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SERIES REPRESENTATIONS FOR THE STIELTJES
CONSTANTS

MARK W. COFFEY

ABSTRACT. The Stieltjes constants γk(a) appear as the
coefficients in the regular part of the Laurent expansion
of the Hurwitz zeta function ζ(s, a) about s = 1. We
present series representations of these constants of interest
to theoretical and computational analytic number theory. A
particular result gives an addition formula for the Stieltjes
constants. As a byproduct, expressions for derivatives of
all orders of the Stieltjes coefficients are given. Many other
results are obtained, including instances of an exponentially
fast converging series representation for γk = γk(1). Some
extensions are briefly described, as well as the relevance to
expansions of Dirichlet L functions.

1. Introduction and statement of results. The Stieltjes (or
generalized Euler) constants γk(a) appear as expansion coefficients
in the Laurent series for the Hurwitz zeta function ζ(s, a) about its
simple pole at s = 1 [5, 13, 20, 25, 30]. These constants are
important in analytic number theory and elsewhere, where they appear
in various estimations and as a result of asymptotic analyses. They are
also of much use in developing a binomial sum Sγ(n) introduced by
the author in the study of a critical subsum in application of the Li
criterion for the Riemann hypothesis [9, 27]. The constants γk(1)
are important in relation to the derivatives of the Riemann ξ function
ξ(s) = π−s/2Γ(s/2 + 1)(s− 1)ζ(s) at s = 1, where Γ is the Γ function
and ζ(s) is the Riemann ζ function [16, 21, 22, 31], hence, some of
the relevance to the Li criterion.

Despite the fact that many relations are known for the Stieltjes con-
stants, there are many open questions, including those concerned with
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their arithmetic nature. Even good estimations of their magnitudes is
still lacking. The evaluation of γ1(a) and γ2(a) for rational arguments
has been given very recently [6]. In addition, formulas for obtaining
the Stieltjes constants to arbitrary precision remain of interest.

On the subject of the magnitudes |γk(a)|, known estimates [4, 39]
are highly conservative, and there is much room for improvement. We
present one approach for such estimation. Our result is probably
less important by itself than for the possibilities for extension and
improvement that it suggests.

In this paper, we present various series representations of the Stielt-
jes coefficients. Most of these are fast converging, so have application to
high precision computation. In particular, we make use of the Stirling
numbers of the first kind s(k, j) and their properties. Therefore, our
treatment reflects a fusion of analytic number theory and enumerative
combinatorics. Moreover, Proposition 9 gives instances of an expo-
nentially fast converging series representation for γk. Such very fast
converging series are relatively rare, and this may be the first result of
its kind for the Stieltjes constants.

The Hurwitz zeta function, initially defined by ζ(s, a) =
∑∞

n=0(n+
a)−s for Re s > 1, has an analytic continuation to the whole complex
plane [4, 22, 35]. In the case of a = 1, ζ(s, a) reduces to the Riemann
zeta function ζ(s). In this instance, by convention, the Stieltjes
constants γk(1) are simply denoted γk [5, 20, 25, 28, 30, 39]. We
recall that γ0(a) = −ψ(a), where ψ = Γ′/Γ is the digamma function.

We also recall that γk(a + 1) = γk(a) − (lnk a)/a, and more generally
that for n ≥ 1 an integer

(1.1) γk(a+ n) = γk(a)−
n−1∑
j=0

lnk(a+ j)

a+ j
,

as follows from the functional equation ζ(s, a+n) = ζ(s, a)−
∑n−1

j=0 (a+

j)−s.

Unless specified otherwise below, letters j, k, ℓ, m and n denote
nonnegative integers. We point out the common alternative notations

S
(m)
n and

[
n
m

]
for Stirling numbers of the first kind s(n,m) [1, 15, 19],

with the relation
[
n
m

]
= (−1)n+ms(n,m) holding. We also make use

of P1(t) ≡ B1(t − [t]) = t − [t] − 1/2, the first periodized Bernoulli
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polynomial (e.g., [21, 35]). Obviously, we have |P1(t)| ≤ 1/2. A
glossary of notation is included at the end of the paper.

Proposition 1. (Addition formula for the Stieltjes constants). Let Re
a > 0 and |a| > |b|, and as usual let ′ denote differentiation with respect
to the argument of a function, with (j) denoting j-fold differentiation.
Then:

(i)

γℓ(a+ b) = γℓ(a) + (−1)ℓ
∞∑
j=2

bj−1

(j − 1)!

ℓ∑
k=0

(−1)k
(
ℓ

k

)
× s(j, k + 1)k!ζ(ℓ−k)(j, a).(1.2)

(ii) We have

(1.3) γ′ℓ(a) = (−1)ℓ+1[ζ(ℓ)(2, a) + ℓζ(ℓ−1)(2, a)],

(1.4) γ′′ℓ (a) = (−1)ℓ[2ζ(ℓ)(3, a) + 3ℓζ(ℓ−1)(3, a) + ℓ(ℓ− 1)ζ(ℓ−2)(3, a)],

and

γ′′′ℓ (a) = (−1)ℓ+1[6ζ(ℓ)(4, a) + 11ℓζ(ℓ−1)(4, a) + 6ℓ(ℓ− 1)ζ(ℓ−2)(4, a)

+ ℓ(ℓ− 1)(ℓ− 2)ζ(ℓ−3)(4, a)].(1.5)

Corollary 1.

(1.6) γ′1(1) = ζ(2)[γ + ln(2π) + 12ζ ′(−1)],

where ζ(2) = π2/6 and γ = −ψ(1) is Euler’s constant, and

(1.7) γ′1

(
1

2

)
= 3ζ(2)[γ + ln(2π) + 12ζ ′(−1)] + 4ζ(2) ln 2.
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Corollary 2. For j ≥ 1, we have

(1.8) γ
(j)
ℓ (a) = (−1)ℓ

ℓ∑
k=0

(−1)kk!

(
ℓ

k

)
s(j + 1, k + 1)ζ(ℓ−k)(j + 1, a).

Proposition 2.

(i) For Re a > 1,

γn(a) = − lnn+1(a− 1)

n+ 1
− n!

∞∑
k=1

1

(k + 1)!

n∑
m=0

(−1)m

m!

× s(k + 1, n−m+ 1)ζ(m)(k + 1, a),(1.9)

(ii) For Re a > 1/2,

γn(a) = − lnn+1(a− 1/2)

n+ 1
− n!

∞∑
k=1

1

4k(2k + 1)!

n∑
m=0

(−1)m

m!

× s(2k + 1, n−m+ 1)ζ(m)(2k + 1, a),(1.10)

(iii) For Re a > 1/2,

γn(a) = − lnn+1(a− 1/2)

n+ 1

(1.11)

+ n!

∞∑
k=1

(−1)k

4k(2k + 1)!

n∑
m=0

(−1)m

m!
s(2k + 1, n−m+ 1)ζ(m)

× (2k + 1, a)− 2n!
∞∑
k=1

1

16k(2k + 1)!

+

n∑
m=0

(−1)m

m!
s(4k + 1, n−m+ 1)ζ(m)(4k + 1, a).
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Proposition 3. (Asymptotic relation). Let Bj denote the Bernoulli
numbers. For Re a > 0 and a→ ∞ we have

γℓ(a) ∼ − lnℓ+1 a

ℓ+ 1
+

1

2a
lnℓ a

−
∞∑

m=1

B2m

(2m)!
a−2m

ℓ∑
k=0

(
ℓ

k

)
k!s(2m, k + 1) lnℓ−k a.(1.12)

Proposition 4. For any integer N ≥ 0 and Re a > 0, we have

γℓ(a) =
N∑

n=0

lnℓ(n+ a)

n+ a
− lnℓ+1(N + a)

ℓ+ 1

+
∞∑
r=2

(−1)r

r!

ℓ∑
k=0

(−1)k
(
ℓ

k

)
k!s(r, k + 1)

[
(−1)ℓζ(ℓ−k)(r, a)(1.13)

− (−1)k
N∑

n=0

lnℓ−k(n+ a)

(n+ a)r

]
.

Proposition 5. Let a > 0. Then there exists a∗1 > 1 such that γ1(a)
is monotonically increasing for a < a∗1 and γ1(a) is monotonically
decreasing for a > a∗1. The approximate numerical value of a∗1 is
a∗1 ≃ 1.39112.

Proposition 6. Let Re z > 0. Then we have

(1.14)
1

j!

∞∑
k=j

zk

(k − j)!

∫ 1

0

γk(a) da =
(−1)j

z
.

Proposition 7. Put as in [28, 39], Cn(a) ≡ γn(a) − (1/a) lnn a for
0 < a ≤ 1. Then we have

(1.15) |Cn(a)| ≤
en!√
n2n

, n ≥ 1.
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Our methods extend to many other analytic functions. Additionally,
although we present explicit results for expansions at s = 1, this is not
a restriction. For those functions possessing functional equations, we
also gain expansions typically at s = 0. More generally, expansions
about arbitrary points in the complex plane are usually possible.

Another instance for which our methods apply is for the Lerch zeta
function Φ(z, s, a). As an example, we consider the Lipschitz-Lerch
transcendent

(1.16) L(x, s, a) =
∞∑

n=0

e2πinx

(n+ a)s
= Φ(e2πix, s, a),

for complex a different from a negative integer. We take in (1.16) x
real and nonintegral, so that convergence obtains for Re s > 0. Else,
for x an integer in (1.16), we reduce to the Hurwitz zeta function.
The functions Φ and L possess integral representations and functional
equations.

A case of particular interest for (1.16) is when x = 1/2. Then we
obtain the alternating Hurwitz zeta function,

(1.17) L

(
1

2
, s, a

)
=

∞∑
n=0

(−1)n

(n+ a)s
= 2−s

[
ζ

(
s,
a

2

)
− ζ

(
s,
a+ 1

2

)]
.

Therefore, expansion at s = 1 yields expressions for differences of
Stieltjes constants γk(a/2) − γk[(a + 1)/2]. More generally, for x /∈ Z,
L is nonsingular at s = 1, and we may write

(1.18) L(x, s, a) =

∞∑
n=0

(−1)n

n!
ℓn(x, a)(s− 1)n.

We have

Proposition 8. Let a > 0 and |ξ| < a. Then we have the addition
formula

ℓn(x, a+ ξ) = ℓn(x, a)

+

∞∑
k=2

ξk−1

(k − 1)!

∞∑
j=0

(−1)j
(
n

j

)
(n−j)!s(k, n−j+1)

(
d

ds

)j

L(x, s+ k − 1, a)|s=1 .(1.19)
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As a result, we obtain the following corollary for derivatives with
respect to a of ℓn.

Corollary 3.

ℓ(k)n (x, a) =
∞∑
j=0

(−1)j
(
n

j

)
(n− j)!s(k + 1, n− j + 1)

(
d

ds

)j

× L(x, s+ k, a)|s=1 .(1.20)

Let Γ(a, z) =
∫∞
z
ta−1e−tdt be the incomplete Gamma function, pFq

the generalized hypergeometric function, Ei (z) = −
∫∞
−z
e−t(dt/t) the

exponential integral, and erf the error function [1, 18]. One may seek
a summation form for γk with very fast convergence. As a foretaste of
a family of other results, we offer the following.

Proposition 9. We have: (i)

γ

2
=

∞∑
n=1

1

n
[1− erf (

√
πn)]−

∞∑
n=1

Ei (−πn2)− 1 +
1

2
ln(4π),(1.21)

and

(ii)

γ1 =
π2

16
+
γ

2
ψ

(
1

2

)
+

1

8
ψ2

(
1

2

)
− 1 +

1

2
lnπ − 1

8
ln2 π

− 1

2

∞∑
n=1

1

n

[
4n2F2

(
1

2
,
1

2
;
3

2
,
3

2
;−n2π

)
+ ψ

(
1

2

)
− 2 lnn− erf (n

√
π) lnπ

]
+

∞∑
n=1

{
γ2

4
+
π2

24
− 1

2
n2π3F3(1, 1, 1; 2, 2, 2;−n2π)

+
1

4
ln(n2π)[2γ + ln(πn2)] +

1

2
lnπ Ei (−n2π)

}
,(1.22)

where ψ(1/2) = −γ − 2 ln 2.
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We introduce the polylogarithm function, initially defined by Lis(z)
=

∑∞
k=1 z

k/ks for |z| ≤ 1 and Re s > 1, and analytically continued
thereafter. We illustrate a method that more generally leads to expres-
sions for the sums γk(a) + γk(1− a). We have:

Proposition 10. Let 0 < a < 1. We have: (i)

− lnπ + ψ

(
1

2

)
− π cotπa− 2ψ(a) = γ + lnπ + 2

∂

∂s

∣∣∣∣
s=0

[Lis(e
2πia)

+ Lis(e
−2πia)],(1.23)

and

(ii)

(1.24) γ1(a) + γ1(1− a)

=
π2

12
+

ln2 π

4
− lnπ

2
ψ

(
1

2

)
+

1

4
ψ2

(
1

2

)
+

1

2

[
lnπ − ψ

(
1

2

)]
[ψ(a) + ψ(1− a)]− 1

4
(γ + lnπ)2

− (γ + lnπ)
∂

∂s

∣∣∣∣
s=0

[Lis(e
2πia) + Lis(e

−2πia)]

+
∂2

∂s2

∣∣∣∣
s=0

[Lis(e
2πia) + Lis(e

−2πia)].

Lastly, we present expressions with Stirling numbers for rapidly
converging approximations to γ = γ0. Historically this subject [32] has
been important, especially due to Appell’s use of them in his attempted
proof of the irrationality of Euler’s constant [3]. In addition, we
present an exact representation for the difference between the Stieltjes
constants and a finite sum. Near the end of the paper, we further
discuss these subjects. We have

Proposition 11. Define polynomials for n ≥ 1

(1.25) Pn+1(y) ≡
1

n!

∫ y

0

x(1− x)(2− x) · · · (n− 1− x) dx,
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and their values pn+1 ≡ Pn+1(1). Put r
(k)
n = γk −D

(k)
n , where

(1.26) D(k)
n ≡

n∑
m=1

lnkm

m
− 1

k + 1
lnk+1(n+ 1).

Then we have:

(i)

Pn+1(y) =
(−1)n

n!

n∑
k=1

(−1)k
s(n− 1, k − 1)

k(k + 1)

[((k − 1)y + y + 1)(1− y)k−1(y − 1) + 1],(1.27)

(ii)

Pn+1(y) =
(−1)n+1

n!

n∑
k=0

s(n, k)

k + 1
yk+1

=
(−1)n+1

n!

[ n−1∑
k=1

s(n, k)

k + 1
yk+1 + δn0 +

1

n+ 1

]
,(1.28)

where δjk is the Kronecker symbol,
(iii) the special case

(1.29)

pn+1 =
(−1)n

n!

n∑
k=1

(−1)k
s(n− 1, k − 1)

k(k + 1)
=

(−1)n+1

n!

n∑
k=1

s(n, k)

k + 1
,

and
(iv)

(1.30) r(k)n =
∞∑

m=n+1

Ikm,

where

Ikm =
∞∑

n=1

1

(n+ 1)mn+1

[
(−1)n lnkm(1.31)

+
1

n!

k−1∑
j=0

k!

(k − j − 1)!
s(n+ 1, j + 2) lnk−j−1m

]
.
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2. Proof of propositions.

Proof of Proposition 1. We let (z)k = Γ(z+k)/Γ(z) be the Pochhammer
symbol. We make use of the following.

Lemma 1. We have

(2.1)

(
d

ds

)ℓ

(s)j

∣∣∣∣∣
s=1

= (−1)j+ℓℓ!s(j + 1, ℓ+ 1).

We have the standard expansion

(2.2) (s)j = s(s+ 1) · · · (s+ j − 1) =

j∑
k=0

(−1)j+ks(j, k)sk,

giving

(2.3)

(
d

ds

)ℓ

(s)j =

j∑
k=ℓ

(−1)j+ks(j, k)k(k − 1) · · · (k − ℓ+ 1)sk,

so that(
d

ds

)ℓ

(s)j

∣∣∣∣∣
s=1

= (−1)j
j∑

k=ℓ

(−1)ks(j, k)(−1)ℓ+1k(1− k)ℓ−1

= (−1)j(ℓ− 1)!

j∑
k=ℓ

(−1)ks(j, k)k

(
k − 1

ℓ− 1

)

= (−1)jℓ!

j∑
k=ℓ

(−1)ks(j, k)

(
k

ℓ

)
.(2.4)

It is known that [19, page 265]

(2.5)

j∑
k=ℓ

(−1)ks(j, k)

(
k

ℓ

)
= (−1)ℓs(j + 1, ℓ+ 1).

Therefore, Lemma 1 follows.
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In order to obtain Proposition 1, we apply a formula of Wilton [38]
for the Hurwitz zeta function,

ζ(s, a+ b) = ζ(s, a) +
∞∑
j=1

(−1)j

j!

Γ(s+ j)

Γ(s)
ζ(s+ j, a)bj ,

s ̸= 1, |b| < |a|, Re a > 0,(2.6)

along with the product rule
(2.7)(

d

ds

)ℓ

(s)jζ(s+ j, a)

∣∣∣∣∣
s=1

=

ℓ∑
k=0

(
ℓ

k

)[(
d

ds

)k

(s)j

]
ζ(ℓ−k)(s+j, a)

∣∣∣∣∣
s=1

.

The defining Laurent expansion for the Stieltjes constants is

(2.8) ζ(s, a) =
1

s− 1
+

∞∑
k=0

(−1)kγk(a)

k!
(s− 1)k, s ̸= 1.

Therefore, the Wilton formula (2.6) gives

∞∑
k=0

(−1)k

k!
γk(a+ b)(s− 1)k =

∞∑
k=0

(−1)k

k!
γk(a)(s− 1)k

+
∞∑
j=1

(−1)j

j!
(s)jζ(s+ j, a)bj ,

|b| < |a|, Re a > 0.(2.9)

We take ℓ derivatives of this equation and use (2.7) and Lemma 1,
yielding

(−1)ℓγℓ(a+ b) = (−1)ℓγℓ(a) +
∞∑
j=1

bj

j!

ℓ∑
k=0

(
ℓ

k

)
(−1)ks(j + 1, k + 1)k!ζ(ℓ−k)(j + 1, a).(2.10)

Therefore, Proposition 1 (i) follows.

For part (ii), we form the limit difference quotient

(2.11) γ′ℓ(a) = lim
b→0

1

b
[γℓ(a+ b)− γℓ(a)],
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giving

(2.12) γ′ℓ(a) = (−1)ℓ
ℓ∑

k=0

(−1)k
(
ℓ

k

)
s(2, k + 1)k!ζ(ℓ−k)(2, a).

The Stirling number truncates the summation, with s(2, k + 1) =
(−1)k+1, k = 0, 1, and otherwise is 0 for k ≥ 2.

We next have

γ′′ℓ (a) = lim
b→0

1

b2
[γℓ(a+ 2b)− 2γℓ(a+ b) + γℓ(a)]

= lim
b→0

1

b2
{[γℓ(a+ 2b)− γℓ(a)]− 2[γℓ(a+ b)− γℓ(a)]}

= (−1)ℓ[2ζ(ℓ)(3, a) + 3ℓζ(ℓ−1)(3, a) + ℓ(ℓ− 1)ζ(ℓ−2)(3, a)].(2.13)

Similarly higher derivatives of γℓ(a) may be determined and part (ii)
has been shown.

From part (ii), we have γ′1(1) = ζ ′(2) + ζ(2), wherein by the
functional equation of the Riemann zeta function, or otherwise, we
have the relations

ζ ′(2) = ζ(2)(γ + ln 2− 12 lnA+ lnπ)

= ζ(2)[γ + ln(2π)− 1 + 12ζ ′(−1)],(2.14)

where lnA = 1/12 − ζ ′(−1) and A is Glaisher’s constant. Corollary 1
follows.

For Corollary 2 we simply shift the summation index j → j + 1
in the Taylor series (1.2) and read off the derivatives. Otherwise,
we could make use of the forward difference operator b−n∆n

b [f ](x) =
b−n

∑n
k=0

(
n
k

)
(−1)n−kf(x+ kb).

Remarks. The auxiliary relation (2.5) can be proved in a number of
ways. One is with induction by using a recursion relation satisfied by
s(j, k) and by the binomial coefficient. Other methods include the use
of integral representations either for the Stirling numbers of the first
kind or for the binomial coefficient. For a proof using boson operators,
see [23] (Identity 1).
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It is readily checked that at ℓ = 0 Proposition 1 (i) yields the identity
γ0(a+ b) = −ψ(a+ b). For we have

γ0(a+ b) = γ0 +

∞∑
j=1

(−b)jζ(j + 1, a)

= γ0(a) +
∞∑
j=1

(−b)j

j!

∫ ∞

0

tje−(a−1)t

et − 1
dt

= γ0(a) +

∫ ∞

0

e−at(e−bt − 1)

1− e−t
dt

= γ0(a) + ψ(a)− ψ(a+ b) = −ψ(a+ b).(2.15)

Herein we used a standard integral representation for ζ(s, a) and for
the digamma function [1, page 259] or [18, page 943].

Similarly, we may write

(2.16) γ1(a+ b) = γ1(a)−
∞∑
j=1

(−b)j [ζ ′(j + 1, a) +Hjζ(j + 1, a)],

where Hj ≡
∑j

k=1 1/k is the usual harmonic number. Again, integral
forms of this relation may be given.

Our integral representation [8, Proposition 3 (a)],

γk(a) =
1

2a
lnk a− lnk+1 a

k + 1
+

2

a
Re

∫ ∞

0

(y/a− i) lnk(a− iy)

(1 + y2/a2)(e2πy − 1)
dy,

Re a > 0,(2.17)

could also be used to prove Proposition 1 part (ii).

The approximate numerical value γ′1(1) ≃ 0.707385812532 suggests

that γ′1(1) = ζ ′(2)+ ζ(2) can be written as 1/
√
2 together with a series

of systematic correction terms.

Of course, theWilton formula has built in the relation (∂/∂a)ζ(s, a) =
−sζ(s+ 1, a), and more generally that

(2.18)

(
∂

∂a

)j

ζ(s, a) = (−1)j(s)jζ(s+ j, a).
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Proof of Proposition 2. These results are based upon [10] (Proposition
1, parts (i), (ii), and (iv)). We have, for each indicated domain of a,

ζ(s, a) =
(a− 1)1−s

s− 1
− 1

Γ(s)

∞∑
k=1

Γ(s+ k)

(k + 1)!
ζ(s+ k, a),

Re a > 1,(2.19)

ζ(s, a) =
(a− 1/2)1−s

s− 1
− 1

Γ(s)

∞∑
k=1

Γ(s+ 2k)

4k(2k + 1)!
ζ(s+ 2k, a),

Re a > 1/2,(2.20)

and

ζ(s, a) = 2s−2 (2a− 1)1−s

s− 1

+
1

Γ(s)

[
1

2

∞∑
k=0

(−1)kΓ(s+ 2k)

4k(2k + 1)!
ζ(s+ 2k, a)

−
∞∑
k=1

Γ(s+ 4k)

16k(4k + 1)!
ζ(s+ 4k, a)

]
, Re a > 1/2.(2.21)

Lemma 1 immediately carries over to

(2.22)

(
d

ds

)ℓ

(s)pj

∣∣∣∣∣
s=1

= (−1)pj+ℓℓ!s(pj + 1, ℓ+ 1), p ≥ 1.

We then expand equations (2.19)–(2.21) in powers of s − 1 using the
product rule and the Proposition follows. In the case of part (iii), we
have first moved the k = 0 term on the right side of equation (2.21) to
the left side and multiplied the resulting equation by 2. �

Remarks. Part (ii) of Proposition 2 gives the general n case beyond the
low order instances given explicitly in terms of generalized harmonic

numbers H
(r)
n in [11, Proposition 7]. After all, it is well known that

s(n + 1, 1) = (−1)nn!, s(n + 1, 2) = (−1)n+1n!Hn, and s(n + 1, 3) =

(−1)nn![H2
n −H

(2)
n ]/2, where Hn ≡ H

(1)
n . This part of the Proposition

has also been obtained by Smith [33].
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Part (i) of Proposition 2 exhibits slow convergence. In contrast,
parts (ii) and (iii) are very attractive for computation.

The Maślanka representation for the Riemann zeta function is writ-
ten in terms of certain Pochhammer polynomials Pk(s) [29]. Therefore,
it is also possible to write expressions for γj from this representation
in terms of sums including Stirling numbers of the first kind.

Likewise, the Stark-Keiper formula for ζ may be used to develop
expressions for the Stieltjes constants. For N > 0 an integer, this
representation reads

(2.23) ζ(s,N) = − 1

s− 1

∞∑
k=1

(
N +

s− 1

k + 1

)
(−1)k

k!
(s)kζ(s+ k,N).

Serviceable series for the Stieltjes constants using the Stirling num-
bers of the first kind can also be written using the Taylor-series based
expressions

(2.24) ζ(s, a) = a−s +

∞∑
n=0

(−a)n

n!
(s)nζ(s+ n), |a| < 1,

and

ζ

(
s, a+

1

2

)
=

∞∑
n=0

(−a)n

n!
(s)n(2

s+n − 1)ζ(s+ n),

|a| < 1/2.(2.25)

In general, Dirichlet L functions may be written as a combination of
Hurwitz zeta functions. For instance, for χ a character modulo m and
Re s ≥ 1 we have

(2.26) L(s, χ) =
∞∑
k=1

χ(k)

ks
=

1

ms

m∑
k=1

χ(k)ζ

(
s,
k

m

)
.

For χ a nonprincipal character, convergence obtains herein for Re s ≥ 0.
Therefore, our results are very pertinent to derivatives and expansions
of Dirichlet L series about s = 1, especially for real-Dirichlet-character
combinations of low order Stieltjes constants, [11] may be consulted.
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Proof of Proposition 3. We have the representation valid for Re s >
−(2n− 1),

ζ(s, a) = a−s +
a1−s

s− 1
+

n∑
k=1

(s)k−1
Bk

k!
a−k−s+1

+
1

Γ(s)

∫ ∞

0

(
1

et − 1
−

n∑
k=0

Bk

k!
tk−1

)
e−atts−1dt.(2.27)

If we take n → ∞ in this equation we in fact obtain an analytic
continuation of the Hurwitz zeta function to the whole complex plane.
We then develop the result

(2.28) ζ(s, a) =
1

2
a−s +

a1−s

s− 1
+

∞∑
j=2

(s)j−1
Bj

j!
a−j−s+1,

as a series in powers of s− 1, where simply the factor

(2.29)

(
d

ds

)ℓ−k

a−j−(s−1)

∣∣∣∣∣
s=1

= a−j(−1)ℓ−k lnℓ−k a.

We use the product rule for derivatives of the summation term together
with Lemma 1 and find

γℓ(a) ∼
1

2a
lnℓ a− lnℓ+1 a

ℓ+ 1

+
∞∑
j=2

(−1)j−1Bj

j!
a−j

ℓ∑
k=0

(
ℓ

k

)
s(j, k + 1)k! lnℓ−k a.(2.30)

Since B2n+1 = 0 for n ≥ 1, the stated form of Proposition 3 follows. �

Proof of Proposition 4. We employ the representation [2, page 270]
based upon Euler-Maclaurin summation and integration by parts, for
N ≥ 0, and Re s > −m, with m = 1, 2, . . .,

ζ(s, a) =
N∑

n=0

1

(n+ a)s
+

(N + a)1−s

s− 1

−
m∑
r=1

(s)r
(r + 1)!

[
ζ(s+ r, a)−

N∑
n=0

1

(n+ a)s+r

]
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− (s)m+1

(m+ 1)!

∞∑
n=N

∫ 1

0

um+1

(n+ a+ u)s+m+1
du.(2.31)

Taking m → ∞ and developing the result in powers of s − 1 using
Lemma 1 gives Proposition 4. �

Remarks. In practice in using Proposition 4, there will be a tradeoff
in selecting N and the cutoff or otherwise estimating the remainder
neglected in the sum over r. We expect the convergence to be poor as
Re a → 0 in this Proposition. We anticipate that a suitable procedure
for computations is to take values with Re a > 1 and then to use relation
(1.1) as needed.

Similarly, we could employ the representation [18, page 1073] for
integers N ≥ 0 and Re a > 0

ζ(s, a) =
N∑

n=0

1

(n+ a)s
+

(N + a)1−s

s− 1

− s
∞∑

n=N

∫ n+1

n

(t− n)

(t+ a)s+1
dt, Re s > 1,(2.32)

where the integral may be easily expressed in closed form. Or we could
use the representation for integers N ≥ 0 and Re a > 0 [22, page 16]

ζ(s, a) =
N∑

n=0

1

(n+ a)s
+

1

s− 1

(
N +

1

2
+ a

)1−s

+ s

∫ ∞

N+1/2

P1(t)

(t+ a)s+1
dt, Re s > 0.

As we easily have that the integral in this equation is bounded by

|s|
∣∣∣∣ ∫ ∞

N+1/2

dt

(t+ a)s+1

∣∣∣∣ = 1

|N + 1/2 + a|s
,

the integral converges uniformly for s in any compact subset of the half
plane Re s > 0 (and for arbitrary a).

Proof of Proposition 5. The function γ1(a) → −∞ as a → 0+ and as
a→ ∞. Indeed, the asymptotic form as a→ ∞ is γ1(a) ∼ −(1/2) ln2 a
as can be seen from (2.17). From Proposition 1 (ii) we have the
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derivative

(2.33) γ′1(a) = ζ ′(2, a)+ζ(2, a) = ζ ′(2, a)+ψ′(a) =
∞∑

n=0

1− ln(n+ a)

(n+ a)2
,

where the term ζ(2, a) = ψ′(a) is the trigamma function. The function
γ′1(a) → ∞ as a → 0+ and → 0 through negative values as a → ∞.
The sole zero of γ′1(a) occurs at a∗1, where γ1(a

∗
1) > 0. Therefore, γ1

has the single global maximum as claimed. �
Remark. The approximate value γ1(a

∗
1) ≃ 0.0379557.

Proof of Proposition 6. As described below, we have for Re s < 1

(2.34)

∫ 1

0

ζ(j)(s, a) da = 0.

We differentiate (2.8) j times with respect to s and apply this
equation, putting z = 1− s, giving Proposition 6. �

That (2.34) holds as can be seen by first noting that by the functional
equation of the Hurwitz zeta function we have for Re s < 1 and
0 < a < 1

(2.35) ζ(s, a) = 2sπs−1Γ(1− s)

∞∑
n=1

sin

(
2πna+

πs

2

)
ns−1.

By using the product rule, various forms of ζ(j)(s, a) follow, and these
give (2.34).

Remarks. Equation (2.34) could also be found on the basis of various
integral representations for ζ holding for Re s < 1.

Proposition 6 gives a generalization of Proposition 4 of [13] when
j > 0.

As a byproduct of our proof of Proposition 6, we have:

Corollary 4.

(2.36)

∞∑
k=0

γk+n(a)

k!
= (−1)n[ζ(n)(0, a) + n!].
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This is an extension of the “beautiful sum” at a = 1 attributed to
Marichev [36].

As a special case, we have

Corollary 5. For Re a > 0,

(2.37)

∞∑
k=0

γk+1(a)

k!
= −ζ ′(0, a)− 1 =

1

2
ln(2π)− ln Γ(a)− 1.

Indeed, Corollary 4 is consistent with the relation (cf. [13, page
610]) Rj(a) = −(−1)jζ(j)(0, a), where

(2.38)
R′

j+1(a)

j + 1
= −γj −

1

a
lnj a−

∞∑
n=1

[
lnj(n+ a)

n+ a
− lnj a

n

]
, j ≥ 0.

By integrating this equation, we have

Rj(a)−Rj(1) = j(1− a)γj−1 − lnj a

(2.39)

−
∞∑

n=1

[
lnj(n+ a)− lnj(n+ 1)− j

n

∫ a

1

lnj−1 a da

]
.

We record an expression for (−1)j+1Rj(a) in the following.

Lemma 2. We have, for integers j ≥ 1,

ζ(j)(s, a) = (−1)ja1−s

j∑
k=0

(
j

k

)
(j − k)!

lnk a

(s− 1)j−k+1

+
(−1)j

2
a−s lnj a+ (−1)j

∫ ∞

0

P1(x)

(x+ a)s+1
lnj−1(x+ a) dx

− (−1)js

∫ ∞

0

P1(x)

(x+ a)s+1
lnj(x+ a) dx,(2.40)



462 MARK W. COFFEY

giving

ζ(j)(0, a) = a

j∑
k=0

(
j

k

)
(j − k)!(−1)k+1 lnk a+

(−1)j

2
lnj a

+ (−1)jj

∫ ∞

a

lnj−1 x

x
P1(x− a) dx.(2.41)

Lemma 2 follows from a direct calculation using the integral repre-
sentation [39] (2.3) valid for Re s > −1,

(2.42) ζ(s, a) =
a−s

2
+
a1−s

s− 1
− s

∫ ∞

0

P1(x)

(x+ a)s+1
dx.

Equation (2.40) may also be proved by induction. The a = 1 reduction
of (2.42) is well known [35, page 14].

Proof of Proposition 7. We have from [39, pages 153–154]

(2.43) Cn(a) =

∫ ∞

1

P1(x− a)
lnn−1 x

x2
(n− lnx) dx.

We put en ≡ exp(n/2). We note that the generic function lnn x/x2

is nonnegative and monotonically increasing for 1 < x < en and
nonnegative and monotonically decreasing for en < x < ∞. We have
that P1(x− a) is bounded and integrable and we split the integrals in
(2.43) at en−1 and en. By the second mean value theorem for integrals
(e.g., [18, pages 1097–1098]) we have

(2.44)

∫ en

1

lnn x

x2
P1(x− a) dx =

lnn en
e2n

∫ en

η

P1(x− a) dx,

for some η with 1 ≤ η ≤ en. Therefore, we obtain

(2.45)

∫ en

1

lnn x

x2
P1(x− a) dx =

nn

2nen

∫ en

η

P1(x− a) dx ≤ 1

6

nn

2nen

Here we have used the standard Fourier series for P1(x) [39, page 151]
or [1, page 805],

(2.46) P1(x) = −
∞∑

n=1

sin(2nπx)

nπ
,
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giving

(2.47)

∫ c

b

P1(x− a) dx =
1

2

∞∑
n=1

cos[2nπ(x− a)]

n2π2

∣∣∣∣∣
c

b

,

so that

(2.48)

∣∣∣∣ ∫ c

b

P1(x− a) dx

∣∣∣∣ ≤ 2

2π2
ζ(2) =

1

6
.

Similarly, we have

(2.49)

∫ ∞

en

lnn x

x2
P1(x− a) dx =

lnn en
e2n

∫ ξ

en

P1(x− a) dx,

for some ξ with en ≤ ξ <∞. This gives

(2.50)

∫ ∞

en

lnn x

x2
P1(x− a) dx =

nn

2nen

∫ ξ

en

P1(x− a) dx ≤ 1

6

nn

2nen
.

Combining the four integral contributions of (2.43) yields Proposition 7,
as

(2.51) |Cn(a)| ≤
1

3

[
(n− 1)n−1n

2n−1en−1
+

nn

2nen

]
≤ enn

2nen
.

�
Remarks. Zhang and Williams previously found the better bound

(2.52) |Cn(a)| ≤
[3 + (−1)n](2n)!

nn+1(2π)n
.

However, our presentation shows possibility for improvement. If, for
instance, a better bound is found for the integrals

∫ c

b
P1(x−a) dx, then

we may expect a tighter estimation.

Let us note also that the use of (2.40) for ζ(j)(pk+1, a) together with
the expressions of Proposition 2 provides many other opportunities for
the estimation of |γk(a)| and |Ck(a)|.

Proof of Proposition 8. We apply the formula of Klusch [24] (2.5),

(2.53) L(x, s, a+ ξ) =
∞∑
k=0

(−1)k
(s)k
k!

L(x, s+ k, a)ξk.
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This formula may be obtained by Taylor expansion, expansion of an
integral representation, or by binomial expansion in (1.16). We take n
derivatives of (2.53) using the product rule. We evaluate at s = 1 using
Lemma 1 and the defining relation (1.17) of ℓn. Separating the k = 0
term yields Proposition 8 and then Corollary 3. �

Remark. As very special cases, we have

ℓ0

(
1

2
, a

)
=

1

2

[
ψ

(
1 + a

2

)
− ψ

(
a

2

)]
,

ℓ1

(
1

2
, a

)
=

1

2

{
ln 2

[
ψ

(
a

2

)
− ψ

(
1 + a

2

)]
+ γ1

(
1 + a

2

)
− γ1

(
a

2

)]}
,

and

ℓ2

(
1

2
, a

)
=

1

4

{
ln2 2

[
ψ

(
1 + a

2

)
− ψ

(
a

2

)]
+ 2 ln 2

[
γ1

(
a

2

)
− γ1

(
a+ 1

2

)]
+ γ2

(
a

2

)
− γ2

(
a+ 1

2

)}
.(2.54)

As another example, from

L

(
1

4
, s, a

)
=

∞∑
n=0

in

(n+ a)s

= 4−s

{
ζ

(
s,
a

4

)
− ζ

(
s,
a+ 2

4

)
(2.55)

+ i

[
ζ

(
s,
a+ 1

4

)
− ζ

(
s,
a+ 3

4

)]}
,

by taking the real and imaginary parts of derivatives evaluated at s = 1,
we obtain expressions for γk(a/4) − γk[(a + 2)/4] and γk[(a + 1)/4] −
γk[(a+ 3)/4]. Evidently for a a rational number such relations always
exist.

Proof of Proposition 9. From the classical theta function-based repre-
sentation of the Riemann zeta function [14] (2) we have

Γ(s/2)ζ(s) =
πs/2

s(s− 1)
+

∞∑
n=1

n−sΓ

(
s

2
, πn2

)



STIELTJES CONSTANT SERIES REPRESENTATIONS 465

+ πs−1/2
∞∑

n=1

ns−1Γ

(
1− s

2
, πn2

)
.(2.56)

We expand both sides of this equation in powers of s − 1, and equate
the coefficients of (s − 1)0 and (s − 1)1 on both sides to obtain parts
(i) and (ii), respectively. The coefficient of (s− 1)n−1 for n ≥ 0 of the

term πs/2/[s(s−1)] is given by π1/2(−1)n
∑n

j=0(−1)j lnj π/2j , and the

simple polar term from the left side of (2.56) is canceled by the n = 0
term. We use the special function relations Γ(0, z) = −Ei (−z) and
Γ(1/2, z) =

√
π[1− erf (

√
z)]. The incomplete Gamma function [18] is

given for Rex > 0 by

(2.57) Γ(α, x) =

∫ ∞

x

e−ttα−1 dt =
2xαe−x

Γ(1− α)

∫ ∞

0

t1−2αe−t2

t2 + x
dt,

where the latter form holds for Reα < 1. It is convenient in finding
derivatives of this function to use the relation

(2.58) Γ(α, x) = Γ(α)− xα

α
1F1(α;α+ 1;−x), −α /∈ N,

where 1F1 is the confluent hypergeometric function [1, 18]. It follows
that

d

dα
1F1(α;α+ 1;−x) = 1

α
[1F1(α;α+ 1;−x)

−2F2(α, α;α+ 1, α+ 1;−x)] ,(2.59)

and

d

dα
Γ(α, x) = Γ(α)ψ(α) +

xα

α2
[−α lnx 1F1(α;α+ 1;−x)

+ 2F2(α, α;α+ 1, α+ 1;−x)] .(2.60)

When α→ 0 in (2.60), the singular terms 1/α2 cancel. In fact, we have
the expansions

(2.61) Γ′(α) = Γ(α)ψ(α) = − 1

α2
+
γ2

2
+
π2

12
+O(α),

and

(2.62)
xα

α2

(α)j
(α+ 1)j

[
− α lnx+

(α)j
(α+ 1)j

]
(−x)j

j!
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=
(1− j lnx)

j3(j − 1)!
(−x)j +O(α), α→ 0.

Summing the latter relation on j as α→ 0 then gives

∞∑
j=1

(1− j lnx)

j3(j − 1)!
(−x)j = −x3F3(1, 1, 1; 2, 2, 2;−x)

+ [γ + Γ(0, x) + lnx] lnx.(2.63)

We apply these relations at α = 0 and 1/2 and Proposition 9 follows.
�

Remarks. By making a change of variables in the theta function-
based representation [14] (2) we may include a parameter in the series
representation (2.56), and so in Proposition 9 too. Beyond this, we may
include a parameter b > 0 and a set of polynomials pj(s) with zeros
lying only on the critical line in representing the Riemann zeta and xi
functions [12] (Proposition 3). Thereby, we obtain a generalization of
Proposition 9.

In equation (1.21), the sum terms provide a small ≃ 0.0230957
correction to produce the value γ/2 ≃ 0.288607. Although there are
infinite sum corrections in Proposition 9, the expressions such as (1.21)
and (1.22) may have some attraction for computation. This is due to
the very fast decrease of the summands with n. For (1.21), using known
asymptotic forms, the summand terms have exponential decrease ∼
e−n2π[2/(πn2) + O(1/n4)]. Similarly for (1.22), the summand has
exponential decrease in n. Therefore, high order approximations for
the constants may be obtained with relatively few terms.

We note an integral representation for the term −
∑∞

n=1 Ei (−πn2)
in Proposition 9 in the following.

Lemma 3. Put the function θ3(y) = 1 + 2
∑∞

n=1 y
n2

. Then we have

−
∞∑

n=1

Ei (−πn2) = −1

2

∫ 1

0

[
θ3

(
eπ/(x−1)

)
− 1

] dx

x− 1

= −1

2

∫ ∞

1

[1− θ3(e
−πu)]

du

u
.(2.64)
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Proof. Let Lα
n be the Laguerre polynomial of degree n and parameter

α. We use the relation (e.g., [18, page 1038])

(2.65) Γ(α, x) = xαe−x
∞∑
k=0

Lα
k (x)

k + 1
, α > −1,

at α = 0. We then have

−
∞∑

n=1

Ei (−πn2) =
∞∑

n=1

e−πn2
∞∑
k=0

Lk(πn
2)

k + 1

=

∞∑
n=1

e−πn2
∞∑
k=0

∫ 1

0

xk dx

∞∑
k=0

Lk(πn
2)

= −
∞∑

n=1

e−πn2

∫ 1

0

exπn
2/(x−1)

x− 1
dx,(2.66)

where we used the generating function of the Laguerre polynomials
(e.g., [18, page 1038]). The interchange of summation and integration
is justified by the absolute convergence of the integral. Using the
definition of θ3 completes Lemma 3. �

3. Discussion: Generalization of Proposition 9. We may gen-
eralize Proposition 9 to the context of generalized Stieltjes constants
coming from the evaluation of Dirichlet L series derivatives at s = 1.
For this we require a number of definitions. We use [22, Chapter 1,
subsection 4.2].

Let χ be a primitive character modulo k. We need two theta
functions,

θ(τ, χ) =

∞∑
n=−∞

χ(n)e−πτn2/k,

for χ an even character,

θ1(τ, χ) =

∞∑
n=−∞

nχ(n)e−πτn2/k,

for χ an odd character, and the Gauss sum

g(χ) =
k∑

j=1

χ(j)e2πij/k.
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We let δ = 0 or 1 depending upon whether χ(−1) = 1 or −1,
respectively. We put

ξ(s, χ) = (πk−1)−(s+1)/2Γ

(
s+ δ

2

)
L(s, χ).

Then by [22, page 15] we find for χ an even character,

2ξ(s, χ) =

∫ ∞

1

τs/2−1θ(s, χ) dτ +

√
k

g(χ)

∫ ∞

1

τ−(s+1)/2θ(τ, χ̄) dτ

= π−s/2−1ks/2+1
∞∑

n=−∞
χ(n)n−s−2Γ

(
s

2
+ 1, π

n2

k

)

+

√
k

g(χ)
π(s−1)/2k(1−s)/2

+
∞∑

n=−∞
χ(n)ns−1Γ

(
1− s

2
, π
n2

k

)
,

and for χ an odd character,

2ξ(s, χ) =

∫ ∞

1

τ (s−1)/2θ1(s, χ) dτ +
i
√
k

g(χ)

∫ ∞

1

τ−s/2θ1(τ, χ) dτ

= π−(s+1)/2k(s+1)/2
∞∑

n=−∞
nχ(n)n−(s+1)

× Γ

(
s+ 1

2
+ 1, π

n2

k

)
+
i
√
k

g(χ)
πs/2−1k1−s/2

×
∞∑

n=−∞
nχ(n)ns−2Γ

(
1− s

2
, π
n2

k

)
.

Then one may multiply the expressions for ξ(s, χ) by (πk−1)(s+1)/2

and proceed as in the proof of Proposition 9 in developing both sides
in powers of s− 1.

In the case of the Hurwitz zeta function we employ the theta function

θ(τ, a) =
∑
n̸=0

e−πτ(n+a)2 ,
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with its functional equation

θ(1/τ, a) =
√
τe−πa2/τθ(τ,−ia/τ).

Proof of Proposition 10. We make use of expressions in the paper of
Fine. In particular, see his expressions for the function H(a, s) [17,
pages 362–363]. We have

(3.1)

π(s−1)/2Γ

(
1− s

2

)
[ζ(1− s, a) + ζ(1− s, 1− a)] = 2

∞∑
n=1

cos(2πna)

×
∫ ∞

0

e−πn2tts/2−1 dt = 2π−s/2Γ

(
s

2

) ∞∑
n=1

cos(2πna)

ns

= π−s/2Γ

(
s

2

)
[Lis(e

2πia) + Lis(e
−2πia)].

Initially, the left side of this equation is valid for Re s < 0. With
analytic continuation, the function is H(a, s) + 2/s is entire in s.
Therefore, we may expand both sides of the representation (3.1) about
s = 0. As it must, the singular term −2/s effectively cancels from
both sides of (3.1). Part (i) of Proposition 10 results from the constant
term s0 on both sides of (3.1), and using the reflection formula for the
digamma function ψ(1−a) = ψ(a)+π cotπa. Similarly, part (ii) results
from the term s1 on both sides of (3.1). �

Remarks. Proposition 10 and (3.1) properly reduce as they should
for a = 1/2. In this case, we have the alternating zeta function∑∞

n=1 (−1)n/ns = (21−s − 1)ζ(s). Then, both sides of part (i) of
Proposition 10 yield γ − lnπ + 2 ln 2.

Proof of Proposition 11. By using the definition (1.25) we have

Pn+1(y) =
1

n!

∫ y

0

x(1− x)n−1 dx

=
1

n!

n−1∑
k=0

(−1)n+k−1s(n− 1, k)

∫ y

0

x(1− x)k dx
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=
(−1)n

n!

n−1∑
k=0

(−1)k−1 s(n− 1, k)

(k + 2)(k + 1)

× [(ky + y + 1)(1− y)k(y − 1) + 1],(3.2)

whence part (i) follows. Of the many ways to perform the elementary
integral here, it may be evaluated as a special case of the incomplete
Beta function (e.g., [18, page 950])

Bx(p, q) =

∫ x

0

tp−1(1− t)q−1dt

=
xp

p
2F1(p, 1− q; p+ 1;x), Re p > 0, Re q > 0.(3.3)

For part (ii) we again use a generating function relation for s(n, k),
writing

Pn+1(y) = − 1

n!

∫ y

0

(−x)n dx

=
(−1)n+1

n!

n∑
k=0

s(n, k)

∫ y

0

xkdx.(3.4)

The second line of (1.27) simply follows from the values s(n, 0) = δn0
and s(n, n) = 1.

The identity of part (iii) follows simply from putting y = 1 in parts
(i) and (ii).

For part (iv), we have the well-known expression

γk = lim
N→∞

( N∑
m=1

lnkm

m
− 1

k + 1
lnk+1N

)
,(3.5)

so that limn→∞ r
(k)
n = 0. We form

D(k)
n =

n∑
m=1

(
lnkm

m
−
∫ m+1

m

lnk x

x
dx

)

=

n∑
m=1

∫ 1

0

[
lnkm

m
− lnk(x+m)

x+m

]
dx.(3.6)
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Therefore, we have

(3.7) r(k)n =
∞∑

m=n+1

∫ 1

0

[
lnkm

m
− lnk(x+m)

x+m

]
dx.

We now use [11] (5.7)

lnn y

y
− lnn(x+ y)

x+ y
=

∞∑
k=1

xk

yk+1

[
(−1)k lnn y

+
1

k!

n−1∑
j=0

n!

(n− j − 1)!
s(k + 1, j + 2) lnn−j−1 y

]
.(3.8)

Performing the integration of (3.7) gives part (iv). �

4. Discussion related to Proposition 11. By defining the func-
tion fk(x,m) = (x+m) lnkm−m lnk(x+m), it is possible to further

decompose the remainders r
(k)
n of (1.30) by writing

r(k)n =
∞∑

m=n+1

∫ 1

0

fk(x,m)

[
1

m(x+m)
− 1

m(m+ 1)

]
dx

+

∫ 1

0

∞∑
m=n+1

fk(x,m)

m(m+ 1)
dx.(4.1)

The representation (3.8) can then be used three times in this equation.
This process of adding and subtracting terms can be continued, building
an integral term with denominator m(m + 1) · · · (m + j)(m + x). For
k = 0, there is drastic reduction to the original construction of Ser [32].

Proposition 11 (iv) can be easily extended to expressions for r
(k)
n (a) =

γk(a)−D
(k)
n (a).

As pointed out by Ser, it is possible to write many summations
and generating function relations with the polynomials Pn. As simple
examples, we have

(4.2)
∞∑

n=1

P ′
n+1(y)z

n = −
∞∑

n=1

(−1)n
(
y

n

)
zn = 1− (1− z)y,
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and

(4.3)
∞∑

n=1

P ′
n+1(y)

n
= −

∞∑
n=1

(−1)n

n

(
y

n

)
= ψ(y + 1) + γ = Hy.

With the form (1.29) we easily verify a generating function:

∞∑
n=1

pn+1z
n−1 =

∞∑
n=1

(−1)n+1

n!

n∑
k=1

s(n, k)

k + 1
zn−1

= −1

z

∞∑
k=1

1

k + 1

∞∑
n=k

s(n, k)

n!
(−z)n

= −1

z

∞∑
k=1

1

(k + 1)!
lnk(1− z)

=
1

z
+

1

ln(1− z)
.(4.4)

One may also write a great many hypergeometric series of the form∑∞
n=1(P

′
n+1(y))/(n

j)zn, that we omit.

In contrast to an expression of Ser [32], we have

∞∑
n=2

pn+1(1− ez)n−1 =
1

z
+

1

1− ez
− 1

2

=
1

z
− 1

2
coth

(
z

2

)
(4.5)

=
∞∑
k=1

B2k

(2k)!
z2k−1, |z| < 2π,

where the latter series may be found from [18, page 35]. This relation
serves to connect the numbers pn+1 with the values ζ(2k). Equivalently,
using an integral representation for ζ(2k), we have

(4.6)
∞∑

n=2

pn+1(1− ez)n−1 = 2

∫ ∞

0

sinh(zv)
dv

e2πv − 1
.

As well, we have many extensions including

(4.7)
∞∑

n=2

pn+1(1−ez)n−1e−tz(n−1)! =
1

ln[1+ez(1−t)−e−tz]
+

etz

1−ez
−1

2
.
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We may inquire as to the asymptotic form of pn+1 as n→ ∞. Using
only the leading term of the result of [37], we have

(4.8) pn+1 ∼ − 1

n

n∑
k=1

(−1)k

(k + 1)

lnk−1 n

(k − 1)!
∼ 1

n ln2 n
, n→ ∞.

There are corrections to this result which overall decrease it. Therefore,
one may wonder if it can be proved that the expression on the right
serves as an upper bound for all n ≥ 2.

Motivated by [1, page 824], we conjectured that

(4.9) pn+1 ∼ 1

n(lnn+ γ)2
, n→ ∞,

is an improved asymptotic form and upper bound. This asymptotic
form has been verified by Knessl [26]. In fact, he has obtained a full
asymptotic series for pn+1 in the form

(4.10) pn+1 ∼ 1

n ln2 n

(
1 +

∞∑
j=1

Aj

lnj n

)
,

where Aj are constants that may be explicitly determined from certain
logarithmic-exponential integrals. We have A1 = −2γ and A2 =
3γ2 − π2/2. Knessl develops (4.10) from the exact representation

(4.11) pn+1 =

∫ ∞

0

1

(1 + u)n
du

(ln2 u+ π2)
, n ≥ 1.

From (4.11), we have the following

Corollary 6. We have the integral representation

(4.12) γ =

∫ ∞

−∞
ez

ln(1 + e−z)

z2 + π2
dz.

Proof. We have [18, page 943]

γ = −ψ(1) =
∫ 1

0

(
1

lnu
+

1

1− u

)
du

=

∫ 1

0

(
1

ln(1− v)
+

1

v

)
dv
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=

∫ 1

0

∞∑
n=1

pn+1v
n−1 dv

=

∞∑
n=1

pn+1

n
,(4.13)

where we used (4.4). Now we use Knessl’s representation (4.11), giving

γ =
∞∑

n=1

1

n

∫ ∞

0

1

(1 + u)n
du

(ln2 u+ π2)

= −
∫ ∞

0

ln

(
u

1 + u

)
du

(ln2 u+ π2)

= −
∫ ∞

−∞

ez

(z2 + π2)
[z − ln(1 + ez)] dz

=

∫ ∞

−∞

ez

(z2 + π2)
ln(1 + e−z) dz.(4.14)

�

Other properties and applications of the pn+1 constants are given in
the very recent work [7].

5. Summary and very brief discussion. Our methods apply
to a wide range of functions of interest to special function theory
and analytic number theory including, but not limited to, the Lerch
zeta function and Dirichlet L functions. Two-dimensional extensions
would be to Epstein and double zeta functions. Our results include
an addition formula for the Stieltjes coefficients, as well as expressions
for their derivatives. The series representations for γk(a) have very
rapidly convergent forms, making them applicable for multiprecision
computation. Byproducts of our results include some summation
relations for the Stieltjes coefficients. We have given a means for
estimating the magnitude of these coefficients, although this remains
an outstanding problem.

Acknowledgments. I thank R. Smith for useful correspondence. I
thank C. Knessl for reading the manuscript and for access to his results
on the constants pn+1.
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Glossary

Symbol Quantity

A Glaisher’s constant
Bj Bernoulli number
B(x, y) Beta function
Bz(x, y) incomplete Beta function(ℓ
k

)
binomial coefficient

χ Dirichlet character

Cn(a) = γn(a)− 1
a
lnn a normalized Stieltjes coefficient of the

Hurwitz zeta function
∆n

b forward difference operator
Ei exponential integral

2F1 Gauss hypergeometric function

pFq generalized hypergeometric function
Γ(s) Gamma function
Γ(a, z) incomplete Gamma function

γk = γk(1) Stieltjes coefficient of the Riemann zeta function
γk(a) Stieltjes coefficient of the Hurwitz zeta function
g(χ) Gauss sum
erf error function

Lis polylogarithm function
L(s, χ) Dirichlet L function
ψ(a) = −γ0(a) digamma function

ψ′(a) = d
da
ψ(a) trigamma function

γ = γ0 = −ψ(1) Euler constant
Lα
n(x) Laguerre polynomial

L(x, s, a) Lipshitz-Lerch transcendent

L(1/2, s, a) alternating Hurwitz zeta function
ℓn(x, a) Taylor coefficient about s = 1 of the Lipshitz-Lerch

transcendent

P1(t) = B1(t− [t]) first periodic Bernoulli polynomial
Pn+1(y) normalized integrated Pochhammer symbol

pn+1 = Pn+1(1) constants given by pn+1 = − 1
n!

∫ 1
0 (−x)ndx.

(z)n = Γ(z + n)/Γ(z) Pochhammer symbol (rising factorial)

s(n, k) = S
(k)
n Stirling number of the first kind

= (−1)n+k
[n
k

]
ζ(s) Riemann zeta function
ζ(s, a) Hurwitz zeta function
θ(τ, χ) theta function with an even character

θ1(τ, χ) theta function with an odd character
θ3(y) Jacobi theta function
ξ(s) Riemann xi function (completed Riemann

zeta function)
ξ(s, χ) completed Dirichlet L function



476 MARK W. COFFEY

REFERENCES

1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Na-

tional Bureau of Standards, Washington, 1964.

2. T.M. Apostol, Introduction to analytic number theory, Springer Verlag, New
York, 1976; corrected fourth printing, 1995.

3. P. Appell, Sur la nature arithmétique de la constante d’Euler, Comp. Rend.
Acad. Sci. 182 (1926), 897–899, 949.

4. B.C. Berndt, On the Hurwitz zeta function, Rocky Mountain J. Math. 2 (1972),
151–157.

5. W.E. Briggs, Some constants associated with the Riemann zeta-function,

Michigan Math. J. 3 (1955), 117–121.

6. M.W. Coffey, Functional equations for the Stieltjes constants, arXiv:1402.3746,
2014.

7. , Certain logarithmic integrals, including solution of monthly problem
11629, zeta values, and expressions for the Stieltjes constants, arXiv:1201.3393,

2012.

8. , The Stieltjes constants, their relation to the ηj coefficients, and
representation of the Hurwitz zeta function, Analysis 30 (2010), 383–409.

9. , Series of zeta values, the Stieltjes constants, and a sum Sγ(n),
arXiv/math-ph/:0706.0345v2, 2009.

10. , On some series representations of the Hurwitz zeta function, J.
Comp. Appl. Math. 216 (2008), 297–305.

11. , On representations and differences of Stieltjes coefficients, and other

relations, Rocky Mountain J. Math. 41 (2011), 1815–1846, arXiv:0809.3277.

12. , Theta and Riemann xi function representations from harmonic
oscillator eigenfunctions, Phys. Lett. 362 (2007), 352–356.

13. , New results on the Stieltjes constants: Asymptotic and exact evalu-
ation, J. Math. Anal. Appl. 317 (2006), 603–612, arXiv:math-ph/0506061.

14. , Relations and positivity results for derivatives of the Riemann ξ
function, J. Comp. Appl. Math. 166 (2004), 525–534.

15. L. Comtet, Advanced combinatorics, D. Reidel, Dordrecht, 1974.

16. H.M. Edwards, Riemann’s zeta function, Academic Press, New York, 1974.

17. N.J. Fine, Note on the Hurwitz zeta-function, Proc. Amer. Math. Soc. 2
(1951), 361–364.

18. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products,

Academic Press, New York, 1980.

19. R.L. Graham, D.E. Knuth and O. Patashnik, Concrete mathematics, 2nd ed.,
Addison Wesley, New York, 1994.

20. G.H. Hardy, Note on Dr. Vacca’s series for γ, Quart. J. Pure Appl. Math.
43 (1912), 215–216.
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