 fn be a V -representation such that
supp fn ⊆ V + xn for xn ∈ G (n = 1, 2, 3, . . . ). By Lemma 10.6,
there exists a positive constant M such that, for each n ∈ N, we can
choose an eτ,xn ∈ A satisfying eτ,xn = τ on V + xn and ‖eτ,xn‖A ≤
M‖τ‖BSE,G\(V̄+xn), and hence

‖τfn‖A = ‖eτ,xnfn‖A ≤ ‖eτ,xn‖A‖fn‖A ≤ M‖τ‖BSE,G\(V̄+xn)‖fn‖A.
Thus, we have

(25)
∞∑

n=1

‖τfn‖A ≤ M

(
sup
x∈G

‖τ‖BSE,G\(V̄+x)

) ∞∑
n=1

‖fn‖A < ∞.
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By (25), it is easy to see that there exists a g ∈ A such that ‖g −∑n
k=1 fkτ‖A → 0 (n → ∞). Since supp fnτ ⊆ supp fn ⊆ V + xn

for each n ∈ N, g is an element in SV̄ (G) with a V -representation
g =

∑∞
n=1 fnτ . Since g =

∑∞
n=1 fnτ = fτ , we have τf ∈ SV̄ (G), and

hence we have τ ∈ M(SV̄ (G)).

(⊇). Choose an element e ∈ Ac such that e = 1 on V . Let
τ ∈ M(SV̄ (G)) and x0 ∈ G be arbitrary. Since ex0 ∈ Ac ⊆ Aτ(1),

we have (ex0τ)(x) = e(x− x0)τ(x) = τ(x) for all x ∈ V + x0. Hence,

(26) ‖τ‖BSE,G\(V̄+x0)

= sup

{∣∣∣∣ ∑
x∈V̄+x0

p̂(x)τ(x)

∣∣∣∣ : p ∈ span (V + x0), ‖p‖A∗ ≤ 1

}

= sup

{∣∣∣∣ ∑
x∈V̄+x0

p̂(x)(ex0τ)(x)

∣∣∣∣ : p ∈ span (V + x0), ‖p‖A∗ ≤ 1

}

≤ ‖ex0τ‖BSE ≤ ‖ex0τ‖A.
Since ex0τ ∈ Ac ⊆ SV̄ (G), we get ‖ex0τ‖A ≤ ‖ex0τ‖V from
Lemma 10.5.

Moreover, ‖ex0‖V̄ = ‖e‖V̄ since SV̄ (G) is isometrically translation-
invariant. Thus, we have from (26) that

(27) ‖τ‖BSE,G\(V+x0)
≤ ‖ex0τ‖A ≤ ‖ex0τ‖V̄ ≤ ‖τ‖M(SV̄ (G))‖e‖V̄ .

Since x0 in (27) is arbitrary in G we have ‖τ‖V̄ ≤ ‖τ‖M(SV̄ (G))‖e‖V̄ <
∞.

10.7. Corollary. M(A) � M(SV̄ (G)).

Proof. By the structure theorem of LCA groups [12, Theorem 24.30],
G is topologically isomorphic to Rd × L, where d is a non-negative
integer and L is an LCA group which contains an open compact
subgroup. We divide the proof into two parts: (i) the case d = 0,
where we have G = R ×H with H = Rd−1 × L; (ii) the case d = 0,
where G contains an open compact subgroup G0.

(i) Let π1 be the natural projection of G onto R. For any function
ϕ on R, set ϕ̃ = ϕ ◦π1. In this case, we can choose a V , which appears
in the definition of SV̄ (G), so that π1(V ) ⊆ [−1, 1]. Let ϕ be a C∞-
function on R such that ϕ = 1 on [1,∞) and ϕ = −1 on (−∞,−1].
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Take a C∞-function e in A(R)c such that e = 1 on [−3, 3]. Then eϕ is
a C∞-function on R with compact support, and hence eϕ ∈ A(R) and
so ẽϕ ∈ M(A) by Lemma 8.5 (ii).

Let (x0, y0) ∈ G = R×H be given arbitrarily. By a simple calculation
we have

ϕ̃|V̄ +(x0,y0) =

⎧⎨
⎩

ẽϕ|V̄ +(x0,y0) |x0| ≤ 2,

1 x0 > 2,

−1 x0 < −2.

Hence,

(28) sup
(x0,y0)

‖ϕ̃‖BSE,G\(V̄+(x0,y0)) ≤ max{‖ẽϕ‖BSE, ‖1‖} < ∞.

If follows that ϕ̃ ∈ M(SV̄ (G)) from (28) and Theorem 10.3.

On the other hand, ϕ /∈ M(A(R)) follows from Lemma 8.7. Hence,
ϕ̃ /∈ M(A) follows from Lemma 8.5 (ii). Consequently, the corollary
holds in this case.

(ii) In this case we set V = G0. By Lemma 8.6, there exists a function
φ ∈ Aloc which satisfies (i) and (ii) of that lemma. Then it is easy to
see that supx∈G ‖φ‖BSE,G\(V+x) < ∞, and the corollary also holds in

this case.

10.8. Corollary. SV̄ (G) is not BSE.

Proof. By Corollary 10.7 and Theorem 9.10, SV̄ (G) is not BSE.

10.9. Corollary. Suppose that A = A(G) is the Fourier algebra on
an infinite discrete abelian group G. Let us consider G as a subset of
ΦM(SV̄ (G)) in the natural way. Then ΦM(SV̄ (G)) is homeomorphic to

βG, the Stone-Čech compactification of G. In particular, G is dense in
ΦM(SV̄ (G)).

Proof. We take V = {e}, where e is the identity of G. Then by The-
orem 10.3 (M(SV̄ (G), ‖ ‖M(SV̄ (G))) is isomorphic to (CV̄

BSE(G), ‖ ‖V̄ ).
For any f ∈ Cb(G) and x ∈ G we have

‖f‖BSE,G\{x} = sup

{∣∣∣∣ ∑
y∈{x}

p̂(y)f(y)

∣∣∣∣ : p ∈ span ({x}), ‖p‖A∗ ≤ 1

}

= |f(x)|.
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Therefore, (CV̄
BSE(G), ‖ ‖V̄ ) = (Cb(G), ‖ ‖∞). Since the Gelfand space

of (Cb(G), ‖ ‖∞) is βG, and the Gelfand transform is the natural
isomorphism of Cb(G) onto C(βG), the assertion of this corollary is
observed.

10.10. Problems. Let G be an LCA group which is neither discrete
nor compact.

(i) Are there any effective representations of ΦM(SV̄ (G))?

(ii) Is G dense in ΦM(SV̄ (G))?

10.11. Proposition. If S is an isometrically translation invariant
Segal algebra in A, we have M(S) ⊆ M(SV̄ (G)).

Proof. We observe that there is a constant CV̄ > 0 such that

‖f‖S ≤ CV̄ ‖f‖A (f ∈ Λ̃V̄ (G)). Choose an e ∈ Ac such that e = 1

on V . Let f ∈ Λ̃V̄ (G) and x ∈ G be such that fx ∈ ΛV̄ (G). Then
we have ‖f‖S = ‖fx‖S = ‖efx‖S ≤ ‖e‖S‖fx‖A = ‖e‖S‖f‖A. Thus,
the inequality holds with a constant CV̄ = ‖e‖S . Let τ ∈ M(S) be
arbitrary, and let f ∈ SV̄ (G) with a V̄ -representation f =

∑∞
n=1 fn be

such that supp fn ⊆ V +xn for xn ∈ G (n = 1, 2, 3, . . . ). Then we have
from above

‖τfn‖A ≤ ‖τfn‖S ≤ ‖τ‖M(S)‖fn‖S ≤ CV̄ ‖τ‖M(S)‖fn‖A
(n = 1, 2, 3, . . . ).

Hence, there is a g ∈ SV̄ (G) with a V -representation g =
∑∞

n=1 τfn.
Since g =

∑∞
n=1 τfn = τf , we have τf ∈ SV̄ (G). Hence τ ∈

M(SV̄ (G)). Thus, M(S) ⊆ M(SV̄ (G)) follows.
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ENDNOTES

1. In [14] “BSE” is denoted by “BE.” But this is not preferable and
will cause confusion. In this paper, we use “BSE” as it is originally
defined in [21].
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