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THE K-THEORY OF REAL GRAPH C*-ALGEBRAS

JEFFREY L. BOERSEMA

ABSTRACT. In this paper, we will introduce real graph
algebras and develop the theory to the point of being able
to calculate the K-theory of such algebras. The K-theory
situation is significantly more complicated than in the case for
complex graph algebras. To develop the long exact sequence
to compute the K-theory of a real graph algebra, we need to
develop a generalized theory of crossed products for real C*-
algebras for groups with involution. We also need to deal with
the additional algebraic intricacies related to the period-8 real
K-theory using united K-theory. Ultimately, we prove that
the K-theory of a real graph algebra is recoverable from the
K-theory of the corresponding complex graph algebra.

1. Introduction. In this paper, we will introduce real graph
algebras and develop the theory to the point of being able to calculate
the K-theory of such algebras. As in the complex case, there is a long
exact sequence which has the K-theory of an AF-algebra as two out of
three terms and the K-theory of the graph algebra as the third. Unlike
in the complex case, this long exact sequence does not necessarily
collapse into a four-term exact sequence, since K1 and K2 do not
necessarily vanish for a real AF-algebra. However, the exact sequence
will in all cases be enough to determine the K-theory of the graph
algebra. Indeed, we prove that two graphs have the same realK-theory
if and only if they have the same complex K-theory. These calculations
are done in the context of united K-theory, the invariant consisting of
real, complex and self-conjugateK-theory, introduced in [1]. A succinct
overview of united K-theory can be found in [4, Section 2].

Our main result indicates that although the functor factors through
the category of real C*-algebras from graphs to complex C*-algebras,
there is no additional information about the graph detected by the K-
theory of the real graph algebra. In the purely infinite simple case,
applying the classification theorems of [4, 8], we can go further to
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conclude that there is no additional information detected by the real
C*-algebra itself.

A real C*-algebra is a Banach *-algebra A over the field R of real
numbers satisfying the C*-condition ‖a∗a‖ = ‖a‖2 and the condition
that 1+ a∗a is invertible for all a ∈ A. For each real C*-algebra A, the
complexification AC = A+ iA has a unique norm making it a complex
C*-algebra. Furthermore, there is a conjugate-linear involution on AC

given by a + ib �→ a − ib; and A is recovered as the fixed point set in
AC under the involution. In fact, the category of real C*-algebras is
equivalent to the category of pairs (A, · ) where A is a complex C*-
algebra with a conjugate-linear involution a �→ a. We will refer to such
a pair as a complex C*-algebra with real structure. We will frequently
move back and forth between these categories.

One of the motivating problems in the field is to determine up to
isomorphism all of the real forms of a given complex C*-algebra. The
number of such structures can be 0 (for a complex C*-algebra not
isomorphic to its own opposite as in [9]), it can be 1 (for example, On

where n is odd as shown in [4]), it can be 2 (for example, On where n
is even), and it can be more than 2 (for example, On⊗K for odd). The
best general result we have so far along these lines is that every purely
infinite, simple, separable, nuclear complex C*-algebra satisfying the
universal coefficient theorem has at least one real structure [2] and
that such real structures are classified by united K-theory [4].

Though any arbitrary graph algebra may yet have several real struc-
tures, the results in this paper imply that, in the purely infinite simple
case, there is only one real structure in which the associated real C*-
algebra is itself a graph algebra over R.

The other important development of this paper is a generalized notion
of a crossed product for real C*-algebras. Crossed products for real
C*-algebras are introduced in [13, subsection 1.3] in the case where
a locally compact group G acts directly on a real C*-algebra. The
author of that book remarks that, in that context, the action of the
dual group does not restrict to the real crossed product, so Takai’s
duality theorem does not hold for real C*-algebras. Here we present a
more general notion of a crossed product for real C*-algebras for the
situation when a group has an involution and the group acts on the
complexification of the real C*-algebra in a way that intertwines the
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involutions. Within this context, we prove a duality theorem for real
C*-algebras generalizing Takai duality. We use this result to obtain a
dual Pimsner-Voiculescu long exact sequence which leads to the long
exact sequence for the K-theory of a real graph algebra.

The development of crossed products will take place in Sections 2 and
3 while Section 4 contains the material on graph algebras.

2. Crossed products. A real C*-dynamical system with a real
structure is a quintuple (A, · , G, · , α) where (A, · ) is a complex C*-
algebra with a conjugate-linear involution; (G, · ) is a locally compact
group with involutive endomorphism; and α is a continuous group
action of G on A which intertwines the involutions. The continuity
requirement is that the function G→ AutA is continuous where AutA
is given the point norm topology. The intertwining requirement is
described as follows. The involution on A induces an involution on
AutA by α(a) = α(a). Then we require that the map G → AutA
commute with the involutions; that is, αs = αs̄ for all s ∈ G. This
amounts to requiring that αs(a) = αs̄(a) for all a ∈ A and s ∈ G.

Let Cc(G,A) denote the set of continuous functions with compact
support from G to A. This set is dense in the standard crossed product
A�α G with the C*-norm.

Lemma 1. Let (G, · ) be a locally compact group with involution.
Then μ(E) = μ(E) where μ is Haar measure and E is any measurable
set.

Proof. We note that the measure ν on G defined by ν(E) = μ(E) is
left translation invariant since

ν(gE) = μ(gE) = μ(gE) = μ(E) = ν(E).

By the uniqueness of the Haar measure, then, ν is equal to μ, up to a
positive constant. Find a compact set K ⊂ G with non-zero measure.
Then K ′ = K ∪K satisfies

ν(K ′) = μ(K ′) = μ(K ′),

proving that μ = ν in general.
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Theorem 2. Let (A, · , G, · , α) be a real C*-dynamical system.
Then there is a conjugate-linear involution on A�αG such that f(s) =
f(s) for all f ∈ Cc(G,A).

Proof. It is routine to check that the involution on Cc(G,A) defined
by f(s) = f(s) is a ∗-homomorphism (with respect to the convolution
product and ∗-structure on Cc(G,A)). Furthermore, using Lemma 1,
we have that ‖f‖1 = ‖f‖1 for all f ∈ Cc(G,A).

Choose a fixed conjugate-linear involution (which is necessarily an
isometry) on B(H), denoted by a �→ a for any a ∈ B(H). Then,
for any representation π:Cc(G,A) → B(H) we define a representation

π:Cc(G,A) → B(H) by π(f) = π(f). Since π �→ π is a bijection on the
set of irreducible representations of Cc(G,A), we have

‖f‖ = sup
π

‖π(f)‖ = sup
π

‖π(f)‖ = sup
π

‖π(f)‖ = sup
π

‖π(f)‖ = ‖f‖.

Therefore, f �→ f is an isometry of Cc(G,A) and extends by continuity
to a conjugate-linear involution on A�α G.

Let (A�αG)
# be the real C*-algebra associated with the conjugate-

linear involution on A �α G of Theorem 2. That is, (A �α G)
# is the

set of elements in A�αG fixed by the involution. Then (A�αG)
# has

a dense subalgebra consisting of all functions f ∈ Cc(G,A) such that
f(s) = f(s).

In the special case that the involution on G is trivial, then the action
of G restricts to the fixed point algebra of A under · . That is, G acts
on the underlying real C*-algebra in A, and the corresponding real C*-
algebra (A �α G)

# is isomorphic to the crossed product construction
for real C*-algebras described in [13].

We recall that, if A is a complex C*-algebra, then any conjugate-
linear involution on A extends to one on the multiplier algebra M(A).
(This is equivalent to the comments in [3, Section 3] that, if A is a
real C*-algebra, then A has a real multiplier algebra M(A) such that
M(AC) = M(A)C.) Recall from [12, Corollary 2.51] that if φ:A → B
is a surjective homomorphism of complex C*-algebras, then there exists
a unique extension φ̃:M(A) → M(B); and we note furthermore that
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if φ respects given real structures on A and B, then φ̃ respects the
induced real structures on M(A) and M(B).

If (A,G, α) is a complex C*-dynamical system, a covariant homo-
morphism i from (A,G, α) toM(B) is a pair consisting of a C*-algebra
homomorphism iA:A → M(B) and a strictly continuous group homo-
morphism iG:G→ UM(B) such that i(αs(a)) = i(s)i(a)i(s)∗ for a ∈ A
and s ∈ G (disregarding the subscripts from our notation when conve-
nient and unambiguous). We say i is nondegenerate if i(A)B is dense
in B.

If (A, · , G, · , α) is a real C*-dynamical system, we say that a real
covariant homomorphism is a covariant homomorphism i = (iA, iG)
from (A,G, α) to M(B) that respects the real structures in the sense
that both iA and iG commute with the appropriate involutions. That
is, we require iA(a) = iA(a) and iG(s) = iG(s) for all a ∈ A and s ∈ G.
We will prove that A�αG with its real structure is the universal object
with respect to covariant homomorphisms respecting the real structure.

Before we discuss the universal properties of C*-dynamical systems
with real structures, we review the universal property in the complex
case. The following is a slight reworking of [14, Theorem 2.61].

Theorem 3. Let (A,G, α) be a C*-dynamical system.

(1) There is a nondegenerate covariant homomorphism i from (A,G, α)
to M(A�α G) such that i(A)i(C∗(G)) is a dense subset of A�α G.

(2) For every nondegenerate covariant homomorphism j from (A,G, α)
to M(B) such that j(A)j(C∗(G)) ⊆ B, there exists a unique nondegen-

erate homomorphism φ:A�α G→ B such that φ̃ ◦ i = j.

(3) A�αG is the unique C*-algebra up to isomorphism satisfying (1)
and (2).

Proof. Statement (1) is [14, Remark 2.62]. Statement (2) follows
from [14, Remark 2.62] using a faithful nondegenerate representation
of B. Finally, statement (3) can be proven by a standard uniqueness
argument for universal objects.

We now present the version of the same theorem for C*-dynamical
systems with real structure.
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Theorem 4. Let (A, · , G, · , α) be a real C*-dynamical system.

(1) There is a nondegenerate covariant homomorphism i from (A,G, α)
to M(A�α G) respecting the real structures such that i(A)i(C∗(G)) is
a dense subset of A�α G.

(2) Let B be a complex C*-algebra with real structure. For every
nondegenerate covariant homomorphism j from (A,G, α) to M(B)
respecting the real structures such that j(A)j(C∗(G)) ⊆ B, there exists
a unique nondegenerate homomorphism φ:A �α G → B respecting the
real structures such that φ̃ ◦ i = j.

(3) A�αG is the unique C*-algebra with real structure up to isomor-
phism satisfying (1) and (2).

Proof. For (1) we need only show that the covariant homomorphism
i from Theorem 3 respects the real structures. The covariant homo-
morphism i from (A,G, α) to M(A�α G) is given by the formulas

iA:A→M(A�α G) given by iA(a)(f)(s) = af(s)

iG:G→M(A�α G) given by iG(t)(f)(s) = αt(f(t
−1s))

for a ∈ A, t, s ∈ G, and f ∈ Cc(G,A) (see [14, Proposition 2.34]). We
show that iA and iG respect the respective real structures of A, G, and
A�αG. That is, iA(a) = (iA(a)) and iG(t) = (iG(t)). Indeed for a, t, s
and f , as above,

i(a)(f)(s) = af(s) = af(s) = af(s) = i(a)(f)(s) = i(a)(f)(s)

and

i(t)(f)(s) = αt(f(t
−1
s)) = αt(f(t−1s)) = i(t)(f)(s)

i(t)(f)(s) = i(t)(f)(s).

Thus, i(a) = i(a) and i(t) = i(t) proving (1).

For (2) we need to show that the homomorphism φ from Theorem 3
respects the real structures. By [14, Proposition 2.39], we know that
φ is given by the formula

φ(f) =

∫
G

jA(f(s))jG(s) dμ(s)
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for f ∈ Cc(G,C). Then we have

φ(f) =

∫
G

j(f(s))j(s) dμ(s) =

∫
G

j(f(s))j(s) dμ(s)

=

∫
G

j(f(s))j(s) dμ(s) (by Lemma 1)

=

∫
G

j(f(s))j(s) dμ(s) = φ(f),

showing that φ(f ) = φ(f) and proving (2).

As above, (3) is a standard uniqueness argument.

By taking the involution onG to be the identity, the previous theorem
reduces to the following result phrased in terms of real C*-algebras.

Theorem 5. Let (A,G, α) be a C*-dynamical system, where A is a
real C*-algebra.

(1) There is a nondegenerate covariant homomorphism i from (A,G, α)
to M(A�α G) such that i(A)i(C∗

R(G)) is a dense subset of A�α G.

(2) Let B be a real C*-algebra. For every nondegenerate covariant
homomorphism j from (A,G, α) to M(B) such that j(A)j(C∗

R(G)) ⊆
B, there exists a unique nondegenerate real homomorphism φ:A�αG→
B such that φ̃ ◦ i = j.

(3) A�αG is the unique real C*-algebra up to isomorphism satisfying
(1) and (2).

We conclude this section with two theorems needed in the following
section. The first deals with the interaction of tensor products and
crossed products for real C*-algebras, extending Lemma 2.75 of [14].
The second deals with the crossed product obtained by the left regular
representation of a group G on C0(G).

For z ∈ Cc(G,C) and a ∈ A, we let z ⊗ a denote the element of
Cc(G,A) defined by (z ⊗ a)(s) = z(s)a. By [14, Theorem 1.87], such
elements span a dense subset of A�αG. Similarly, elements of the form
z⊗c⊗d span a dense subset of (C�γG)⊗D and also of (C⊗D)�γ⊗idG
as in the theorem below.
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Note that if two C*-algebras A and B have real structures, then the
tensor product A⊗max B has a real structure given by a⊗ b = a⊗ b.

Theorem 6. Let C and D be C*-algebras, and let G be a group with
a group action γ on C. Then there is an isomorphism

φ: (C �γ G)⊗max D −→ (C ⊗max D)�γ⊗id G.

Furthermore, if C, D and the dynamical system (C,G, γ) have real
structures, then the isomorphism φ preserves the real structures on the
corresponding algebras.

Proof. Throughout this proof, we suppress the notation indicating
that tensor products carry the max norm. We will reproduce the
proof given in [14], modifying it slightly to make the isomorphism more
explicit.

For f ∈ Cc(G,C) and d ∈ D we define φ(f ⊗ d) ∈ Cc(G,C ⊗D) by
φ(f ⊗ d)(s) = f(s) ⊗ d. This homomorphism extends to the desired
homomorphism of C*-algebras.

Let i be the covariant homomorphism from (C ⊗ D,G, γ ⊗ id) to
(C ⊗D)�γ⊗idG given by Theorem 1, part (1). Let j be the covariant
homomorphism from (C ⊗D,G, γ ⊗ id) to (C �γ G)⊗D described in
the proof of Lemma 2.75 of [14]. Then j is given by the formulas

jC⊗D:C ⊗D −→M((C �γ G)⊗D)

jC⊗D(c⊗ d)(f ⊗ d′) = iC(c)f ⊗ dd′

jG:G −→M((C �γ G)⊗D)

jG(s)(f ⊗ d′) = iG(s)f ⊗ d′

for c ∈ C; d, d′ ∈ D; s ∈ G; and f ∈ C0(G,C).

By Theorem 1, part (2), there is a homomorphism ψ from (C ⊗
D)�γ⊗idG to (C�γG)⊗D such that j = ψ̃◦i (that is, both jG = ψ̃◦iG
and jC⊗D = ψ̃ ◦ iC⊗D).

Now we show that i = φ̃ ◦ j. If suffices to show that iC⊗D(c ⊗
d)(g)(s) = (φ̃ ◦ jC⊗D)(c ⊗ d)(g)(s) and iG(t)(g)(s) = (φ̃ ◦ jG)(t)(g)(s)
for c ∈ C, d ∈ D, g ∈ C0(G,C ⊗D), and t, s ∈ G. It also suffices to
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consider only functions g of the form g = z⊗ (c′⊗ d′) = φ((z⊗ c′)⊗ d′)
for c′ ∈ C, d′ ∈ D. Then

(φ̃ ◦ jC⊗D)(c⊗ d)(g)(s) = φ̃(jC⊗D(c⊗ d))φ((z ⊗ c′)⊗ d′)(s)
= φ(jC⊗D(c⊗ d)((z ⊗ c′)⊗ d′))(s)
= φ(iC(c)(z ⊗ c′)⊗ dd′)(s)
= cz(s)c′ ⊗ dd′

= (c⊗ d)(z(s)c′ ⊗ d′)
= iC⊗D(g)(s)

and

(φ̃ ◦ jG)(t)(g)(s) = φ(jG(t)((z ⊗ c′)⊗ d′))(s)
= iG(t)(z ⊗ c′)(s)⊗ d′

= z(t−1s)c′ ⊗ d′

= ((z ⊗ c)⊗ d)(t−1s)

= iG(t)(g)(s).

Therefore, the relations φ̃ ◦ ψ̃ = id and ψ̃ ◦ φ̃ = id hold on the image
of i and of j, respectively. Since iC⊗D(C ⊗ D) · iG(C0(G)) is dense
in (C ⊗ D) �γ⊗id G and since jC⊗D(C ⊗ D) · jG(C0(G)) is dense in
(C �γ G)⊗D (see the proof of Lemma 2.75 [14]) it follows that φ and
ψ are inverses.

It remains only to show that when C, D and G have real structures,
then φ respects the conjugate-linear involutions on the respective C*-
algebras. Indeed for f ∈ Cc(G) and d ∈ D, we have

φ(f ⊗ d)(s) = φ(f ⊗ d)(s) = f(s)⊗ d

= f(s)⊗ d = φ(f ⊗ d)(s) = φ(f ⊗ d)(s).

Let G be a locally compact group with real structure. As in [14,
page 45], let (C0(G), G, lt) denote the C*-dynamical system given by
left translation. That is, lts(f)(r) = f(s−1r). If G has a real structure,
then C0(G) also has a real structure given by f(s) = f(s). The real
structures on G and C0(G) are compatible with the action lt, making
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(C0(G), G, lt) a C*-dynamical system with real structure. Indeed, for
s, t ∈ G and f ∈ C0(G), we have

lts̄(f)(r) = f(s−1r) = f(s−1r)

= lts(f)(r) = lts(f)(r),

showing that lts̄(f) = lts(f).

The conjugate-linear involution on C0(G) passes to one on L2(G).
Then the algebra of bounded operators B(L2(G)) and the algebra of

compact operatorsK(L2(G)) have real structures given by T (h) = T (h)
for T ∈ K(L2(G)) and h ∈ L2(G).

Theorem 7. Let G be a locally compact group with real structure,
then there is an isomorphism

C0(G)�lt G ∼= K(L2(G))

respecting the real structures described above.

Proof. Define a homomorphism Θ:C0(G)�lt G→ K(L2(G)) defined
by

Θ(f)(h)(r) =

∫
G

f(s, r)h(s−1r) dμ(s)

for f ∈ Cc(G,C0(G)), h ∈ L2(G), and r ∈ G. Then Θ is an
isomorphism by [14, Lemma 7.5]. We only need to show that the
real structures are preserved. We may identify f with a function in
Cc(G×G) with real structure given by f(s, r) = f(s, r). Then we have

Θ(f)(h)(r) =

∫
G

f(s, r)h(s−1r) dμ(s) =

∫
G

f(s, r)h(s−1r) dμ(s)

=

∫
G

f(s, r)h(s−1r) dμ(s) =

∫
G

f(s, r)h(s−1r) dμ(s)

= Θ(f)(h)(r) = Θ(f)(h)(r).

3. Dual groups with involution. Let G be a locally compact
group, and let Ĝ be the dual group consisting of continuous group
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homomorphisms from G to the circle group T. We take the canonical
involution on T ⊂ C to be complex conjugation. For any involution
s �→ s on G, there is an involution on Ĝ defined by γ(s) = γ(s). The
group Z with trivial involution and the group T with involution given
by complex conjugation are mutually dual to each other. We will always
assume that these are the given involutions on Z and T, particularly
in Theorem 10 below.

If (A,G, α) is a real C*-dynamical system, then the dual action of

Ĝ on the crossed product is compatible with the involution, making
(A �α G, Ĝ, α̂) a real C*-dynamical system. Indeed, if γ ∈ Ĝ and
f ∈ Cc(G,A), then we check that α̂γ(f) = α̂γ(f) using the formula

α̂γ(f)(s) = γ(s)f(s) for the dual action.

Theorem 8. Let (A,G, α) be a C*-dynamical system with real
structure. If G is abelian, then there is an isomorphism

(A�α G)�α̂
Ĝ ∼= C0(G,A) �lt⊗id G

of C∗-algebras with real structure.

Proof. The homomorphism Φ: (A �α G) �α̂ Ĝ → C0(G,A) �lt⊗id G

for F ∈ Cc(Ĝ, C0(G,A)) and s, r ∈ G defined by

Φ(F )(s, r) =

∫
Ĝ

α−1
r (F (γ, s))γ(s−1r) dμ̂(γ)

is proven to be an isomorphism in [14, Lemmas 7.2, 7.3, 7.4]. To show
that Φ respects the real structures, we compute

Φ(F )(s, r) =

∫
Ĝ

α−1
r (F (γ, s))γ(s−1r) dμ̂(γ)

=

∫
Ĝ

α−1
r (F (γ, s))γ(s−1r) dμ̂(γ)

=

∫
Ĝ

α−1
r̄ (F (γ, s))γ(s−1r) dμ̂(γ)

=

∫
Ĝ

α−1
r̄ (F (γ, s))γ(s−1r) dμ̂(γ)
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= Φ(F )(s, r)

= Φ(F )(s, r).

Theorem 9 (Takai duality). Let (A,G, α) be a C*-dynamical system
with real structure. If G is abelian, then there is an isomorphism

(A�α G)�α̂ Ĝ ∼= K ⊗A

of C∗-algebras with real structure.

Proof. By Theorems 4, 5 and 6, we have

(A�α G)�α̂ Ĝ ∼= C0(G,A) �lt⊗id G
∼= (C0(G)⊗A)�lt⊗id G
∼= (C0(G)�lt G)⊗A
∼= K ⊗A,

where all the isomorphisms respect the real structures.

Let (A, · ) be a complex C*-algebra with conjugate-linear involution.
If the involution is understood, let A# be the real C*-algebra consisting
of fixed points. Recall that theK-theory of a real C*-algebra is a graded
group with period 8 and is a module over the ring K∗(R).

Theorem 10. (1) Let (A, · ,Z, · , α) be a real C*-dynamical system.
Then there is a long exact sequence in real K-theory:

· · · −→ K∗(A#)
1−α∗−→ K∗(A#)

i−→ K∗((A�α Z)#)

∂−→ K∗(A#)
1−α∗−→ K∗(A#) −→ · · · ,

where ∂ has degree −1.

(2) Let (A, · ,T, · , α) be a real C*-dynamical system. Then there is
a long exact sequence in real K-theory:

· · · −→ K∗(A#)
∂−→ K∗((A �γ T)#)

1−γ̂∗−→ K∗((A �γ T)#)

−→ K∗(A#) −→ · · ·

where ∂ has degree −1.
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Proof. The sequence in part (1) is the real Pimsner-Voiculescu exact
sequence, found in [13, Theorem 1.5.5]. The sequence in part (2) is
the dual Pimsner-Voiculescu exact sequence, obtained by constructing
the Pimsner-Voiculescu sequence from the dynamical system (A �γ

T, · ,Z, · , γ̂) and then using Takai duality (Theorem 9) and the
stability of K-theory.

Recall that united K-theory is an invariant defined for real C*-
algebras, consisting of a triple of graded abelian groups KCRT(A) =
{K∗(A),KU∗(A) = K∗(AC),KT∗(A) = K∗(T ⊗ A)} (real, complex
and self-conjugate K-theory), as well as the natural transformations
among the three. Then we have the same exact sequences for united
K-theory.

Theorem 11. (1) Let (A, · ,Z, · , α) be a real C*-dynamical system.
Then there is a long exact sequence of CRT-modules:

· · · −→ KCRT
∗ (A#)

1−α∗−→ KCRT
∗ (A#)

i−→ KCRT
∗ ((A�α Z)#)

∂−→ KCRT
∗ (A#)

1−α∗−→ KCRT
∗ (A#) −→ · · · ,

where ∂ has degree −1.

(2) Let (A, · ,T, · , α) be a real C*-dynamical system. Then there is
a long exact sequence of CRT-modules

· · · −→ KCRT
∗ (A#)

∂−→ KCRT
∗ ((A �γ T)#)

1−γ̂∗−→ KCRT
∗ ((A�γ T)#)

−→ KCRT
∗ (A#) −→ · · · ,

where ∂ has degree −1.

Proof. Let (A, · ,Z, · , α) be a real C*-dynamical system. We can
tensor this system with any nuclear real C*-algebra B to get a real C*-
dynamical system, (A⊗B, · ⊗1,Z, · ⊗1, α⊗1). Applying Theorem 10,
we obtain a long exact sequence

· · · −→ K∗((A ⊗B)#)
1−α∗−→ K∗((A⊗B)#)

i−→ K∗(((A ⊗B)�α⊗1 Z)
#)

∂−→ K∗((A⊗B)#)

1−α∗−→ K∗((A⊗B)#) −→ · · · .
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Using Theorem 6, we can replace the middle group with K∗(((A �α

Z)⊗B)#). Taking B in turn to be R, C and T , we obtain the desired
sequences on real, complex and self-conjugate K-theory. Furthermore,
the homomorphisms commute with the natural transformations of
united K-theory by the naturalness of the Pimsner-Voiculescu exact
sequence with respect to homomorphisms induced by products with
KK-elements. This proves (1), and the proof of (2) is similar.

4. Real graph algebras and K-theory. We will use the notation
and conventions of [10]. Let E = (E0, E1, r, s) be a directed graph. We
say that E is row-finite if each vertex only receives finitely many edges.
Equivalently, E is row-finite if each row of the vertex matrix

(AE)ij = {the number of edges from vertex j to vertex i}

has finite sum.

For a graph E, the algebra C∗(E) is the universal C*-algebra gener-
ated by a set of non-zero orthogonal projections pv indexed by E0 and
a set of partial isometries se indexed by E1, subject to a certain set of
relations. If E is row-finite, the relations are:

(1) s∗ese = ps(e) for each edge e,

(2)
∑

e∈r−1(v) ses
∗
e = pv for each vertex v such that r−1(v) is non-zero.

For a graph E that is not row-finite, the relations are:

(1) s∗ese = ps(e) for each edge e,

(2) ses
∗
e ≤ pr(e) for each edge e,

(3)
∑

e∈r−1(v) ses
∗
e = pv for each vertex v such that r−1(v) is non-zero

and finite.

In either case, the real graph algebra C∗
R(E) is the closed algebra over

R generated by the elements pv and se, considered as a real subalgebra
of C∗(E). The associated conjugate-linear involution on C∗(E) is given
by λpv �→ λpv and λse �→ λse.

Theorem 12. Suppose that E is a graph in which every cycle
has an entry. Then there is, up to isomorphism, a unique real C*-
algebra C∗

R(E) generated by non-zero orthogonal projects pv and partial
isometries se subject to the relations above.
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Proof. Suppose that A and B are two real C*-algebras generated
by sets of elements {pv, se} and {p′v, s′e}, respectively, satisfying the
relations above. Then AC and BC are complex C*-algebras generated
by the same sets of elements. So, by the Cuntz-Krieger uniqueness
theorem ([11, Theorem 1.5]), there is an isomorphism φ from AC to
BC mapping pv to p′v and se to s

′
e. Then φ restricts to an isomorphism

from A to B.

The next result can be used to compute the K-theory of C∗
R(E).

Theorem 13. For a row-finite directed graph E with no sources
there are long exact sequences for real K-theory

· · · −→ K∗(R)E0
1−At

E−→ K∗(R)E0 −→ K∗(C∗
R(E))

∂−→ K∗(R)E0
1−At

E−→ K∗(R)E0 −→ · · ·
and united K-theory

· · · −→ KCRT(R)E0
1−At

E−→ KCRT(R)E0 −→ KCRT(C∗
R(E))

∂−→ KCRT(R)E0
1−At

E−→ KCRT(R)E0 −→ · · · ,
where ∂ has degree −1.

Proof. It suffices to develop the second sequence, since the first
sequence is just the real part of the second.

Let γ be the gauge action of T on C∗(E) defined by γz(se) = zse.
It is easy to see that γz̄(a) = γz(a) for all a ∈ C∗(E), showing that
(C∗(E),T, γ) is a real dynamical system. Then we obtain a long exact
sequence

· · · −→ KCRT(C∗(E)) −→ KCRT(C∗(E)�γ T)

1−γ̂∗−→ KCRT(C∗(E)�γ T) −→ KCRT(C∗(E)) −→ · · ·
from the dual Pimsner-Voiculescu exact sequence, Theorem 11.

Let E×1Z be the graph obtained from E with vertex set E0×Z and
edge set E1×Z; and where s(e, n) = (s(e), n) and r(e, n) = (r(e), n−1)
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(as in [10, page 64]). There is (by [10, Lemma 7.10]) an isomorphism
φ from C∗(E ×1 Z) to C

∗(E) �γ T defined by φ(s(e,n)) = t(e,n) where
t(e,n) ∈ C(T, C∗(E)) in turn is defined by t(e,n)(z) = znse. Since
s(e,n) = s(e,n) and t(e,n) = t(e,n) it follows that φ is a homomorphism of
C*-algebras with real structures. Let β be the automorphism on E×1Z
defined by β(s(e,n)) = s(e,n−1). Then, the relation φ ◦ β = γ̂ ◦ φ holds
(as homomorphisms of complex C*-algebras) by [10, Lemma 7.10], so
it must hold when restricted to the real C*-algebras. Hence, applying
united K-theory, the square below commutes.

KCRT(C∗(E)�γ T)

�

φ∗

�

1−γ̂∗ KCRT(C∗(E)�γ T)

�

φ∗

KCRT(C∗
R(E ×1 Z)) �

1−β∗ KCRT(C∗
R(E ×1 Z)).

Thus, in Sequence 1, the middle homomorphism can be replaced by
1−β∗. Using the relation 1−β−1

∗ = (1−β∗)(−β−1
∗ ) = (−β−1

∗ )(1−β∗),
it is easy to see that ker (1− β∗) = ker (1 − β−1

∗ ) and coker (1− β∗) =
coker (1 − β−1∗ ). So we can further replace the middle homomorphism
in the exact sequence by 1− β−1

∗ .

As in [10, Lemma 7.13 and Corollary 7.14], we have

KCRT(C∗
R(E ×1 Z)) ∼= lim(KCRT(R)E0 , At

E).

Furthermore, the same argument as in [10, Lemma 7.15] shows that
the kernel and cokernel of the homomorphism

KCRT(C∗
R(E ×1 Z))

1−β−1
∗−→ KCRT(C∗

R(E ×1 Z))

are isomorphic to that of

KCRT(R)E0
1−At

E−→ KCRT(R)E0 ,

completing the proof.

Let n = |E0| and A = AE . Then the long exact sequence of
Theorem 13 unsplices into

0 −→ coker (1 −At) −→ KCRT(C∗
R(E))

∂−→ ker (1−At) −→ 0,
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where 1 − At:KCRT(R)n → KCRT(R)n. But, unlike in the complex
case, this does not immediately give us the K-theory groups. Focusing
on the real part of united K-theory, the groups of KO∗(R) in degrees
0 7 are:

KO∗(R) = Z Z2 Z2 0 Z 0 0 0.

Taking advantage of the placement of the 0’s, we immediately obtain
KO∗(C∗

R(E)) (up to isomorphism) in all degrees except 1 and 2. In

degree 1, we find that KO1(C
∗
R(E)) is an extension of coker (Zn

2
1−At

−→
Zn
2 ) by ker (Zn 1−At−→ Zn). The extension necessarily splits, since

ker (Zn 1−At−→ Zn) is a free group. Hence we have the following:

KO0(C
∗
R(E)) ∼= coker (Zn 1−At−→ Zn)

KO1(C
∗
R(E)) ∼= coker (Zn

2
1−At−→ Zn

2 )⊕ ker (Zn 1−At−→ Zn)

KO2(C
∗
R(E)) ∼= an extension of coker (Zn

2
1−At−→ Zn

2 )

by ker (Zn
2

1−At−→ Zn
2 )

KO3(C
∗
R(E)) ∼= ker (Zn

2
1−At−→ Zn

2 )

KO4(C
∗
R(E)) ∼= coker (Zn 1−At−→ Zn)

KO5(C
∗
R(E)) ∼= ker (Zn 1−At−→ Zn)

KO6(C
∗
R(E)) ∼= 0

KO7(C
∗
R(E)) ∼= 0.

The extension for KO2(C
∗
R(E)) is therefore the only component

undetermined up to isomorphism (so far). This extension splits in
some cases but not always (contrary to what is stated in [13]). For
example, in the special case of the real Cuntz algebras OR

n , we have
found that the extension is non-trivial when n ≡ 1 (mod 4) and splits
otherwise (see [1, subsection 5.1]). In that computation, the extension
problem was solved by taking advantage of the algebraic structure
relating KO∗(C∗

R(E)) and K∗(C∗(E)) = KU∗(C∗
R(E)). In fact, the

following theorem indicates that the extension is always determined
by this algebraic information and does not require any additional
information from the real C*-algebra or the original graph. Put
negatively, neither the real K-theory nor even the united K-theory
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represents more information about the real C*-algebra or the original
graph than just the complex K-theory.

Theorem 14. Let E and F be row-finite graphs with no sources.
Then K∗(C∗(E)) ∼= K∗(C∗(F )) if and only if KCRT(C∗

R(E)) ∼=
KCRT(C∗

R(F )).

Before proving this theorem, we develop some preliminaries on the
core of the united K-theory, from [7, Chapter 5]. For a real C*-algebra
A, let KU∗(A) = K∗(AC) and

h∗(KU∗(A)) = ker (1− ψU )/image (1 + ψU ).

Then there are natural maps

c′: ηK∗(A) −→ h∗(KU∗(A))
r′:h∗(KU∗(A)) −→ ηK∗(A)

defined by c′(ηx) = [cx] and r′[y] = rβ−1
U y of degrees −1 and −2,

respectively. Furthermore, there is a long exact sequence
(2)

· · · −→ ηK∗(A)
η−→ ηK∗(A)

c′−→ h∗(K∗(A))
r′−→ ηK∗(A) −→ · · · .

Note that all of the groups of this sequence are Z2-modules so any
extension problems have a unique solution up to isomorphism. Also
note that the groups ηK∗(A) repeat with period 8, the groups KU∗(A)
repeat with period 2 and the groups h∗(KU∗(A)) repeat with period 4.

Following [7], we define the core of a real C*-algebra A by

core (A) = {ηK∗(A),KU∗(A), ψ, η, c′, r′}.

For two real C*-algebras A and B, it follows from [7, Theorem 4.2.1]
that KCRT(A) ∼= KCRT(B) if and only if core (A) ∼= core (B).

Proof of Theorem 14. It is enough to show that core (C∗
R(E)) can be

computed from the module KU∗(C∗
R(E)) = K∗(C∗(E)), independent

of the knowledge of graph E.
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Let A = AE be the incidence matrix for a graph E. We know that

KU1(C
∗
R(E)) ∼= KU3(C

∗
R(E)) = ker (Zn 1−At−→ Zn) is free. We also

know that ψU = 1 in degrees 0 and 1 and ψU = −1 in degrees 2 and 3.
So it follows that

h3(KU∗(C∗
R(E)) =

ker (1− ψU )

image (1 + ψU )

= {x ∈ KU∗(C∗
R(E)) | 2x = 0}

= 0.

We can also discern that η:K4(C
∗
R(E)) → K5(C

∗
R(E)) vanishes by

making use of the diagram

0 � coker (1−At) �

�

η

K4(C
∗
R(E)) �

�

η

0 �

�

η

0

0 � 0 � K5(C
∗
R(E)) � ker (1−At) � 0

obtained from Theorem 13.

We simplify the notation by setting M∗ = ηK∗(C∗
R(E)) and N∗ =

KU∗(C∗
R(E)) (so that core (C∗

R(E)) = {M,N}). We know that M0 =
M5 = M6 = M7 = 0 and that N3 = 0. The remaining groups M∗
can be computed up to isomorphism, provided that the groups N∗ are
known. Indeed, using the long exact sequence, we have isomorphisms
r′:N6 → M4 and c′:M1 → N0 allowing us to compute M4 and M1.
Finally, M2 and M3 are obtained from the following segments of long
exact sequence 2:

0 −→M1
η−→ M2

c′−→ h1(N∗) −→ 0

0 −→ h5(N∗)
r′−→M3

η−→M4 −→ 0.

Finally, we can extend this result to all graphs using desingulariza-
tion.

Theorem 15. Let E and F be arbitrary graphs. Then K∗(C∗(E)) ∼=
K∗(C∗(F )) if and only if KCRT(C∗

R(E)) ∼= KCRT(C∗
R(F )).
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Proof. Let E and F be an arbitrary graphs. Then by [6, Theo-
rem 2.11], there is a nonsingular graph E′ (that is, E′ is row-finite with
no sources) such that C∗(E) is isomorphic to pC∗(E′)p where p is a
full projection of C∗(E′). Since the projection p is a sum of projections
associated with vertices, it is clear that p is in the real graph alge-
bra C∗

R(E). Hence, the isomorphism restricts to the underlying real
C*-algebras to give C∗

R(E) ∼= pC∗
R(E′)p. Just as in the complex case

([5, Corollary 2.6]), the full corner pC∗(E′)p is stably isomorphic to
C∗(E′). Therefore, KCRT(C∗

R(E)) ∼= KCRT(C∗
R(E′)).

Similarly, KCRT(C∗
R(F )) ∼= KCRT(C∗

R(F ′)) where F ′ is nonsingular.
Then the result follows from Theorem 14.

Recall ([10, page 33]) that a graph is cofinal if, for every vertex v and
every infinite path �, there is a path from a vertex of � to v.

Corollary 16. Let E1 and E2 graphs satisfy:

(1) Ei is cofinal,

(2) every cycle has an entry,

(3) there is a path to each vertex in Ei from a cycle,

(4) there is a path from each singular vertex in Ei to every other
vertex in Ei.

Then the real graph C*-algebras C∗
R(E1) and C∗

R(E2) are isomorphic
if and only if the complex graph C*-algebras C∗(E1) and C∗(E2) are
isomorphic.

Proof. The conditions on E1 and E2 ensure that the complex graph
C*-algebras are simple and purely infinite, by [6, Corollaries 2.14, 2.15].
It follows that the real graph C*-algebras are also simple and purely
infinite. The rest follows from Theorem 15 by using the classifications
of simple purely infinite C*-algebras by Phillips in the complex case [8]
and by Boersema, Ruiz and Stacey in the real case [4].
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