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ABSTRACT. While infinitely many examples of two tri-
ads of integers with equal sums of squares and cubes are
known, until now there is no published example of three tri-
ads of integers with this property. In this paper we obtain,
in parametric terms, three triads of integers with equal sums
of squares and cubes and show that infinitely many similar
parametric solutions for such triads can be obtained.

This paper deals with the simultaneous diophantine chains given by

(1)
x2
1 + x2

2 + x2
3 = y21 + y22 + y23 = z21 + z22 + z23 ,

x3
1 + x3

2 + x3
3 = y31 + y32 + y33 = z31 + z32 + z33 .

No solutions of these diophantine chains have been published until now.
A parametric solution for xi, yi, i = 1, 2, 3, satisfying simultaneously
the first part of each of the two chain equations may be obtained as
described in [1, page 200], but this solution is complicated and cannot
be extended easily to yield a solution of the diophantine chains (1).

A computer program was accordingly devised to obtain all numerical
solutions of the diophantine equations (1) with |xi|, |yi|, |zi| ≤ 20,000.
There are 27 nontrivial primitive solutions in this range, including 6
solutions bounded by 3,000 listed in Table I. Analysis of these numerical
solutions showed that 17 of these solutions satisfied the auxiliary
condition,

(2) x1 + x2 = y1 + y2 = z1 + z2.
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Table I. Solutions of the chain (1)
x1 x2 x3 y1 y2 y3 z1 z2 z3
463 -311 -72 457 -305 120 445 -293 180 *
726 -125 -374 643 438 -278 526 451 450
1033 -545 -240 991 -503 432 955 -467 540 *
1375 -551 -216 1369 -545 264 907 -83 1188 *
2105 -513 -748 1907 -315 1232 1221 371 1904 *
2803 -635 -1080 2281 -113 2052 2053 115 2280 *
Solutions marked with an asterisk (∗) satisfy condition (2)

We will accordingly solve equations (1) together with the additional
equation (2). We first obtain a parametric solution for xi, yi, i =
1, 2, 3, satisfying simultaneously the first part of each of the three
chain equations given by (1) and (2) by taking y2 = x1+x2− y1, when
the condition

∑
i x

2
i =

∑
i y

2
i can be written as

(3) 2(x1 − y1)(x2 − y1) = (x3 − y3)(x3 + y3),

which is satisfied if and only if there exist a, b, p, q such that

(4)
2(x1 − y1) = pa, x2 − y1 = qb,

x3 − y3 = pb, x3 + y3 = qa,

which gives

(5)
x2 = x1 − pa/2 + qb, x3 = (qa+ pb)/2,

y1 = x1 − pa/2, y3 = (qa− pb)/2.

With the above values of x2, x3, y1, y3 and y2 = x1 + x2 − y1, as
before, the condition

∑
i x

3
i =

∑
i y

3
i reduces to a linear equation in x1

which is readily solved, and we thus obtain a parametric solution of
the first part of each of the three chain equations given by (1) and (2).
On clearing denominators, this solution may be written as xi = αi,
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yi = βi, i = 1, 2, 3, with αi, βi, i = 1, 2, 3, being defined as follows:

(6)

α1 = 3(p+ q)qa2 − 6q2ab+ p2b2,

α2 = 3(q − p)qa2 + 6q2ab+ p2b2,

α3 = 6q2a2 + 6pqab,

β3 = 6q2a2 − 6pqab,

β1 = 3(q − p)qa2 − 6q2ab+ p2b2,

β2 = 3(p+ q)qa2 + 6q2ab+ p2b2,

where a, b, p and q are arbitrary parameters.

We will solve the simultaneous equations (1) and (2) by obtaining
three distinct solutions of the following three simultaneous equations,

X1 +X2 = s1,

X2
1 +X2

2 +X2
3 = s2,(7)

X3
1 +X3

2 +X3
3 = s3,

where s1 = α1 + α2, s2 = α2
1 + α2

2 + α2
3, s3 = α3

1 + α3
2 + α3

3, with
α1, α2, α3 being defined by (6) so that equations (7) already have two
known solutions given by

(X1, X2, X3) = (α1, α2, α3)

and
(X1, X2, X3) = (β1, β2, β3).

To obtain a third solution of the simultaneous equations (7), we
eliminate X1 and X2 from these three equations when we get the
following cubic equation in X3:

(8) (X3 − α3)(X3 − β3)(X3 − γ) = 0,

where γ = 3p2b2 − 3q2a2. While the roots X3 = α3 and X3 = β3

of equation (8) lead to the two known solutions of (7), the third root
X3 = γ will yield a new solution of (7). Substituting X3 = γ in the
first two equations of (7) and eliminating X2 from these two equations,
we get the equation

(9)
2X2

1 − (12q2a2 + 4p2b2)X1 − 9q2(2p2 + q2)a4

−6q2(7p2 + 12q2)a2b2 + 11p4b4 = 0.
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This is a quadratic equation in X1 and, for its roots to be rational, its
discriminant must be a perfect square. This discriminant is a quartic
function of a, b, and it is given by

(10) 36{2q2(2p2 + 3q2)a4 + 4q2(3p2 + 4q2)a2b2 − 2p4b4}.

By writing t = p/q and x = a/b, the condition that the above discrim-
inant is a perfect square may be considered as defining a parametrized
quartic curve given by

(11) y2 = 2(2t2 + 3)x4 + 4(3t2 + 4)x2 − 2t4.

We will denote points on the curve (11) by Pn and, given any such
point Pn = (x, y), we note that the point P ′

n = (−x, y) also lies on the
curve (11).

We observe that there are two rational points on the curve (11) given
by P0 = (t, 2t(t2+2)) and P1 = (t/3, 2t(t2−6)/9), and thus (11) is, in
fact, an elliptic curve. Neither the point P0 nor the point P1 leads to
a nontrivial solution of our diophantine chains. However, by following
a well-known procedure described by Dickson [2, page 639], and using
either of these two known points on the curve (11), we can easily find
another point on (11) and hence we can get a pair of values of a and b
that make the discriminant (10) a perfect square. While the point P0

yields the point P ′
1 which does not lead to a nontrivial solution of our

diophantine chains, the point P1 yields the point P ′
4 (this nomenclature

will become clear at the end of the paper) on (11), where

P4 = (t(t6 + 246t4 − 180t2 + 5832){9(t6 − 42t4 − 564t2 + 72)}−1,

(t12−1020t10−25236t8−1201824t6−5900688t4−9906624t2−1259712)
× {2t(t2 − 6)}{9(t6 − 42t4 − 564t2 + 72)}−2).

This point readily yields values of a and b that make the discriminant
(10) a perfect square so that equation (9) has two rational roots, and
then, equations (7) have three rational solutions, and these can be
effectively determined. This leads to a parametric solution of the
diophantine chains (1) in terms of polynomials of degree 14.

The referee was quick to point out in his report that the point P4

on the elliptic curve (11) is divisible by 2, and this provides a simpler
point P2 on the curve (11), namely,

(12) P2 = (t(t2+18)/(5t2− 6), 2t(t2+2)(t4− 84t2− 108)/(5t2− 6)2).
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While we verify below the observation of the referee, we give another
way of finding the point P2 on the quartic curve (11).

By applying a birational transformation, as described by Mordell [3,
page 77], the quartic curve (11) is reduced to the following cubic form
of an elliptic curve:

(13)
Y 2 = 4X3 +

(
8t6 − 32t2 − 64

3

)
X + 16t8

+
160

3
t6 + 64t4 +

128

3
t2 +

512

27
,

with the birational transformation being given by

x = −t(12X − 3Y − 12t4 − 24t2 − 16)

× {12(t2 + 1)X + 3Y + 12t4 + 8t2 − 16}−1,

y = 2t(t2 + 2){216X3 − 432X2 − 27Y 2 − 216t2(t2 + 2)Y(14)

− 432t8 − 1728t6 − 1728t4 + 256}
× [3{12(t2 + 1)X + 3Y + 12t4 + 8t2 − 16}2]−1,

and

(15)

X = {(6t4 + 12t2 + 4)x2 + 4(3t2 + 4)tx+ 3(t2 + 2)ty + 4t2}
×{3(t− x)2}−1,

Y = 4t(t2 + 2){t(2t2 + 3)x3 + (3t2 + 4)x2 + t(3t2 + 4)x

+(t2 + 1)xy + ty − t4}(t− x)−3.

Using this birational transformation, we find that the points P2 and P4

on the quartic curve (11) correspond respectively to the points Q2 and
Q4 on the cubic curve given by (13) where

(16)

Q2 = (t4/4− t2 − 5/3, (t2 + 2)2(t2 + 6)/4),

Q4 = ((3t8 − 264t6 + 712t4 + 5088t2 + 6192){48(t2 + 6)2}−1,

(t2 + 2)2(t2 − 30)(t6 + 150t4 + 108t2 + 648)

×{32(t2 + 6)3}−1).

It is readily verified on applying the group law that the point Q4 on
the elliptic curve (13) is indeed 2Q2, thus confirming the assertion of
the referee. It can also be verified that the point Q2 is 2Q1, where
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Q1 corresponds to P1; hence, we can find the point P2 without first
determining the point P4.

The point P2 on the curve (11) readily yields the following values of
a and b that make the discriminant (10) a perfect square:

(17) a = p(p2 + 18q2), b = q(5p2 − 6q2),

Thus, with these values of a and b, equation (9) has two rational roots.
It follows that when a and b are given by (17), equations (7) have three
rational solutions and this leads to the following parametric solution of
the diophantine chains (1) in terms of polynomials of degree 6:

x1 = 3p6 + 28p5q + 78p4q2 + 48p3q3 + 468p2q4

+ 1008pq5 + 648q6,

x2 = −3p6 + 28p5q − 78p4q2 + 48p3q3 − 468p2q4

+ 1008pq5 − 648q6,

x3 = 36pq(p2 + 2q2)(p2 + 18q2),

y1 = −3p6 + 28p5q − 138p4q2 + 48p3q3 − 1476p2q4

+ 1008pq5 + 648q6,

y2 = 3p6 + 28p5q + 138p4q2 + 48p3q3 + 1476p2q4

+ 1008pq5 − 648q6,

y3 = −24pq(p2 − 6q2)(p2 + 18q2),

z1 = −3p6 + 28p5q + 246p4q2 + 48p3q3 + 828p2q4

+ 1008pq5 + 648q6,

z2 = 3p6 + 28p5q − 246p4q2 + 48p3q3 − 828p2q4

+ 1008pq5 − 648q6,

z3 = 72pq(p2 − 6q2)(p2 + 2q2).

Using the group law on the elliptic curve (13), we can find infinitely
many rational points Qn = nQ1 on (13), and hence also on the quartic
curve (11), and thus obtain infinitely many pairs of values of a and
b that make the discriminant of equation (9) a perfect square. We
can thus find infinitely many parametric solutions of the simultaneous
diophantine chains (1). For example, for n = 3, 5, 6, we get polynomials
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of degrees 10, 22, 30, respectively. These parametric solutions, however,
do not give the complete solution of the simultaneous chains (1) since
all of them necessarily satisfy the auxiliary condition (2), whereas we
have already noted the existence of solutions of the chains (1) that do
not satisfy the condition (2).

Finally, we note that the values of x3, y3, z3 given by our solution
of degree 6 satisfy the following identity:

(18) x3y3 + y3z3 + z3x3 = 0.

In fact, it readily follows from equation (8) that all nontrivial solutions
of the diophantine chains (1) subject to the constraints (2) will satisfy
the identity (18). This identity was pointed out to us by the referee in
his report.
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