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DILATION THEORY IN FINITE DIMENSIONS:
THE POSSIBLE, THE IMPOSSIBLE AND THE UNKNOWN

ELIAHU LEVY AND ORR MOSHE SHALIT

ABSTRACT. This expository essay discusses a finite di-
mensional approach to dilation theory. How much of dilation
theory can be worked out within the realm of linear algebra?
It turns out that some interesting and simple results can be
obtained. These results can be used to give very elementary
proofs of sharpened versions of some von Neumann type in-
equalities, as well as some other striking consequences about
polynomials and matrices. Exploring the limits of the finite
dimensional approach sheds light on the difference between
those techniques and phenomena in operator theory that are
inherently infinite dimensional, and those that are not.

1. A single contraction. In these notes H is a finite dimensional
real or complex Hilbert space of dimension dimH = n. A contraction
is an operator T with ‖T ‖ ≤ 1.

Von Neumann’s inequality states that, for every contraction T on a
Hilbert space and every polynomial p,

(1) ‖p(T )‖ ≤ ‖p‖∞ := sup
|z|=1

|p(z)|.

There is an elegant proof of this inequality using Sz.-Nagy’s dilation
theorem:

Theorem 1.1 (Sz.-Nagy’s dilation theorem [12, Theorem 4.2]). Let
T be a contraction acting on a Hilbert space H. Then there exists a
Hilbert space K ⊇ H and a unitary U on K such that

(2) T k = PHU
kPH , k ∈ N.

Here and below, PH denotes the projection of K onto H .
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The elegant proof alluded to runs as follows (see [12, Section 8]): by
the spectral theorem, von Neumann’s inequality holds for any unitary.
By virtue of (2), p(T ) = PHp(U)PH for any polynomial. Thus,

‖p(T )‖ ≤ ‖p(U)‖ ≤ ‖p‖∞.

When T is not a unitary, then the space K in the above theorem is
necessarily infinite dimensional. Note that (1) is not a trivial fact even
when H is finite dimensional. A motivation for writing these notes was
to find a proof of (1) and its generalizations for finite dimensional spaces
that does not involve infinite dimensional Hilbert space, but which does
involve dilation theory. There do exist proofs of this inequality for when
T is a matrix (see [23, Chapter 1] or [22, Exercise 2.16]), but we believe
that the one presented below is the most elementary. It is probably not
new, but in our opinion it should be recorded.

It was mentioned above that K in Theorem 1.1 is always infinite
dimensional when T is not unitary. On the other hand, Halmos noticed
[13] that one can dilate T to a unitary which acts on H ⊕H , given by

(3) U =

(
T (I − TT ∗)1/2

(I − T ∗T )1/2 −T ∗

)
.

However, this U satisfies (2) only for k = 1. This motivates the
following definition.

Definition 1.2. Let T be an operator on H , and let N ∈ N. A
unitary N -dilation for T is a unitary U acting on K such that (2)
holds for all k = 1, . . . , N .

Remarkably, even 1-dilations do have applications [13]; see [7] for a
relatively recent one.

We make some standard definitions. As usual, a dilation will be
called minimal if the smallest subspace L ⊆ K such that H ⊆ L and
UL = L, is K itself. It will be called N -minimal if K = span {Ukh :
h ∈ H, k = 0, . . . , N}. Two N -dilations U1,K1 and U2,K2 will be
called isomorphic if there is a unitary W : K1 → K2 that fixes H and
intertwines U1 and U2.
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Henceforth, H is a finite dimensional Hilbert space, dimH = n. For
a contraction T on H , we define DT = (I − T ∗T )1/2, DT = Im (DT ),
and dT = dimDT . Note that dimDT∗ = dT .

Theorem 1.3. For every N , every contraction T on H has an N -
minimal, unitary N -dilation acting on a space of dimension n+NdT .
This dilation is also minimal.

Proof. Let V be a unitary from DT onto DT∗ . On the space

K = H ⊕DT∗ ⊕ · · · ⊕ DT∗︸ ︷︷ ︸
N times

,

we define

U =

⎛
⎜⎜⎜⎜⎝

T DT∗

V DT −V T ∗

I
. . .

I 0

⎞
⎟⎟⎟⎟⎠ .

The empty slots are understood as 0’s, and the sub-diagonal dots are
all I’s. Using the identity TDT = DT∗T , we find that U∗U = I,
thus UU∗ = I. Equation (2) for k ≤ N is verified mechanically. The
N -minimality is obvious, and minimality follows.

Remark 1.4. Taking the inductive limit of the above dilations in an
obvious way, or, equivalently, the strong operator limit (once assembled
inside an infinite dimensional space), one obtains the minimal isometric
dilation of Sz.-Nagy.

The elementary proof of von Neumann’s inequality for operators on
a finite dimensional space is the same as the one we gave above, with
the following changes. Given T and a polynomial p of degree N ,
construct a unitary N -dilation U for T , acting on a space of dimension
M = n + NdT (this takes the place of constructing the full unitary
dilation). Instead of invoking the spectral theorem for normal operators
on Hilbert space, we use the fact that every unitary matrix is unitarily
diagonalizable. Thus, we may assume that U = diag (λ1, . . . , λM ).
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Now, p(U) = diag (p(λ1) . . . , p(λM )); hence, ‖p(U)‖ = supi |p(λi)| ≤
‖p‖∞ (see Theorem 4.4 below for a sharpening of this result).

It should also be mentioned that von Neumann’s inequality for
operators on an infinite dimensional space follows from the finite
dimensional case, see [23, page 15].

According to Sz.-Nagy [30, Section 4], Theorem 1.3 was first pub-
lished in 1954 by Egerváry [10] (more or less: the dilation in [10] is
not minimal). It is clear that Halmos thought of this construction,
but did not think that it is a big deal (evidence: the discussion in[15,
Problem 227]). It seems that the idea of N -dilations was abandoned.
One possible reason is that Sz.-Nagy’s paper [29] on the existence of
a unitary dilation already appeared in 1953. Another reason might be
that confining dilation theory to finite dimensions makes it a difficult
subject. The rest of these notes contains further discussion of this fi-
nite dimensional approach to dilation theory. We will present what we
know about this topic, alongside some neat results that seem to have
been overlooked, as well as open problems.

2. A little more on minimality. There are many minimal
N -dilations which are not isomorphic. This can be seen by taking
T = 0 ∈ C and considering the two minimal 1-dilations given by
equation (3), on the one hand, and by the 2-dilation constructed above,
on the other. Even under the assumption of N -minimality, or that the
dilation act on a space of dimension n+NdT , the dilation is not unique.
Consider, for example, the two non-isomorphic 1-dilations of T = 0 ∈ C
given by

U1 =

(
0 1
1 0

)
and U1 =

(
0 −1
1 0

)
.

The following proposition says that, nonetheless, to a certain extent,
minimal dilations look pretty much the same.

Proposition 2.1. Let T be a contraction on H, and let V on L be a
unitary N -dilation for T . Let U on K be an N -minimal N -dilation of
T . Then there exits an isometry W : K → L such that W

∣∣
H

= IH and

(4) VWg =WUg,

for all g ∈ span {Ukh : h ∈ H, k = 0, . . . , N − 1}.
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Proof. We define WUkh = V kh for k = 0, 1, . . . , N and h ∈ H . This
is a well-defined isometry since U is N -minimal and since, for h, g ∈ H ,
0 ≤ k ≤ m ≤ N ,

〈WUkh,WUmg〉 = 〈V kh, Vmg〉 = 〈h, V m−kg〉
= 〈h, Tm−kg〉 = 〈Ukh, Umg〉.

Equation (4) follows.

Thus, all 4-dilations of T essentially have the form

⎛
⎜⎜⎜⎜⎜⎝

T ∗
DT ∗

I
I

I
∗

⎞
⎟⎟⎟⎟⎟⎠ ,

(the dimensions of the last row and column are not necessarily dT ),
and a similar statement can be made for N -dilations. In particular, we
have the following corollary.

Corollary 2.2. If T acts on H, the minimal dimension on which a
unitary N -dilation of T can act is n + NdT . A unitary N -dilation is
N -minimal if and only if it acts on a space of dimension n+NdT .

3. An additional application and a non-application. In
his seminal paper [29], Sz.-Nagy presented three applications of his
theorem on unitary dilations. We already discussed one application:
the simple and elegant proof of von Neumann’s inequality. Another
application given in that paper is a simple proof of a simple fact: if T is
a contraction and h is an invariant vector for T , then h is also invariant
for T ∗. The proof via dilations is as follows. PHUh = Th = h. It
follows that Uh = h. Thus, U∗h = h; hence, T ∗h = PHU

∗h = h.
Of course, no one would have any problem proving this fact without
recourse to dilations, but you have to admit that this is elegant. Note
that one only uses the fact that there exists a 1-unitary dilation for T .

As another application of his dilation theorem, Sz.-Nagy gave a very
neat proof of the following ergodic theorem:
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Theorem 3.1. Let T be a contraction. Then

(5) lim
N→∞

1

N + 1

N∑
k=0

T k

exists in the strong operator topology.

Proof. Let U be any unitary dilation of T . Then

1

N + 1

N∑
k=0

T k = PH

(
1

N + 1

N∑
k=0

Uk

)
PH ,

so it suffices to prove the theorem for the special case where T is a
unitary. But the result for unitaries is the classical and well-known
mean ergodic theorem of von Neumann (see [15, Problem 228] for a
proof and additional references).

This application was brought in to show how a dilation that works
for all powers can be infinitely more powerful than infinitely many
N -dilations. Indeed, trying to imitate the above proof, but using N -
dilations instead of dilations, we come to the expressions

1

N + 1

N∑
k=0

T k = PH

(
1

N + 1

N∑
k=0

Uk
N

)
PH ,

where UN denotes a unitary N -dilation for T . One cannot use the mean
ergodic theorem (for unitary operators) because the rate of convergence
is different for different unitaries. As an illustration, let T = 0 ∈ C, and
let us choose for UN the 2N + 1 dilation constructed in Theorem 1.3.
Then UN is the (2N + 2)× (2N + 2) matrix

UN =

⎛
⎜⎜⎜⎜⎝

0 1
1 0

1
. . .

1 0

⎞
⎟⎟⎟⎟⎠ .
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UN contains the scalar operator u = exp(2πi)/(2N + 2) as a direct
summand. But

1

N + 1

N∑
k=0

uk =
2

(N + 1)(1− u)
∼ 2(2N + 2)

2πi(N + 1)
∼ 2

πi
.

This is far from the limit, which is 0. If we had chosen, in this example,
UN to be the N -minimal dilation constructed in Theorem 1.3, then
everything would have worked out, but this is just a coincidence.

4. Several commuting contractions.

4.1. Dilations and von Neumann’s inequality. We remind
the reader that, throughout this paper, H is a Hilbert space of finite
dimension n.

Definition 4.1. Let T1, . . . , Tk be commuting contractions on H ,
and let N ∈ N. A unitary N -dilation for T1, . . . , Tk is a k-tuple of
commuting unitaries U1, . . . , Uk acting on a space K ⊇ H such that

(6) T n1
1 · · ·T nk

k = PHU
n1
1 · · ·Unk

k PH ,

for all n1, . . . , nk satisfying n1 + . . .+ nk ≤ N .

The usual definition of unitary dilation of a k-tuple can now be
phrased as follows: a unitary dilation for T1, . . . , Tk is a k-tuple
U1, . . . , Uk that is a unitary N -dilation for all N ∈ N. If one of the
Ti’s is not a unitary, then a unitary dilation, if it exists, must operate
on a space K of infinite dimension.

Over the years, several conditions that guarantee the existence of
a unitary dilation for a k-tuple of commuting contractions have been
studied (see, e.g., [12, Chapter I] or [8, 20, 28] and the references
within)1. One of the simplest is the following.

Definition 4.2. Let T1, . . . , Tk be operators on H . T1, . . . , Tk are
said to doubly commute if, for all i = j, Ti commutes with Tj and with
T ∗
j .
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Theorem 4.3. Let T1, . . . , Tk be a k-tuple of doubly commuting
contractions on H. Then, for every N , the k-tuple T1, . . . , Tk has a
unitary N -dilation that acts on a space of dimension (N + 1)kn.

Proof. We prove the theorem for N = 3; the general case is proved
with minor changes of notation. On L = H ⊕H ⊕H ⊕H , let

V1 =

⎛
⎜⎝

T1 DT∗
1

DT1 −T ∗
1

I
I

⎞
⎟⎠ ,

and, for i > 1, we define

Vi =

⎛
⎜⎝
Ti

Ti
Ti

Ti

⎞
⎟⎠ .

Then Vi is a contractive 3-dilation of Ti, and V1 is unitary. Furthermore,
if Ti is already unitary, so is Vi. Since T1, . . . , Tk doubly commute, so
do V1, . . . , Vk. Now, on L⊕ L⊕ L⊕ L, we define

W2 =

⎛
⎜⎝

V2 DV ∗
2

DV2 −T ∗
2

I
I

⎞
⎟⎠ ,

and, for i = 2, we define

Wi =

⎛
⎜⎝
Vi

Vi
Vi

Vi

⎞
⎟⎠ .

After carrying out this step k times, we obtain a k-tuple U1, . . . , Uk

which is a unitary 3-dilation for T1, . . . , Tk.

A motivation for studying unitary N -dilations is the following sharp-
ening of von Neumann’s inequality.
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Theorem 4.4. Let N ∈ N, and let T1, . . . , Tk be k-tuple of
commuting contractions on H that has a unitary N -dilation acting on
a finite dimensional Hilbert space K. Put m = dimK. Then there
exist m points {wi = (wi

1, . . . , w
i
k)}mi=1 on the k-torus Tk such that for

every polynomial p(z1, . . . , zk) of degree less than or equal to N ,

‖p(T1, . . . , Tk)‖ ≤ max{|p(wi)| : i = 1, . . . ,m}.

In particular,

‖p(T1, . . . , Tk)‖ ≤ ‖p‖∞ := sup{|p(z1, . . . , zk)| : |zi| = 1, i = 1, . . . , k}.

Proof. Let U1, . . . , Uk be a unitary N -dilation of T1, . . . , Tk on a
finite dimensional space K. As U1, . . . , Uk are commuting unitaries,
they are simultaneously unitarily diagonalizable. We may assume that
Uj , j = 1, . . . , k, has the form

Uj =

⎛
⎜⎜⎜⎝
w1

j

w2
j

. . .

wm
j

⎞
⎟⎟⎟⎠ .

Thus,

‖p(T1, . . . , Tk)‖ = ‖PHp(U1, . . . , Uk)PH‖

≤

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝
p(w1)

p(w2)
. . .

p(wm)

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥
,

and the right hand side is equal to max{|p(wi)| : i = 1, . . . ,m}.

Every contraction has an N -dilation, so the above theorem is an
interesting sharpening of von Neumann’s inequality (for the expert it
might be interesting to compare this sharpening with that provided in
[1]). In fact, even for the case of scalar operators it is non-trivial.
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Corollary 4.5. Let ζ be a point in the unit disc D = {z ∈ C :
|z| < 1}, and let N be a positive integer. Then there exist N +1 points
w0, . . . , wN on the unit circle T = {z ∈ C : |z| = 1} such that for every
polynomial p of degree less than or equal to N , one has

|p(ζ)| ≤ max
i

|p(wi)|.

Following an example of Kaijser and Varopoulos [32], Holbrook
showed [17] that there exist three 4×4 commuting matrices A1, A2, A3

with ‖Ai‖ ≤ 1 such that, for the polynomial p(x, y, z) = x2 + y2 + z2−
2xy − 2xz − 2yz, one has

‖p(A1, A2, A3)‖ =
6

5
‖p‖∞.

This shows that even a 2-dilation may not exist for three commuting
contractions, regardless of the restrictions we put on the dimensionality
of the dilation space K. In fact, Parrott [21] constructed an example
of three commuting operators (acting on a four dimensional space) for
which there is no 1-dilation (see also [14, page 909]). The proof that
Parrott’s example is not a 1-dilation does not involve violation of von
Neumann’s Inequality.

It is interesting to note that von Neumann’s inequality holds for any
k-tuple of commuting 2 × 2 contractions (see [9, page 21] or [16]).
Whether or not this is true for 3× 3 matrices is an open problem.

Problem A. Do there exist k commuting 3× 3 matrices A1, . . . , Ak

with ‖Ai‖ ≤ 1 for i = 1, . . . , k, such that there is some polynomial p in
k variables for which ‖p(A1, . . . , Ak)‖ > ‖p‖∞?

In [17] it is mentioned that evidence suggests that the answer is
negative. It is rather humbling to know that even the case k = 3 is still
open.

4.2. Regular dilations. For m = (m1, . . . ,mk) ∈ Zk, let us define

T (m) = (T
m1−
1 · · ·Tmk−

k )∗Tm1+

1 · · ·Tmk+

k ,

where we use the usual notation of positive and negative parts of a
number: x+ = max{x, 0} and x− = x+ − x. Examining the proof
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of Theorem 4.3, we find that the unitary N -dilation U1, . . . , Uk for
T1, . . . , Tk satisfies

(7) T (m) = PHU(m)PH

for every m ∈ Zk such that |m| := |m1| + · · · + |mk| ≤ N , which is
much stronger than (6). Indeed, returning to the notation of the proof,
it is easy to see that T (m) = PHV (m)PH for all m ∈ Zk with |m| ≤ N .
Similarly, PHW (m)PH = PHPLW (m)PLPH = PHV (m)PH = T (m).
Continuing this way, we find that PHU(m)PH = T (m).

A unitary dilation satisfying (7) for all m ∈ Zk is said to be a regular
dilation. Following this terminology, we will call a k-tuple U1, . . . , Uk

of commuting unitaries a regular N -dilation for T1, . . . , Tk if (7) holds
for all m ∈ Zk with |m| ≤ N .

Remark 4.6. Note that if one replaces the unitary N -dilations
appearing in the proof of Theorem 4.3 by the minimal isometric Sz.-
Nagy dilations, then one gets a proof that every k-tuple of doubly
commuting contractions has a regular, doubly commuting isometric
dilation. To our knowledge, this proof is new.

There are several known conditions that ensure that a k-tuple of
contractions has a regular dilation, and one of them is that the k-tuple
doubly commute (see [12, Section I.9]). A necessary and sufficient
condition for a k-tuple T1, . . . , Tk to have a regular unitary dilation is
that for all u ⊆ {1, . . . , k}, we have the operator inequality

(8)
∑
v⊆u

(−1)|v|T (e(v))∗T (e(v)) ≥ 0,

where e(v) ∈ {0, 1}k is k-tuple that has 1 in the ith slot if and only if
i ∈ v [12, Theorem I.9.1]. This leads us to ask the following question.

Problem B. For k-tuples T1, . . . , Tk of commuting contractions on
H, are the following two conditions equivalent?

(1) For every N ∈ N, T1, . . . , Tk has a regular unitary N -dilation on
a finite dimensional Hilbert space K.

(2) Inequality (8) holds for all u ⊆ {1, . . . , k}.
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4.3. Further consequences of N-dilations. Using N -dilations
one can obtain the following more precise result, which implies Theo-
rem 4.4 immediately.

Theorem 4.7. Let N ∈ N, and let T1, . . . , Tk be k-tuple of
commuting contractions on H that has a unitary N -dilation acting on a
finite dimensional Hilbert space K, with dimK = m. Then there exist
m points {wi = (wi

1, . . . , w
i
k)}mi=1 on the k-torus Tk, and m positive

operators A1 . . . , Am ∈ B(H) satisfying
∑
Ai = IH , such that for

every polynomial p(z1, . . . , zk) of degree less than or equal to N ,

(9) p(T1, . . . , Tk) =

m∑
i=1

p(wi
1, . . . , w

i
k)Ai.

Proof. Using the notation of the proof of Theorem 4.4, we have
that U1, . . . , Uk are all diagonal with respect to an orthonormal basis
{e1, . . . , em}. Therefore, for all j = 1, . . . , k,

Uj =
m∑
i=1

wi
jeie

∗
i

and so for any polynomial p, deg p ≤ N ,

p(U1, . . . , Uk) =

m∑
i=1

p(wi
1, . . . , w

i
k)eie

∗
i .

Since U1, . . . , Uk is an N -dilation for T1, . . . , Tk, we have

p(T1, . . . , Tk) = PHp(U1, . . . , Uk)PH =

m∑
i=1

p(wi
1, . . . , w

i
k)PHeie

∗
iPH .

This gives (9) with Ai = (PHei)(PHei)
∗.

Theorems 4.3 and 4.7 together give the following interesting result
about polynomials:
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Corollary 4.8. Let N ∈ N, and let t1, . . . , tk be k-tuple of complex
numbers in the unit disc D. Put m = (N + 1)k. Then there exist m
points {wi = (wi

1, . . . , w
i
k)}mi=1 on the k-torus Tk, and m nonnegative

numbers a1 . . . , am satisfying
∑
ai = 1, such that for every polynomial

p(z1, . . . , zk) of degree less than or equal to N ,

(10) p(t1, . . . , tk) =

m∑
i=1

aip(w
i
1, . . . , w

i
k).

Given an integer N and a point (t1, . . . , tk) ∈ Dk, the existence
of a finite number of points w1, . . . , wm on the torus Tk, together
with a finite number of weights a1, . . . , am such that (10) holds for all
polynomials of degree less than or equal to N can also be obtained by
classical analytical means. One uses the Poisson integral on the torus
together with a classical (and more general) result of Tchakaloff [31]
(see also [24]). Note, however, how the elementary proof that we gave
above suggests explicitly a way to find the points w1, . . . , wm and the
weights a1, . . . , am.

5. Two commuting contractions: “Commutant lifting” and
Ando’s theorem. As we discussed in the previous section, three
or more commuting contractions might not have a unitary dilation.
In contrast, for two commuting contractions, there is the following
theorem.

Theorem 5.1 (Ando’s dilation theorem [2]). Every pair of commut-
ing contractions has a unitary dilation.

It follows that von Neumann’s inequality holds for two commuting
contractions. This is sometimes referred to, and rightly so, as Ando’s
inequality. It would be interesting to provide a proof of Ando’s
inequality for pairs of commuting contractions on a finite dimensional
space using N -dilations, as we have done above for the single operator
case.

Problem C. Given N ∈ N, is it true that every pair of commuting
contractions on H has a unitary N -dilation on a finite dimensional
space?
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Any solution to the above problem would be interesting. If the answer
is yes, then this would show that the mysterious difference between
two commuting contractions (Ando’s theorem) and three commuting
contractions (Parrott’s counter example) is already present at the
finite dimensional level. On the other hand, Ando’s theorem is rather
different from Sz.-Nagy’s theorem: the minimal dilation of a couple of
commuting contractions is not unique, and the proof of Ando’s theorem
is not canonical. We have heard an operator theorist say that Ando’s
theorem makes operator theorists feel “uneasy.” If the answer to the
above problem is no, it would show that Ando’s theorem is a truly
infinite dimensional phenomenon.

A close relative of Ando’s theorem is the following (which is usually
not called the commutant lifting theorem, but is related. See [11,
Chapter VII]).

Theorem 5.3 “commutant lifting theorem.” Let A and B be com-
muting contractions on H, and let U on K be the minimal unitary
dilation of A. Then there exists a contraction V on K that commutes
with U , such that

Bk = PHV
kPH , k ∈ N.

The theorem that is usually referred to as the commutant lifting
theorem makes the same assertion as in the above theorem, with two
differences. The first difference is that U is taken to be the minimal
isometric dilation of A, and not the minimal unitary dilation. The
second difference is that V is then asserted to be a lifting of B, and not
merely a dilation. This means that B∗ is equal to the restriction of V ∗

to H .

Ando’s theorem and the commutant lifting theorem are easily derived
one from the other (see [11, Section VII.6]). In the context of N -
dilations, all we could show is that “commutant lifting” implies the
existence of a joint N -dilation.

Proposition 5.3. Let A and B be two commuting contractions on
H. Let U be a unitary N -dilation of A on a finite dimensional space
K, and assume that there is a contraction V on K that commutes with
U , such that the pair U, V is a (non-unitary) N -dilation of A,B. Then
the pair A,B has a unitary N -dilation on a finite dimensional space.
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Proof. Since U is normal and V commutes with U , Fuglede’s theorem
implies that U and V doubly commute. Thus, the technique used in the
proof of Theorem 4.3 provides us with a unitary N -dilation for U, V ,
which is the required unitary N -dilation for A,B.

This leads us to the following problem:

Problem D. Is there a “commutant lifting theorem” in the setting
of unitary N -dilations?

6. Dilations of completely positive maps. There is a dilation
theory of contractive completely positive maps that is reminiscent of
the dilation theory of contractions. In this section we find that this
theory is truly infinite dimensional in nature.

A linear map φ : Mk(C) → Mk(C) is said to be positive if φ(A) ≥ 0
whenever A ≥ 0. A linear map φ : Mk(C) → Mk(C) is said to be
completely positive if, for every m ∈ N, the linear map

φ⊗Im :Mk(C)⊗Mm(C) =Mkm(C) −→Mk(C)⊗Mm(C) =Mkm(C)

defined by φ ⊗ Im(A ⊗ B) = φ(A) ⊗ B, is positive. We will use the
acronym CP for “completely positive.”

Let H be a finite dimensional complex Hilbert space of dimension n.
We identify the algebra B(H) of linear operators on H with Mn(C) in
the usual way. Recall that by Choi’s theorem [6, Theorem 1], the CP
maps on B(H) = Mn(C) are precisely those that can be represented
in the form

φ(T ) =

d∑
i=1

AiTA
∗
i ,

where d ∈ N and A1, . . . , Ad ∈ B(H). The minimal d for which such
a representation is possible is called the index of φ.

Definition 6.1. Let φ be a CP map acting on B(H). A ∗-
endomorphic dilation for φ consists of a Hilbert space K ⊇ H and
a ∗-endomorphism α of B(K) such that

(11) φk(T ) = PHα
k(T )PH

for all k ∈ N and all T ∈ B(H).
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Note that in the above definition we identified B(H) with the subal-
gebra of B(K) given by PHB(K)PH ⊆ B(K). The following theorem is
the analogue of Sz.-Nagy’s dilation theorem appropriate for CP maps,
and it is a key theorem in quantum dynamics.

Theorem 6.2 (Bhat’s dilation theorem2, [4, 5, 19, 25]). Every
contractive CP map has a ∗-endomorphic dilation.

The relation between Bhat’s and Sz.-Nagy’s dilation theorems is deep
(see [27, Section 5]). In fact, the methods of [19, 26] enable one
to prove Bhat’s theorem by reducing it to the situation in Sz.-Nagy’s
theorem (see [27, Corollary 6.3]), and also vice versa. With this in
mind, what follows may seem a little mysterious.

As in the case of the unitary dilation, when φ is a CP map acting
on B(H) which is not a ∗-endomorphism, then the dilation α neces-
sarily acts on B(K) where K is infinite dimensional. Note that the
well-known Stinespring dilation of φ involves only finite dimensional
spaces when dimH < ∞, but it does not qualify as a ∗-endomorphic
dilation in the above sense. One might hope that, as in the case of
unitary dilations, one can find dilations acting on finite dimensional
spaces for which (11) holds only for finitely many k. However, this is
impossible. The following proposition should be considered as evidence
that dilation theory of CP maps is far more delicate than the dilation
theory of operators (see also [27, Section 5.3]).

Proposition 6.3. Let φ be a CP map on B(H) of index d > 1.
Suppose that K ⊇ H and that α is a ∗-endomorphism on B(K) such
that (11) holds for k = 1. Then K is infinite dimensional.

Proof. If K is finite dimensional, then α is a ∗-automorphism.
Consequently, there is a unitary U on K such that

α(T ) = UTU∗, T ∈ B(H).

From (11), holding for k = 1, we have

φ(T ) = (PHUPH)T (PHUPH)∗, T ∈ B(H),

which shows that the index of φ is 1.
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Remark 6.4. By [6, Theorem 5], if a CP map φ has index 1, then it is
an extreme point of the convex set of CP maps ψ on B(H) such that
ψ(I) = φ(I). Thus, “most” CP maps have index bigger than 1.
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ENDNOTES

1. Perhaps before anything else the reader might like to see [3].

2. Bhat and the other researchers cited also prove this theorem
(Theorem 6.2) for (the much harder case of) continuous one-parameter
semigroups of CP maps.

Note added after acceptance. After this paper was completed
Problems B and C were solved in the affirmative; see J.E. McCarthy
and O.M. Shalit [18].
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20. D. Opěla, A generalization of Andô’s theorem and Parrott’s example, Proc.
Amer. Math. Soc. 134 (2006), 2703 2710.

21. S. Parrott, Unitary dilations for commuting contractions, Pac. J. Math. 34
(1970), 481 490.

22. V.I. Paulsen, Completely bounded maps and operator algebras, Cambr. Stud.
Adv. Math. 78 (2002), Cambridge University Press, Cambridge.

23. G. Pisier, Similarity problems and completely bounded maps, Lect. Notes
Math. 1618 (1996), Springer-Verlag, Berlin.

24. M. Putinar, A note on Tchakaloff’s theorem, Proc. Amer. Math. Soc. 125
(1997), 2409 2414.

25. D. SeLegue, Minimal dilations of CP maps and C∗-extension of the Szegö
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