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COMMON CYCLIC VECTORS FOR DIAGONAL
OPERATORS ON THE SPACE OF ENTIRE FUNCTIONS

STEVEN M. SEUBERT

ABSTRACT. In this paper, a unicity theorem for Borel se-
ries is obtained and used to show that the collection of cyclic
operators acting on the space of entire functions with non-
dense eigenvalues and having the monomials zn as eigenvec-
tors has a dense set of common cyclic vectors.

1. Introduction. The purpose of this paper is to deduce a
unicity theorem for Borel series and to use this result to show that
various collections of cyclic operators having a complete set of common
eigenvectors have a common dense set of cyclic vectors.

Recall that an operator (i.e, continuous linear map) T : X → X
acting on a complete metrizable topological vector space X is cyclic if
there exists a vector x ∈ X whose orbit x, Tx, T 2x, T 3x, . . . has dense
linear span in X . Any such vector x, if it exists, is called a cyclic vector
for T . Examples include the so-called diagonal operators D : H → H
acting on a Hilbert space H for which there exist an orthonormal basis
{en : n ≥ 0} for H and a bounded sequence of complex numbers
{λn : n ≥ 0} for which D(en) = λnen for all n ≥ 0. A diagonal
operator D with eigenvalues {λn} is cyclic if and only if its eigenvalues
are distinct (see, for instance, [31, page 723, Lemma 1]). Moreover,
a vector x ≡ ∑∞

n=0 anen ∈ H is cyclic for D if and only if the only
functional L annihilating every vector Dkx in the orbit of x is the zero
functional. Since every functional L on a Hilbert space H ≈ H∗ is given
by L(

∑∞
n=0 bnen) ≡

∑∞
n=0 bnln where {ln} is in �2 (and conversely), it

follows that x ≡ ∑∞
n=0 anen is cyclic for D if and only if the conditions

{ln} ∈ �2 and 0 ≡ L(Dkx) = L(
∑∞

n=0 anλ
k
nen) =

∑∞
n=0 anlnλ

k
n for

all k ≥ 0 together imply that ln ≡ 0 for all n ≥ 0. It follows
that a diagonal operator with eigenvalues {λn} has a non-cyclic vector∑∞

n=0 anen where an �= 0 for all n ≥ 0 if and only if the Moment
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condition:
∞∑

n=0

wnλ
k
n ≡ 0 holds for all k ≥ 0,

where {wn} is a non-trivial sequence in �1 (see [22, page 604, Propo-
sition 5]). It may be tempting to believe that no such sequence {wn}
exists. However, the following example due to Wolff [42] from 1921
shows that this need not be the case for certain sequences {λn} (see
[24, page 107] for the elegant proof).

Wolff’s example. Let {B(λn, rn)} be any sequence of disjoint open
balls B(λn, rn) ≡ {z ∈ C : |z − λn| < rn} in the open unit ball
B(0, 1) ≡ {z ∈ C : |z| < 1} for which the Lebesgue area measure of
B(0, 1)\∪∞

n=0B(λn, rn) is zero. If λn �= 0 for all n, then 0 ≡ ∑∞
n=0 wnλ

k
n

for all k ≥ 0 where the sequence {wn} ≡ {rnλn} ∈ �1 is not identically
zero. Since every sequence in �1 factors as the product of sequences
in �2, we have that wn = anln where {an} ∈ �2 and {ln} ∈ �2.
Hence, Wolff’s example yields a cyclic diagonal operatorD on a Hilbert
space having eigenvalues {λn} and with non-cyclic vectors x̂ ≡ ∑

anen
even though an �= 0 for all n ≥ 0. Moreover, the closed linear span
M ≡ ∨{Dkx̂} of the orbit of any such non-cyclic vector x̂ is invariant
for D but does not equal the closed linear span of the eigenvectors
that it contains; that is to say, D fails spectral synthesis, in view
of which, questions about cyclic vectors and invariant subspaces of
diagonal operators D on a Hilbert space and analytic function theory
are intimately related to the moment condition

∑∞
n=0 wnλ

k
n ≡ 0 holding

for all k ≥ 0.

There are numerous conditions known to be equivalent to the Moment
condition 0 ≡ ∑∞

n=0 wnλ
k
n holding for all k ≥ 0 whenever {λn}

is a bounded sequence of distinct complex numbers. For instance,
it follows from the Fubini-Tonelli theorem that 0 ≡ ∑∞

n=0 wn/(z −
λn) =

∑∞
k=0[1/z

k+1
∑∞

n=0 wnλ
k
n] whenever |z| > sup |λn|. Hence,

0 ≡ ∑∞
n=0 wnλ

k
n for all k ≥ 0 if and only if 0 ≡ ∑∞

n=0 wn/(z − λn)
whenever |z| > sup |λn|. Moreover, 0 ≡ ∑∞

n=0 wnλ
k
n for all k ≥ 0 if and

only if the Dirichlet series g(z) ≡ ∑∞
n=0 wne

λnz vanishes identically
on the complex plane (since g ≡ 0 if and only if 0 ≡ g(k)(0) =∑∞

n=0 wnλ
k
n for all k ≥ 0). This, in turn, is equivalent to the measure
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μ ≡ ∑∞
n=0 wnδ{λn} (the sum of weighted point masses) annihilating

the monomials (since
∫
zkdμ =

∑∞
n=0 wnλ

k
n). If the points {λn}

lie in a Jordan region Ω and accumulate only on its boundary, then∑∞
n=0 wn/(z − λn) ≡ 0 whenever |z| > sup |λn| where {wn} is a non-

trivial sequence in �1 if and only if {λn} is a dominating set for Ω,
that is, if and only if sup {|f(z)| : z ∈ Ω} = sup{|f(λn)| : n ≥ 0} for
all functions f bounded and analytic on Ω (see [4, page 167, Theorem
3]). If Ω is the open unit disc, then this condition is equivalent to
almost every point of the unit circle (with respect to Lebesgue arc
length measure) being the non-tangential limit point of {λn}. Deep
connections to operator theory are provided by the work of Sarason [28,
29] who shows that the Borel series

∑∞
n=0 wn/(z − λn) ≡ 0 whenever

|z| > sup |λn| for some non-trivial sequence {wn} in �1 if and only if
there exists a closed invariant subspace for the diagonal operator D
having eigenvalues {λn} which is not invariant for the adjoint D∗ of
D. This condition, in turn, is equivalent to the weakly closed algebra
generated by D and the identity operator not containing D∗. For more
on the connections between Borel series and complete normal operators,
please see Wermer [40], Scroggs [30] and Nikolskii [23, 24].

The study of Borel series has a rich and fabled history. Of partic-
ular interest has been conditions for a function analytic on a region
to be representable as a Borel series, and conditions for such a rep-
resentation, if one exists, to be unique. In particular, the seminal
work of Leontev [16, 17], Korobeinik [12 15], Leont’eva [18 20] and
Brown, Shields, and Zeller [4], amongst others, has examined the ex-
tent to which the existence of non-trivial expansions of zero by Dirich-
let series

∑∞
n=0 wne

λnz ≡ 0 on regions Ω in the complex plane imply
(and, under additional conditions, is equivalent to) the ability to rep-
resent an arbitrary function f(z) analytic on Ω as a Dirichlet series
f(z) =

∑∞
n=0 ane

λnz on Ω. It follows from the preceding comments
that the non-uniqueness of any such representation is equivalent to the
existence of the Borel series which vanish identically on Ω. In addition
to Wolff’s example [42], Denjoy [6] in 1924 and Leont’eva [18, 19] in
the late 1960’s gave examples of Borel series which vanish identically
where the coefficients satisfy various decay rates just shy of exponential
decay (see [26, page 26]), and in 1959, Makarov [21] showed that, for
every sequence of complex numbers {λn} for which |λn| → ∞, there
exists a sequence of complex numbers {wn} for which the moment con-
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dition 0 ≡ ∑∞
n=0 wnλ

k
n holds for all k ≥ 0 where the coefficients {wn}

satisfy the decay rate 0 <
∑∞

n=0 |wn| · |λk
n| < ∞.

There has also been particular interest regarding the converse,
namely, the so-called unicity problem, which is to determine the rate
at which |wn| must decrease so that

∑∞
n=0 wn/(z − λn) does not ex-

tend analytically to a region containing {λn}. Beurling [2], Borel [3],
Carleman [5], Gonchar [10] and Poincare all determined decay rates
in the unicity problem in their investigations on Borel series, which
were focused mainly on issues regarding quasianalyticity and analytic
continuation. For more on the history of Borel series and a discussion
of generalized analytic continuation, please see the recent monograph
of Ross and Shapiro [26]. The following rather definitive unicity result
was obtained by Sibilev in 1995 for the case {λn} bounded (see [38,
page 146, Theorem]).

Theorem 1. Let {εn} be any sequence of positive numbers which
decreases monotonically to zero. Then the relations

∑
Ak/(z − λk) ≡

0 for |z| > 1 and |Ak| ≤ constant · εk imply Ak ≡ 0 whenever
{λn} is a bounded sequence of distinct complex numbers if and only
if
∑

(log εk)/k
2 = ∞.

The main results of this paper, that certain collections of cyclic
operators acting on spaces of functions analytic in a region in the
complex plane have dense sets of common cyclic vectors, occur in
Section 2 (see Theorems 2 and 3). In our setting, the underlying
spaces are no longer Hilbert spaces, but are examples of complete
locally convex topological vector spaces (see Section 2). Moreover,
the eigenvalues {λn} of the operators in question need only satisfy
the condition lim sup |λn|1/n < ∞; in particular, the collection of
eigenvalues of such an operator may be unbounded. In the Appendix,
we deduce a unicity theorem for the Borel series

∑∞
n=0 an/(z − λn)

where {λn} is any sequence of distinct complex numbers for which
lim sup |λn|1/n < ∞ and {λn} �= C (see Theorem 4). This result
is inspired by the work of Sibilev (as well as Beurling, Korobeinik,
Leontev and Makarov) and relies heavily on his techniques. It is used
in Section 2 to deduce the main results of this paper, namely Theorems
2 and 3.
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2. Common cyclic vectors. In this section, we use the unicity
theorem appearing in the Appendix to show that various collections
of cyclic operators have a common dense set of cyclic vectors. The
general setting concerns collections of operators T : X → X acting on
a complete metrizable topological vector space X having a common
set {xn} of eigenvectors which are complete (that is, whose closed
linear span is all of X ). For every operator T in such a collection,
there exists a sequence of complex numbers {λn} (depending on T )
for which T (xn) = λnxn for all n ≥ 0. A necessary condition that T
be cyclic is that its eigenvalues {λn} be distinct. If

∑∞
n=0 anxn is any

absolutely summable series in X , then for every functional L on X ∗,
we have that L(T k

∑∞
n=0 anxn) =

∑∞
n=0 anlnλ

k
n where ln ≡ L(xn) for

all n ≥ 0. The continuity of T and the nature of the complete set {xn}
of common eigenvectors impose growth conditions on the resulting sets
of eigenvalues {λn}, while the decay rate of the resulting sequences
of coefficients {anln} is determined by the coefficients {an} in the
expansion

∑∞
n=0 anxn, the set {xn} and the behavior of the action

of functionals L in X ∗ on the set {xn}, in view of which, the unicity
theorem appearing in the Appendix, and its variations, become relevant
in certain circumstances.

Herrero has shown that a cyclic operator on a Banach space has a
dense set of cyclic vectors if and only if the point spectrum of its adjoint
has non-empty interior (see [11, page 918, Theorem 1]). In particular,
every cyclic diagonal operator D on a Hilbert space has a dense set
of cyclic vectors (since the point spectrum σp(D

∗) = {λn} of D∗ is
countable). Moreover, Shields has shown that the set of cyclic vectors of
an operator on a Banach space is a Gδ set (see [37, page 411, Proposition
40]). Hence, by the Baire category theorem, any countable collection
of cyclic operators on a Banach space, the point spectrum of all of
whose adjoints have non-empty interior, has a dense Gδ set of common
cyclic vectors. In fact, one might reasonably expect that every vector∑∞

n=0 anen acting on a Hilbert space with an �= 0 for all n ≥ 0 is cyclic
for every diagonal operator D on a Hilbert space having orthonormal
basis {en}. However, we have already seen as a consequence of Wolff’s
example that this need not be the case for all bounded sets {λn} of
eigenvalues for D. Moreover, since each vector in a Hilbert space H
is in the kernel of some cyclic operator D diagonalizable with respect
to some orthonormal basis for H (depending on D), it follows that the
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collection of all cyclic operators diagonalizable with respect to some
orthonormal basis for H fails to have a common cyclic vector. It is
possible, however, for uncountable collections of cyclic operators to
have common cyclic vectors, and even dense sets of common cyclic
vectors. For instance, Wogen [41] in 1978 showed that the collection of
co-analytic Toeplitz operators T ∗

φ acting on the Hilbert space H2(D)
with non-constant symbols φ have common cyclic vectors, and in 2004,
Ross and Wogen [27] demonstrated that various collections of normal
operators acting on a Hilbert space have common cyclic vectors.

In this section, we use the unicity theorem appearing in the Appendix
to show that various collections of cyclic operators acting on a complete
locally convex topological vector space X having a complete set of
common eigenvectors with common dense sets of cyclic vectors. In
particular, we examine the special case where X is the space of entire
functions H(C), the space H(D) of functions analytic on the open
unit disc D and the operators having as a complete set of common
eigenvectors the monomials {zn}. Details of the relevant background
information presented below, and additional references, may be found,
for instance, in [7, 8, 22, 32, 33, 35].

We let H(C) denote the space of entire functions. When endowed
with the topology of uniform convergence on compacta, H(C) is an
example of a complete locally convex topological vector space. If
{λn : n ≥ 0} is any sequence of complex numbers, then the map D for
which D(zn) = λnz

n for all n ≥ 0 extends by linearity to an operator
on all of H(C) if and only if lim sup |λn|1/n < ∞. Any such operator
D having the monomials zn as eigenvectors with associated sequence
of eigenvalues {λn} is called a diagonal operator on H(C). A diagonal
operator D with eigenvalues {λn} is cyclic if and only if the eigenvalues
are distinct (see [32]). A necessary condition that an entire function
g(z) ≡ ∑∞

n=0 anz
n be cyclic for D is that an �= 0 for all n ≥ 0. The

converse, however, is not true for all D. The question as to when the
converse does hold is studied in greater detail in [8, 33, 35]. Finally,
every continuous linear functional L : H(C) → C assumes the form
L(

∑∞
n=0 anz

n) =
∑∞

n=0 anln where lim sup |ln|1/n < ∞.

Theorem 2. The collection of cyclic diagonal operators acting on
the space of entire functions H(C), each of whose set of eigenvalues in
not dense in C, has a dense set of common cyclic vectors.
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Proof. We show that the collection of cyclic diagonal operators acting
on H(C) has the set C ≡ {∑∞

n=0 cnz
n : 0 < |cn| < 1/en

4

for all n} as
a set of common cyclic vectors. By means of contradiction, suppose
that this is not the case. Hence, there exists an entire function
g(z) ≡ ∑∞

n=0 cnz
n in C which is not cyclic for some diagonal operator

D acting on H(C). Let {λn} denote the sequence of eigenvalues for
D. Since D is cyclic, the eigenvalues are distinct, and since D is
continuous, lim sup |λn|1/n < ∞. If {λn} is bounded, then g is cyclic
for D by [22, page 607, Lemma 7]. So we may assume without loss
of generality that {λn} is unbounded. Since g is not a cyclic vector
for D, the closed linear span of the vectors {Dkg : k ≥ 0} is not all
of H(C). Hence, there exists a non-zero functional L in H∗(C) for
which 0 ≡ L(Dkg) for all k ≥ 0. So there exists a sequence of complex
numbers {ln} for which L(

∑∞
n=0 anz

n) =
∑∞

n=0 anln for every entire
function

∑∞
n=0 anz

n where ≡ lim sup |ln|1/n < ∞. We have then that
0 ≡ L(Dkg) = L(Dk(

∑∞
n=0 cnz

n)) = L(
∑∞

n=0 cnλ
k
nz

n) =
∑∞

n=0 cnlnλ
k
n

for all non-negative integers k. Since 0 ≡ lim sup |ln|1/n < ∞ and

|an| ≤ 1/en
4

for all n ≥ 0, it follows that |cnln| < 1/en
3

for all n
sufficiently large, and so ancn ≡ 0 for all non-negative integers n by
Theorem 4. Since an �= 0 for all n ≥ 0, we have that ln ≡ 0 for all
n, and so L is the zero functional, a contradiction. The result follows
since the set C is easily seen to be dense in H(C).

A similar result holds for the set of cyclic diagonal operators acting
on H(D), the space of functions analytic on the unit disc. The proof,
being similar to that of Theorem 2, is omitted.

Theorem 3. The collection of cyclic diagonal operators acting on
H(D), each of whose set of eigenvalues in not dense in C, has a dense
set of common cyclic vectors.

The example at the end of the Appendix demonstrates that the
diagonal operator D having eigenvalues {λn} = Z × iZ is continuous
and cyclic on both H(C) and on H(D) (see [7, Lemma 1] and [22,
Proposition 1]), admits spectral synthetic on H(C) (see [35, Theorem
5]), but fails spectral synthetic on H(D) (see [35, Theorem 2]), in view
of which, every vector

∑∞
n=0 anz

n in HC) for which an �= 0 for all
n ≥ 0 is cyclic for D as an operator acting on H(C) (see [7, Theorem
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5]), but there exists a vector
∑∞

n=0 anz
n in H(D) with an �= 0 for all

n ≥ 0 which is not cyclic for D as an operator acting on H(D) (see
[35, Theorem 2]).

Theorem 4 can also be used to conclude that certain collections of
cyclic operators acting on a complete metrizable topological vector
space which have a spanning set of common eigenvalues have a dense
set of common cyclic vectors (see [34]). It applies equally well to dis-
continuous linear maps, including, for example, powers of the Laplacian
defined on various domains (see [36]).

APPENDIX

A.1. A unicity theorem. In this section, we show the following
unicity theorem for sequences of complex numbers {λn} for which
lim sup |λn|1/n < ∞, a growth rate specifically chosen to obtain the
cyclicity results of Section 2. This result, and its numerous variations,
are similar to those appearing throughout the literature; see, for
example, the work of Anderson, Khavinson, Shapiro [1], Beurling [2],
Korobeinik [12 15], Leontev [16, 17], Makarov [21] and Sibilev [39],
amongst others.

Theorem 4. Let {λn : 0 ≤ n < ∞} be any sequence of distinct
complex numbers for which lim sup |λn|1/n < ∞ and {λn} �= C, and
let {an : 0 ≤ n < ∞} be any sequence of complex numbers for which

|an| < 1/en
3

for all n sufficiently large. If 0 ≡ ∑∞
0 anλ

k
n for all k ≥ 0,

then an ≡ 0 for all n ≥ 0.

Throughout the remainder of this section, we let {λn : 0 ≤
n < ∞} denote a sequence of distinct complex numbers for which
lim sup |λn|1/n < ∞ and {λn} �= C, and let {an : 0 ≤ n < ∞} denote
any sequence of complex numbers for which 0 ≡ ∑∞

0 anλ
k
n for all k ≥ 0

with |an| < 1/en
3

for all n sufficiently large. In order to prove The-
orem 4, we will assume, by means of contradiction, that the complex
numbers an are not all zero and obtain a contradiction.

For any complex number λ ∈ C \ {λn}, we have that inf {|λ − λn| :
n ≥ 0} ≡ γ > 0. Moreover, it follows by induction from the condition
0 ≡ ∑∞

n=0 anλ
k
n for all k ≥ 0 that 0 ≡ ∑∞

n=0 an(λn − λ)k for all k ≥ 0.
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Hence, we may assume without loss of generality that |λn| ≥ γ > 0 for
all n ≥ 0. For notational convenience, we define

fn(z) ≡
n∑

j=0

aj
z − λj

and Fn(z) ≡ fn

(
1

z

)

for all positive integers n. These functions converge almost everywhere
with respect to Lebesgue area measure m on the complex plane to

f(z) ≡
∞∑
j=0

aj
z − λj

and F (z) ≡ f

(
1

z

)
= z

∞∑
j=0

aj
1− zλj

,

respectively (see [2]). We proceed with a series of lemmas.

Lemma 1. Let A be any positive constant. Then

|Fn(z)| ≤ 1

Bn+2

· 1

BAn(n+1)/2

{ ∞∑
j=n+1

|aj |BAj(j−1)/2 +
B

2An

n∑
j=0

|aj |BAj(j−1)/2

}

whenever |z| > 2Bn+2.

Proof. Since B0 ≡ lim sup |λn|1/n < ∞, we have that |λn| ≤ (1+B0)
n

for all n sufficiently large. Hence, there exists a constant B > 1 for
which |λn| ≤ Bn+1 for all n ≥ 0. Since 0 ≡ ∑∞

0 anλ
k
n for all k ≥ 0, it

follows for |z| > Bn+1 by the Fubini-Tonelli theorem that

fn(z) =
n∑

j=0

aj
z − λj

=
n∑

j=0

1

z
· aj
1− λj/z

=

n∑
j=0

1

z
· aj

∞∑
p=0

(
λj

z

)p

=

∞∑
p=0

1

zp+1

n∑
j=0

ajλ
p
j
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= −
∞∑
p=0

1

zp+1

∞∑
j=n+1

ajλ
p
j .

If M ≡ [An] is the greatest integer of An, then again, since 0 ≡∑∞
0 anλ

k
n for all k ≥ 0, it follows for |z| > Bn+1 that

fn(z) = −
M∑
p=0

1

zp+1

∞∑
j=n+1

ajλ
p
j +

∞∑
p=M+1

1

zp+1

n∑
j=0

ajλ
p
j .

For p ≤ M = [An] ≤ An and j ≥ n+ 1,

Bp(j+1)BAn(n+1)/2/(Bp(n+2)BAj(j−1)/2)

≤ BAn(j−n−1)+A[n(n+1)−j(j−1)]/2,

which has a maximum of 1 occurring when j = n + 1. Hence, for
|z| > 2Bn+2, we have that

∣∣∣∣−
M∑
p=0

1

zp+1

∞∑
j=n+1

ajλ
p
j

∣∣∣∣
≤

M∑
p=0

1

|z|p+1

∞∑
j=n+1

|aj| ·Bp(j+1)

=

M∑
p=0

1

|z|p+1

∞∑
j=n+1

|aj| ·BAj(j−1)/2

· Bp(n+2)

BAn(n+1)/2
· B

p(j+1)BAn(n+1)/2

Bp(n+2)BAj(j−1)/2

≤ 1

|z|
M∑
p=0

1

|z|p
∞∑

j=n+1

|aj |BAj(j−1)/2 Bp(n+2)

BAn(n+1)/2

≤ 1

|z|
M∑
p=0

(
Bn+2

|z|
)p

1

BAn(n+1)/2

∞∑
j=n+1

|aj |BAj(j−1)/2

≤ 1

Bn+2
· 1

BAn(n+1)/2
·

∞∑
j=n+1

|aj |BAj(j−1)/2.
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For p ≥ M = [An] ≥ An− 1 and j ≤ n,

Bp(j+1)BAn(n+1)/2

Bp(n+2)BAj(j−1)/2
≤ B(An−1)(j−n−1)+A[n(n+1)−j(j−1)]/2,

which has a maximum of B occurring when j = n. Hence, for
|z| > 2Bn+2, we have that

∣∣∣∣
∞∑

p=M+1

1

zp+1

n∑
j=0

ajλ
p
j

∣∣∣∣
≤

∞∑
p=M+1

1

|z|p+1

n∑
j=0

|aj|Bp(j+1)

=
1

|z|
∞∑

p=M+1

1

|z|p
n∑

j=0

|aj |BAj(j−1)/2

· Bp(n+2)

BAn(n+1)/2
· B

p(j+1)BAn(n+1)/2

Bp(n+2)BAj(j−1)/2

≤ B

|z|
∞∑

p=M+1

(
Bn+2

|z|
)p

1

BAn(n+1)/2

n∑
j=0

|aj |BAj(j−1)/2

≤ B

Bn+2
· 1

2M+1
· 1

BAn(n+1)/2

n∑
j=0

|aj |BAj(j−1)/2

≤ 1

Bn+2
· 1

BAn(n+1)/2
· B

2An

n∑
j=0

|aj |BAj(j−1)/2.

Since

fn(z) = −
M∑
p=0

1

zp+1

∞∑
j=n+1

ajλ
p
j +

∞∑
p=M+1

1

zp+1

n∑
j=0

ajλ
p
j ,

we have that

|fn(z)| ≤ 1

Bn+2

· 1

BAn(n+1)/2

{ ∞∑
j=n+1

|aj |BAj(j−1)/2 +
B

2An

n∑
j=0

|aj|BAj(j−1)/2

}
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whenever |z| > 2Bn+2. The result follows since Fn(z) = fn(1/z).

Lemma 2. Let A be any positive constant. Then

|Fn(z)| ≤ 2e−bn

[Bn+2 ·BAn(n+1)/2]

whenever |z| > 2Bn+2 for all n sufficiently large where bn ≡ βn for all
non-negative integers n and β ≡ min [1; (A log 2)/2].

Proof. Since |aj | < 1/ej
3

for all j sufficiently large,
∑∞

j=n+1 |aj |
·BAj(j−1)/2 < e−n for all n sufficiently large. Moreover, |aj |BAj(j−1)/2

converges to zero as j tends to infinity, and so has a maximum α. Thus,

B

2An

n∑
j=0

|aj |BAj(j−1)/2 ≤ αB(n+ 1)

2An
,

and so

∞∑
j=n+1

|aj |BAj(j−1)/2 +
B

2An

n∑
j=0

|aj |BAj(j−1)/2

≤ e−n + αB(n+ 1)/2An ≤ e−n + 1/[2An/2] ≤ 2e−bn ,

for all n sufficiently large. Thus, the set

{z : |Fn(z)| < 2e−bn/[Bn+2 · BAn(n+1)/2]}

contains the set

{
z : |Fn(z)| < 1

Bn+2

· 1

BAn(n+1)/2

{ ∞∑
j=n+1

|aj |BAj(j−1)/2 +
B

2An

n∑
j=0

|aj |BAj(j−1)/2
}}

for all n sufficiently large, and the result follows from Lemma 1.
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Lemma 3. Let α and ε be positive constants, and let K = B(0, R)
be the open ball in the complex plane of radius R > 0. Then

m({z ∈ K : |Fn(z)| < ε}) ≤ m({z ∈ K : |Fn−1(z)| < ε+ α})

+
|an|2R2π

α2|λn|2 .

Proof. Since

Fn(z) = fn(1/z) =
n∑

j=0

aj
1/z − λj

= −z
n∑

j=0

aj/λj

z − 1/λj
,

for all z in {z ∈ K : |Fn(z)| < e} \ {z ∈ K : |Fn−1(z)| < ε + α}, we
have that

ε+ α ≤ |Fn−1(z)| ≤ |Fn(z)|+ |an/λn| ·R/|z − 1/λn|
< ε+ |an/λn| ·R/|z − 1/λn|.

Hence, |z − 1/λn| < |an|R/(α|λn|), and the result follows.

The proof of the following lemma, being similar to that of Lemma 6
in [22, page 26], is omitted.

Lemma 4. Let K = B(0, R) be the open ball in the complex plane
of radius R. If F (z) �= 0 m almost everywhere on C, then there exist
positive constants ε and δ for which lim supm({z ∈ K : |Fn(z)| < ε}) <
(π − δ)R2.

For convenience, we define

Sj ≡ m({z ∈ K : |Fj(z)| < e−bj/2/BAj(j+1)/2})

for all non-negative integers j where here K = B(0, R) denotes the
open ball in the complex plane of radius R and bj ≡ βj where
β ≡ min [1; (A log 2)/2].
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Lemma 5. Let K = B(0, R) be the open ball in the complex plane
of radius R > 0. If F (z) �= 0 m almost everywhere on C, then there
exists a constant c > 0 (independent of j and of A) for which

Sj−1 ≥ Sj · e[bj−bj−1+4cA logBj]/(8c(j+1))

for all j sufficiently large.

Proof. It follows from an estimate on rational functions due to
Beurling (see [2] or [38, page 153, Lemma 6]) using Lemma 4 that
there exists a constant c > 0 (independent of j and of A) for which

m({z ∈ K : |Fj(z)| < e[−bj/2+(bj−bj−1)/4]/BAj(j−1)/2})
≥ m({z ∈ K : |Fj(z)| < e−bj/2/BAj(j+1)/2})
· e[bj−bj−1+4cA logBj]/(4c(j+1))

for all sufficiently large j. Hence, together with Lemma 3, we have that

Sj−1 ≥ m({z ∈ K : |Fj(z)| < e[−bj/2+(bj−bj−1)/4]/BAj(j−1)/2})

− πR2|aj |2BAj(j−1)ebj−1/2

4|λj |2{e−bj−1/4 − e−bj/4}2
≥ Sje

[bj−bj−1+4cA logBj]/(4c(j+1))

− πR2|aj |2BAj(j−1)ebj−1/2

4|λj |2{e−bj−1/4 − e−bj/4}2 .

We now show that

Sje
[bj−bj−1+4cA logBj]/(4c(j+1)) − πR2|aj |2BAj(j−1)ebj−1/2

4|λj |2{e−bj−1/4 − e−bj/4}2
≥ Sje

[bj−bj−1+4cA logBj]/(8c(j+1)),

or equivalently that

Sj{e[bj−bj−1+4cA logBj]/(4cj+1)

− e[bj−bj−1+4cA logBj]/(8c(j+1))}

≥ πR2|aj |2BAj(j−1)ebj−1/2

4|λj |2{e−bj−1/4 − e−bj/4}2 .
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By the Mean Value theorem, eb − ea ≥ (b − a)ea whenever a ≤ b, and
so e−bj−1/4 − e−bj/4 ≥ (1/4)(bj − bj−1)e

−bj/4 and

e[bj−bj−1+4cA logBj]/(4c(j+1)) − e[bj−bj−1+4cA logBj]/(8c(j+1))

≥ A logBj

2(j + 1)
e[bj−bj−1+4cA logBj]/(8c(j+1))

≥ A logB

4c
eA logB/4.

Moreover, 2e−bj/[Bj+2BAj(j+1)/2] ≤ e−bj/BAj(j+1)/2, and so by
Lemma 2,

Sj ≥ m

({
z ∈ K : |Fj(z)| < 2e−bj

BAj(j+1)/2

})
≥ π

[4B2(j+2)]
.

Hence, it suffices to show that

π

4B2(j+2)
· A logB

4c
eA logB/4 ≥ 42πR2|aj |2B

Aj(j−1)ebj−1/2ebj/2

|λj |2(bj − bj−1)2

for all j sufficiently large. However, this inequality holds for all j
sufficiently large since |λj | ≥ γ and bj = βj for all j ≥ 0, and

|aj | < 1/ej
3

and for all j sufficiently large.

Proof of Theorem 4. LetK = B(0, R) be the open ball in the complex
plane of radius R > 0, and suppose that F �= 0 m almost everywhere
on C. Since

2e−bj

Bj+2BAj(j+1)/2
≤ e−bj/2

BAj(j+1)/2
,

we have by Lemma 2 that there exists a positive integer J1 such that

π

4
≤ B2(j+2)m

({
z ∈ K : |Fj(z)| < 2e−bj

Bj+2BAj(j+1)/2

})
≤ B2(j+2)Sj

for all j > J1. By Lemma 5, there exists a positive integer J2 such that

Sj ≤ Sj−1e
−(bj−bj−1)/[8c(j+1)]e−4cA logBj/[8c(j+1)]

= Sj−1e
−β/[8c(j+1)]e−A logBj/[2(j+1)]
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for all j > J2. If J ≡ max (J1, J2), then

π

4
≤ B2(J+k+2)SJe

−β/8c
J+k∑
i=J

1

1 + i
e−A logB/2

J+k∑
j=J

i

1 + i
−→ 0

as k → ∞ whenever A > 8, a contradiction. Hence, F = 0, m almost
everywhere on C. That is, 0 = F (z) = f(1/z) = −z

∑∞
0 (aj/λj)/(z −

1/λj) = zμ̂(z) where μ̂ is the Cauchy transform of the finite measure
μ ≡ ∑∞

0 (aj/λj)δλ−1
j
. Hence, aj ≡ 0 for all j ≥ 0 (see [9]). The result

follows.

The hypothesis in Theorem 4 that |an| < 1/en
3

for all n ≥ 0 can be
weakened considerably. Moreover, various analogues of Theorem 4 can
be obtained by specifying a growth rate on the complex numbers {λn}
and choosing an appropriate decay rate on the an.

We conclude this section by showing that the moment condition
0 ≡ ∑∞

n=0 wnλ
k
n can hold for all k ≥ 0 for coefficients {wn} which

decay exponentially if the complex numbers {λn} are unbounded.
This example is in the spirit of those produced by Wolff, Denjoy
and Leont’eva mentioned previously and was brought to the author’s
attention by Eremenko. The complex numbers {λn} in this example
are obtained by enumerating the integer lattice points Z × iZ ≡
{m + in : m,n ∈ Z} beginning on the positive real line and moving
counterclockwise around larger and larger squares. That is,

λ0 = 0; λ1 = 1; λ2 = 1 + i; λ3 = i; λ4 = −1 + i;

λ5 = −1; λ6 = −1− i; λ7 = −i; λ8 = 1− i;

λ9 = 2; . . . λ24 = 2− i; λ25 = 3; . . . .

There are a total of (2k + 1)2 integer lattice points either on or inside
the kth square, and so exactly 8k points on the kth square. Hence, λj

is on the kth square whenever 1 + 4k(k − 1) ≤ j < 1 + 4k(k + 1). In
this case, either |Re (λj)| = k or |Im (λj)| = k and k2 ≤ |λj |2 ≤ 2k2. It
follows that {λn/n : n ≥ 1} is bounded and that lim sup |λn|1/n ≤ 1.

Example. Let {λn} be the enumeration of the integer lattice points
Z × iZ obtained as above. Then there exist complex coefficients
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{wn}, not all zero, for which 0 =
∑∞

n=0 wnλ
k
n for all k ≥ 0 where

lim sup |wn|1/n < 1.

Proof. For each positive integer r, we let Sr denote the square passing
through the points ±(r + 1/2) and ±(r + 1/2)i and having horizontal
and vertical sides. For any complex number λ on any square Sr, we
have that the distance d(λ) from λ to any point in Z×iZ is at least 1/2.
We denote the Weierstrass sigma function having zeros at the integer
lattice points Z× iZ by

σ(z) ≡ zΠ′
(
1− z

m+ in

)
exp

{
z

m+ in
+

z2

2(m+ in)2

}

(where here the prime indicates that the product is taken over all
integers m and n, but omitting the origin where m = 0 = n). Since

|σ(λ)| ≥ 0.2d(λ)eπ|λ|
2/2 (see [25, page 157, equation (1) and page 161,

Corollary 1.1]), it follows that limr→∞
∫
Sr

eλz/σ(λ) dλ = 0 for every
complex number z. Moreover,∫

Sr

eλz

σ(λ)
dλ =

∑
{j:λj∈S◦

r}

eλjz

σ′(λj)

by the Residue theorem, and so

∞∑
j=0

eλjz

σ′(λj)
≡ 0

on the complex plane. That is,
∑∞

j=0 wje
λjz ≡ 0 where wj ≡

1/σ′(λj).

We now estimate |wj |. Let m + in be any integer lattice point.

Since |σ(z)| ≥ 0.2d(z)eπ|z|
2/2, we have that σ(z) maps the open ball

B(m + in, 1/4) of radius 1/4 and center m + in onto B(0, α) by
the Inverse Function theorem (see [9, page 234]) where here α ≡
0.05eπ(|m+in|−1/4)2/2. It follows from Schwarz’s lemma applied to
4(σ−1(αz) − (m + in)) that |σ′(λj)| ≥ 0.2eπ(|λj|−1/4)2/2 for all points
λj in Z × iZ. Since k2 ≤ |λj |2 ≤ 2k2 whenever 1 + 4k(k − 1) ≤ j <
1 + 4k(k + 1), it follows that lim sup |wj |1/j < 1.
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