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ALGEBRAIC POLYNOMIALS WITH SYMMETRIC
RANDOM COEFFICIENTS

K. FARAHMAND AND JIANLIANG GAO

ABSTRACT. This paper provides an asymptotic estimate
for the expected number of real zeros of algebraic polynomi-
als Pn(x) = a0 + a1x + a2x2 + · · · + an−1xn−1, where aj ’s
(j = 0, 1, 2, · · · , n − 1) are a sequence of normal standard
independent random variables with the symmetric property
aj ≡ an−1−j . It is shown that the expected number of real
zeros in this case still remains asymptotic to (2/π) logn. In
the previous study, it was shown for the case of random
trigonometric polynomials this expected number of real zeros
is halved when we assume the above symmetric properties.

1. Introduction. Let aj , j = 0, 1, 2, . . . n − 1, be a sequence of
random variables, and denote Nn(a, b) as the number of real zeros of
Pn(x) in the interval (a, b) where

(1.1) Pn(x) =

n−1∑
j=0

ajx
j .

It is well known that, for independent, normally distributed coefficients
aj ’s with mean µ = 0 and n large ENn(−∞,∞), the expected value
of Nn(−∞,∞), is asymptotic to (2/π) log n. However, this asymptotic
value simply reduces by half when the mean of the coefficients becomes
non-zero, see for example [5] or [9]. On the other hand, there is
no reduction in the expected number of real zeros if we consider the
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random trigonometric polynomial defined as

(1.2) Tn(x) =

n−1∑
j=0

aj cos jx.

In this case the expected number of real zeros in the interval (0, 2π)

remains 2n/
√
3, for both cases of µ zero and nonzero constant. Ear-

lier results concerning the above and other types of polynomials are
reviewed in [1] and [3].

Motivated by its application in number theory and random matrix
theory, see for example [11], [12] and the more recent work of [8],
there has been interest in random algebraic polynomials with complex
random coefficients and self-reciprocal properties. Using the definition
developed in [13] for reciprocal polynomials with deterministic coeffi-
cients, in [4] it is shown that this type of random polynomial, with a
simple transformation, will yield to the random trigonometric polyno-
mials (1.2) with real coefficients. Different types of random trigono-
metric polynomials with self-reciprocal properties are studied in [6, 7]
which show again that the expected number of real zeros reduces by
half to n/

√
3.

Therefore, it is of interest to study the algebraic polynomial with
real random coefficients which possess this self-reciprocal property and
ask whether or not any reduction to the expected number of real zeros
occurs. To this end we assume the coefficients in (1.1) are random with
the symmetric property aj = an−j−1, j = 0, 1, . . . , [n/2]. Here we show
that the expected number of real zeros in the algebraic case with these
symmetric properties remains the same as (2/π) log n. Therefore, the
symmetric assumption has an opposite influence on the mathematical
behavior of random polynomials than that of the means stated above.
That is, in the trigonometric case with symmetric properties, the
number of real zeros reduces by half, while for the algebraic case this
expected number remains the same. We prove:

Theorem 1.1. If the random variables aj, j = 0, 1, 2, . . . , [n/2], are
independent, identically normally distributed and symmetric with finite
variance σ2, then for sufficiently large n, the expected number of real
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zeros of Pn(x) in (1.1) satisfies

ENn(−∞,∞) ∼ 2

π
logn.

2. Proof of the Theorem. It is easy to note that, see also [3,
page 31], for the classical random algebraic polynomial Pn(x) defined
in (1.1), without symmetric properties of the coefficients

A2
o(σ

2, n) ≡ var {Pn(x)} = σ2
n−1∑
j=0

x2j ,

B2
o(σ

2, n) ≡ var {P ′
n(x)} = σ2

n−1∑
j=0

j2x2j−2,

and

Co(σ
2, n) ≡ cov {Pn(x), P

′
n(x)} = σ2

n−1∑
j=0

jx2j−1,(2.1)

where P ′
n(x) is the derivative of Pn(x) with respect to x. For this case

the Kac-Rice formula [10, 14] gives the expected number of real zeros
in the interval (a, b) as, see also [2],

EN(a, b) =

(
1

π

)∫ b

a

(
∆o

A2
o

)
dx,(2.2)

where

∆o =
√
A2

oB
2
o − C2

o .(2.3)

Without loss of generality, we assume n is even. For n odd, the upper
limit of n/2 in the second sum in (2.4) will be replace by (n− 1)/2− 1,
as well as having an additional term of a(n−1)/2x

(n−1)/2. As a result,

the variance of Pn(x) obtained in (2.5) will include a term σ2xn−1.
For sufficiently large n this is significantly smaller than the existing
σ2nxn−1 and hence can be ignored. A similar argument is valid for
the evaluation of B2

N and CN in (2.6) and (2.7). Using the above
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assumption of the symmetric coefficients, aj , we have

(2.4) Pn(x) =

n−1∑
j=0

ajx
j =

n/2∑
j=0

aj(x
j + xn−j−1).

Then the new properties can lead to the following identities in term of
A2

o, B
2
o and Co, where the subscript N refers to the polynomial of the

form (2.4).

A2
N (σ2, n) ≡ A2

N

= σ2

n/2∑
j=0

(xj + xn−j−1)2 = A2
o + σ2

n/2∑
j=0

2xn−1

= σ2 1− x2n

1− x2
+ σ2nxn−1,(2.5)

B2
N (σ2, n) ≡ B2

N

= σ2

n/2∑
j=0

(jxj−1 + (n− j − 1)xn−j−2)2,

= B2
o + 2σ2xn−3

n/2∑
j=0

{(n− 1)j − j2}

= σ2(−x2n+2 − x2n + x2 + 1− n2x2n+2

+2n2x2n − n2x2n−2 + 2nx2n+2

−2nx2n)/(1− x2)3

+σ2xn−3n(n+ 2)(n− 2)

6
,(2.6)

and finally, since E(aiaj) = 0 for all i ̸= j,

CN (σ2, n)≡CN =cov
(
P (x), P

′
(x)

)
=E

( n/2∑
j=0

(xj+xn−j+1)aj

n/2∑
j=0

(jxj−1+(n−j−1)xn−j−2)aj

)

= E

( n/2∑
j=0

(xjjxj−1 + xn−j−1(n− j − 1)xn−j−2)a2j
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+

n/2∑
j=0

(xj(n− j − 1)xn−j−2 + xn−j−1jxj−1)a2j

)
= Co + σ2xn−2n(n− 1)

2

= σ2

{
x(1− x2n)

(1− x2)2
− nx2n−1

1− x2

}
+ σ2xn−2n(n− 1)

2
.(2.7)

We now notice that if we change x to −x the distribution of the
coefficients in Pn(x) remain invariant. Therefore, ENn(−∞, 0) ∼
ENn(0,∞). Also, for y = 1/x, we can write Pn(x) as

y−n+1(a0y
n−1 + a1y

n−2 + a2y
n−3 + · · ·+ an−3y

2 + an−2y + an−1).

Since the polynomial a0y
n−1 + a1y

n−2 + a2y
n−3 + · · · + an−3y

2 +
an−2y + an−1 has the same self- reciprocal properties as Pn(x) given
in (1.1), corresponding to every zero in (0, 1) there is a zero in (1,∞).
Hence, ENn(0, 1)∼ENn(1,∞), and hence ENn(−∞,∞)∼4ENn(0, 1).
Therefore, in order to obtain ENn(−∞,∞) using (2.2), it is sufficient
to consider only (0, 1). We separate this interval into two subintervals
(0, 1− ε) and (1− ε, 1). We assume εn ≡ ε = n−a, where a is any value
in (0, 1), to be defined later. When 0 < x < 1− ε, for sufficiently large
n, we have

xn < (1− ε)n = (1− n−a)n ≤ e−n1−a

.

If a = 1− log log n10/ log n is selected, then for sufficiently large n,

e−n1−a

= n−10.

Therefore,

xn < n−10.(2.8)

Hence for 0 < x < 1− ε, we can rewrite (2.5)–(2.7) as

A2
N =

σ2

1− x2
+O

(
σ2n−9

)
,(2.9)

B2
N = σ2

(
1 + x2

(1− x2)3
+O

(
n−7

))
,(2.10)
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CN = σ2

(
x

(1− x2)2
+O

(
n−8

))
.(2.11)

Then, from (2.9)–(2.11), we have

∆2
N = A2

NB2
N − C2

N

∼ σ4

(1− x2)4
.(2.12)

Now (2.9) and (2.12) gives Kac’s asymptotic formula for this case

ENn(0, 1− ε) =
1

π

∫ 1−ε

0

∆N

A2
N

dx ∼ 1

π

∫ 1−ε

0

1

1− x2
dx

=
1

2π

{
log(2− n−a) + a log n

}
∼ 1

2π
log n,(2.13)

since a → 1 as n → ∞. Now we show that (2.13) is the main contributor
to ENn(0, 1). To this end, for the interval (1− ε, 1), we have

n−1∑
j=0

x2j −
n−1∑
j=0

xn−1

= (1− xn−1) + (x2 − xn−1) + (x4 − xn−1) + · · ·+ (xn−2 − xn−1)

− xn−1(1− xn−1)− xn−3(x2 − xn−1)

− · · · − x3(xn−4 − xn−1)− x(xn−2 − xn−1)

= (1−xn−1)(1−xn−1)+(1−xn−3)(x2−xn−1)+(1−xn−5)(x4−xn−1)

+ · · ·+ (1− x3)(xn−4 − xn−1) + (1− x)(xn−2 − xn−1) ≥ 0.

This shows A2
o ≥ σ2nxn−1, that is, from (2.5), A2

N ≤ 2A2
o. Similarly,

from (2.6) we can write

B2
o

σ2
=

n−1∑
j=0

j2x2j−2

= 1 + 4x2 + 9x4 + · · ·+
(
n

2
− 1

)2

xn−4

+

(
n

2

)2

xn−2 +

(
n

2
+ 1

)2

xn + · · ·+ (n− 1)2x2n−4
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> 1 + 4x2 + 9x4 + · · ·+
(
n

2
− 1

)2

xn−4

> xn−3

n/2−1∑
j=0

j2 = xn−3 (n/2)((n/2)− 1)(n− 1)

6
.(2.14)

Therefore, we have
(2.15)

σ2xn−3[n(n2 − 4)]/6

B2
o

<
σ2xn−3[n(n2 − 4)]/6

σ2xn−3[(n/2)((n/2)− 1)(n− 1)]/6
∼ 4.

Thus, we obtain σ2xn−3[n(n2 − 4)]/6 < 4B2
o and the estimate B2

N <
5B2

o . Since ∆2
o = A2

oB
2
o −C2

o is the same as the one from Farahmand’s
work [3, page 33], then we calculate ∆2

N as

∆2
N = A2

NB2
N − C2

N

= 10∆2
o + 9C2

o

< 10σ4 (1− x2n)2

(1− x2)4

{
1− n2x4n−2(1− x2)2

(1− x2n)2

+

[
x− nx2n−1(1− x2)

1− x2n

]2}
≤ 10σ4 (1− x2n)2

(1− x2)4

{
(1− x2)(2n− 2nx2n)

1− x2n

}
= 20σ4n

(1− x2n)2

(1− x2)3
.(2.16)

Consequently, ∆N is given as

∆N <
√
20σ2 1− x2n

1− x2

√
n

1− x2

<
√
20σ2 1− x2n

1− x2

√
n

1− x
.(2.17)

Also, since

√
nε = o

(
nlog logn10/2 logn

)
= o

(√
logn

)
,
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from (2.2), (2.5) and (2.17) it is easy to show that

ENn(1− ε, 1) =
1

π

∫ 1

1−ε

∆N

A2
N

dx ≤ 1

π

∫ 1

1−ε

∆N

A2
o

dx

<
2
√
5n

π

∫ 1

1−ε

1√
1− x

dx

=
4
√
5

π

√
nε

∼ o(
√
log n).(2.18)

Hence, we have the proof for the theorem.
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