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SUMMABILITY OF SUBSEQUENCES OF A
DIVERGENT SEQUENCE

CHRISTOPHER STUART

ABSTRACT. In this paper we show that no regular ma-
trix can sum all subsequences of a divergent sequence. We
also show that the Cesaro matrix cannot sum almost all
subsequences of a divergent sequence. These results can be
viewed as generalizations of a well-known result of Steinhaus.

A well-known result due to Steinhaus states that no regular matrix
can sum all sequences of 0’s and 1’s (see [3] or [4, Theorem 6, page
133]). At the International Conference on Summability in Jacksonville,
Florida, in October, 2010, Professor Kazim Khan of Kent State Univer-
sity raised the question of whether the Cesaro matrix can sum almost
all subsequences of a divergent sequence. The purpose of this paper is
to show that the answer is no. We also show that any regular matrix
cannot sum all subsequences of a divergent sequence.

Recall that an infinite matrix A = (aij) is regular if A preserves
limits for convergent sequences. That is, if a sequence x → L then
Ax → L. The Cesaro matrix C1 is certainly the most famous example
of a regular matrix.

To show that no regular matrix can sum every subsequence of a
divergent subsequence, we first need to observe that this is obviously
true for an unbounded sequence, since we can extract subsequences
that grow arbitrarily rapidly. Secondly, no regular matrix can sum all
subsequences of a divergent sequence of 0’s and 1’s. This is so because
any sequence of 0’s and 1’s can be obtained as a subsequence, and so
Steinhaus’s theorem applies. To see this, let x be a divergent sequence
with range {0, 1}. To construct a subsequence y with support S ⊂ N,
choose an increasing sequence of integers (ik) so that xik = 0 for ik /∈ S
and xik = 1 for ik ∈ S. This is possible because there are infinitely
many 0’s and 1’s in x beyond any fixed integer.
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So now let us consider an arbitrary bounded divergent sequence x.
The method used to show the desired result is to prove that a sequence
y can be constructed as a subsequence of x that is arbitrarily close
to any fixed sequence of 0’s and 1’s. We can then use the method of
proof used in Steinhaus’s result to contradict the assumption that A is
regular.

The following theorem is known as the Silverman-Toeplitz theorem
and gives necessary and sufficient conditions for a matrix to be regular.

Theorem 1 ([4, Theorem 5, page 131]). Let A be an infinite matrix.
Then A is regular if and only if

(i) supi
∑∞

j=1 |aij | < ∞.

(ii) limi aij = 0 for all j.

(iii) limi

∑∞
j=1 aij = 1.

So now let A be a regular matrix with non-negative entries, and let
x = (xi) be a bounded divergent sequence in the convergence domain
of A, denoted cA. We show in the following proposition that, given any
sequence b of 0’s and 1’s, we can construct a sequence from a linear
combination of subsequences of x that is within ε of b with respect to
the supremum norm. So, if cA contains all subsequences of x, then it
must contain the constructed sequence, since cA is a linear space.

Proposition 2. Let S ⊂ N, and let b = χ(S) be the characteristic
function of S. Fix ε > 0. There exists a sequence u that is a linear
combination of subsequences of x satisfying sppt (u) = S and ∥u −
b∥∞ < ε.

Proof. Since x is divergent and bounded, the range of x has at least
two distinct limit points, L and M . Without loss of generality, we can
assume that L > M and that ε ≪ L −M . We can find subsequences

(yn) and (zn) of x such that yn → L, zn → M and |yn −L| < ε(L−M)
2 ,

|yn−L| < ε(L−M)
2 for all n. We can construct a new subsequence (wn)

as a linear combination of subsequences of (yn) and (zn) with wn = yn
for n ∈ S and wn = zn for n /∈ S. Finally, let un = 1

L−M (wn − zn).
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Clearly, sppt (u) = S, where sppt (u) denotes the support of u. For
n ∈ S, |wn−zn−(L−M)| ≤ |wn−L|+|zn−M | < ε(L−M). Therefore,
|un − 1| < ε for all n ∈ S. Since we have used linear combinations of
subsequences of x in the construction of u = (un), u ∈ cA. �

In the main result, we make use of the following special case of the
basic matrix theorem (BMT). This theorem is used extensively in [4]
and other publications to prove classical results, such as the uniform
boundedness principle and the Orlicz-Pettis theorem. It can be viewed
as an abstraction of the well-known “gliding hump” method employed
in functional analysis, summability and measure theory.

Theorem 3 ([4, Theorem 2, page 92]). Let M = (mij) be an infinite
matrix of real numbers that satisfies

(1) limi mij = 0.

(2) For every subsequence (jk) of integers there is a further subse-
quence (lk) such that limi

∑
k milk exists and forms a convergent se-

quence.

Then limi mij = limj mij and limi mii = 0.

Lemma 4. Let a ∈ l1. There exists a finite set F such that |
∑

i∈F ai|
≥ ∥a∥1

3 , and ai is always positive or always negative for i ∈ F .

Proof. Let a+ = {i : ai > 0} and a− = {i : ai < 0}. Either |
∑

i∈a+ ai|
≥ ∥a∥1

2 or |
∑

i∈a− ai| ≥ ∥a∥1

2 . Assume the former inequality. Then,
for any ε > 0, there exists a finite set F ⊂ a+ such that |

∑
i∈F ai| >

∥a∥1

2 − ε. In particular, |
∑

i∈F ai| ≥ ∥a∥1

3 . �

Theorem 5. A matrix A that sums all subsequences of a bounded
divergent sequence cannot be regular.

Proof. By the Silverman-Toeplitz conditions, each row of A, which we
denote ai, is in l1 and ∥ai∥1 → 1 as i → ∞. So we can find a subse-
quence of (ai), which for simplicity in what follows we will still denote as
(ai), such that ∥ai∥ > 1

2 . By the preceding lemma, we can find a finite
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subset F1 for which |
∑

j∈F1
ai1j | > 1

3 , and ai1j is always positive or al-
ways negative on F1. By the Silverman-Toeplitz theorem, the columns
of A go to 0, so we can find i2 > i1 and F2 with min(F2) > max(F1) so

that |
∑

j∈F2
ai2j | > 1

3 and ai2j is always positive or always negative on
F2. Proceeding inductively, we can then find an increasing sequence of
integers (ik) and of finite sets (Fk) of N so that |

∑
j∈Fk

aikj | > 1
3 and

aikj is always positive or always negative on Fk.

Let S = ∪kFk and b = χ(S). As in Proposition 1.3 above, we can
find u ∈ cA, sppt (u) = S and ∥u − b∥∞ < ε. To use the BMT, let

mkl =
∑

j∈Fl
aikj uj . We show M = (mkl) satisfies the conditions in the

BMT.

Condition 1 of the basic matrix theorem is satisfied because, for
each fixed l, aikj → 0 as k → ∞ for all j ∈ Fl, by assumption (ii) in

Theorem 1. Since u ∈ CA, Au =
∑∞

j=1 a
i
juj converges as i → ∞. So,

∞∑
l=1

( ∑
j∈Fl

aikj uj

)
= lim

n→∞

n∑
l=1

∑
j∈Fl

aikj uj =

( ∞∑
j=1

aikj uj

)
is a convergent sequence. Therefore, the matrix M satisfies the BMT
and Mkk =

∑
j∈Fk

aikj uj → 0. This contradicts the fact that ∥ai∥1 → 1
for regular matrices. �

We now show that the Cesaro matrix C1 cannot sum almost every
subsequence of a sequence of 0’s and 1’s. Recall that C1 = (cmn) is
defined as

cmn =

{
1
m m ≥ n
0 m < n.

We also need to define the phrase “almost every.” Given a set S ⊂ N ,
the density of S is defined to be d(S) = 1

n limn→∞|{i : i ∈ S and i ≤
n}|, where | • | denotes the cardinality of the set. A property holds
for almost every subsequence of a given sequence if it holds for all the
subsequences that have index sets with positive density.

We can now prove the following:

Proposition 6. C1 cannot sum almost every subsequence of a diver-
gent sequence of 0’s and 1’s.
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Proof. Let b denote the fixed divergent sequence of 0’s and 1’s. The
goal is to produce a subsequence that has positive density and for which
the averages of the partial sums of the subsequence oscillate, and so
the subsequence cannot be C1-summable. Without loss of generality,
assume d(b1) ≥ 1

2 , where b1 = sppt (b) and b0 = {i : bi = 0}. Then

there exists an integer n1 such that 1
n1

|{i : i ∈ b1 and i ≤ n1}| ≥
1
3 . Let F1 = {i : i ∈ b1 and i ≤ n1}. Choose n2 > n1 such that

|b0 ∩ {n1 + 1, . . . , n2}| = |F1|, and let F2 = b0 ∩ {n1 + 1, . . . , n2}. To
construct F3, choose n3 such that 1

n3
|{i : i ∈ b1 and i ≤ n3}| ≥ 1

3 and

1

| ∪3
j=1 Fj |

∑
i∈∪3

j=1Fj

bi <
1

4
.

Continuing in this fashion, we can construct a sequence (Fn) of finite
sets of integers for which S = ∪nFn = (ij) has density at least 1

3 , but

for which the sequence ( 1k
∑k

j=1 bij ) oscillates between values of at least
1
3 and no more than 1

4 and so is not C1-summable. �

We now show the more general result: that C1 cannot sum almost
every subsequence of a bounded divergent sequence, denoted by (xn).

Proposition 7. C1 cannot sum almost every subsequence of a bounded
divergent sequence, denoted by (xn).

Proof. For any ε > 0, we can choose a limit point A of (xn) such that
S = {n : |xn − A| < ε} has positive density. Let S = (mk). Choose
another limit point B of (xn) such that |A− B| > 3ε. Such a B must
exist for some ε > 0, since, if not, all limit points of (xn) would be
within 6ε of each other for any ε > 0, which would imply that (xn)
converges.

We can choose a subsequence (xnk
) of (xn) for which |xnk

−B| < ε,
so there is a gap of at least ε between the values of (xmk

) and (xnk
). Let

T = (nk). Without loss of generality, we can assume A > B. We can
now proceed as in the previous proposition to construct a subsequence
of (xn) that is not C1-summable and has an index set with positive
density.
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Let d(S) = D > 0. Then there exists an integer n1 such that

1

n1
|{i : i ∈ S and i ≤ n1}| ≥

D

2
.

Let F1 = {i : i ∈ S and i ≤ n1}. Note that 1
|F1|

∑
i∈F1

xi > A − ε.

Choose n2 > n1 such that

1
|F1∪T∩{n1+1,...,n2}|

∑
{xi : i ∈ F1 ∪ T ∩ {n1 + 1, . . ., n2}} < B + 4ε

3 ,

which is possible if we add on enough terms from T , since xi < B + ε
for i ∈ T . Let F2 = T ∩ {n1 + 1, . . . , n2}. Then, choose n3 > n2 such
that

1

n3
|{i : i ∈ S and n2 < i ≤ n3}| ≥

D

2
and

1

|F1 ∪ F2 ∪ S ∩ {n2 + 1, . . . , n3}|∑
{xi : i ∈ F1 ∪ F2 ∪ S ∩ {n2 + 1, . . . , n3}} > A− 4ε

3
.

Continuing in this fashion, we can construct a sequence (Fn) of finite
sets of integers for which W = ∪Fn = (ij) has density at least D

2 and

for which the sequence ( 1k
∑k

j=1 xij ) oscillates between values greater

than A− 4
3ε and less than B + 4

3ε. Since A−B ≥ 3ε, this shows that
(xij ) is not C1-summable. �

It seems likely that this proposition could be generalized for any
regular matrix, but we do not have a proof of this.

Addendum. Professor Cihan Orhan of Ankara, Turkey, has recently
informed the author that Theorem 5 of this paper is included in results
of C.R. Buck. Please see [1] and [2].

Acknowledgments. The author wishes to thank Professor Orhan for
pointing this out.
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