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INVARIANT SUBSPACES AND KERNELS OF
TOEPLITZ OPERATORS ON THE BERGMAN SPACE

NAMITA DAS

ABSTRACT. In this paper we have shown that if ¢ €
(L2)t nL>*, ¢ # 0, then ker T, = ker T = sp{1} and
therefore finite-dimensional subspaces of L2. Further, if ¢ €
L>(D), ¢ # 0, then it is shown that the Toeplitz operator Ty
cannot be of finite rank.

1. Introduction. Let L?(D,dA) denote the Hilbert space of
complex-valued, absolutely square-integrable, Lebesgue measurable
functions f on D with the inner product

(f.9) = / F(2)g(2) dA(2),

where D = {z € C : |z] < 1} is the open unit disc in the complex plane
C and dA(z) is the area measure on D normalized so that the area of
the disc D is 1. In rectangular and polar coordinates,

1 1
dA(z) = —dxdy = —rdrdo.
T T

Let L>°(D, dA) denote the Banach space of Lebesgue measurable func-
tions f on D with

I7llcc = esssup{|f(2)]: 2z € D} < c0.

Let L2(D) (the subscript “a” stands for analytic) be the subspace of
L?(D,dA) consisting of analytic functions. The space L2(D) is called
the Bergman space. Let H°(D) be the space of bounded analytic
functions on D. Let L2 = {f: f € L2} and L? = L2 @ L2. Since point
evaluation at z € D is a bounded linear functional on the Hilbert space
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L?(D), the Riesz representation theorem implies that there exists a
unique function K, in L2(D) such that

f(2) = /D F () K (w) dA(w)

for all f in L2(D). Let K(z,w) be the function on D x D defined by

K(z,w) = K,(w).

The function K (z,w) is thus the reproducing kernel for the Bergman
space L2(D) and is called the Bergman kernel. It can be shown that the
sequence of functions {e,(z)} = {v/n + 12"},>0 forms the standard
orthonormal basis for LZ(D) and K(z,w) = >~ en(2)en(w). The
Bergman kernel is independent of the choice of orthonormal basis
and K(z,w) = 1/(1 — 2w)?. Since L2(D) is a closed subspace of
L?(D,dA) (see [15]); there exists an orthogonal projection P from
L?(D,dA) onto L2(D). For ¢ € L*°(D), we define the Toeplitz
operator Ty, on LZ(D) by Tyf = P(¢f), f € L2(D). The big Hankel
operator Hy is a mapping from L2(D) into (L2(D))* defined by
Hyf = (I — P)(¢f), f € L2(D). The little Hankel operator hy is
a mapping from L2(D) into L2(D) defined by hyf = P(¢f) where P
is the orthogonal projection from L?(D,dA) onto L2(D). There are
also many equivalent ways of defining little Hankel operators on the
Bergman space. For example, define Sy : L2 — L2 as Sy f = P(J(¢f))
where J : L? — L? is such that Jf(z) = f(Z). Observe that, for
f € L2(D), hof = P(¢f) = JPJ(pf) = JS,f. Thus, the operators
hg and Sy are unitarily equivalent. Hence, both the operators hy and
Sg are referred to as little Hankel operators in the literature. If Py
is the rank one projection from L?(D,dA) onto the constants, then
P — Py < I — P, where I is the identity operator. This is the reason
why we call hy the little Hankel operator. The big Hankel operator is
defined in terms of the bigger projection I — P.

Let T denote the unit circle in C. Let L?(T) be the space of complex-
valued, absolutely square integrable, Lebesgue measurable functions on
T. Let H?(T) be the corresponding Hardy space of functions on T with
vanishing negative Fourier coefficients. For ¢ € L*(T), the space of
essentially bounded measurable functions on T, we define the Toeplitz
operator Ly from H?(T) into H?(T) as Lyf = P(¢f), where P is the
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orthogonal projection from L?(T) onto H?(T). It is shown in [3] that
there exists no compact Toeplitz operator on the Hardy space except
the zero Toeplitz operator. In the Bergman space setting, however,
there are lots of nontrivial compact Toeplitz operators [1], and there
are unbounded symbols that induce bounded (even compact) Toeplitz
operators. In this paper, we have shown that if ¢ € (L2)-NL>®, ¢ # 0,
then ker Ty = ker T) = sp {1}, and there exists no finite rank nonzero
Toeplitz operator with bounded symbol on the Bergman space. Thus,
it follows that, if 0 # ¢ € (L?)+ N L> and T}, has closed range, then
T, is Fredholm and of index zero but T}y is not invertible.

The proof also extends to L2(Q2) where € is a bounded symmetric
domain in C. Luecking [11, 12] also showed that there exists no finite
rank Toeplitz operators on Bergman space in a setting where he took
the Fourier transform of the corresponding measure. Our method is
more elementary and explains the situation better. It was also pointed
out as a conjecture in [8].

2. Intermediate Hankel operators. Hankel operators play an
essential role in the theory of Toeplitz operators, and many problems
about Toeplitz operators can also be formulated in terms of Hankel
operators and vice versa. On the Hardy space of the disk there is
essentially only one type of Hankel operator. However, in the Bergman
space setting, there are two very different notions of Hankel operators,
the so-called big and little Hankel operators. Little Hankel operators
on the Bergman space behave more like Hankel operators on the
Hardy space. One can also define the intermediate (middle) Hankel
operators on the Bergman space. In the present paper, we show that
the information about the Fredholmness of Tj can be obtained using
intermediate Hankel operators.

For p > 0, let
E, =span {|2|**z", k=0,...,p; n=0,1,2,...}.

For p > 0, the spaces E, are closed subspaces of L?(D). For ¢ €
L> (D), we define the intermediate Hankel operator Hf” 1 L2 = B,
by Hf”(f) = Py(¢f), f € L2, where P, is the orthogonal projection

a’

from L?*(D) onto E,. Notice that L2 C E, C ((L2)o)* where
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(L2)o = {g € L? : g(0) = 0}. For n >m and j € {0,... ,p}, let

AT = [hacpnn—m+1+7) . R I m-0.
[Lacptatl) Gl = DI=0P7 22
I#5

It is not so difficult to check that

Pp(z"2™)
0 if n <m;
Zh ™ ifn>m,0<m<p;

Agvmzn—m +A;L7mzn—m+1z+

cee 4 Ag’mfn’m“’zp if n>m, m > p.

Observe that the operator Hf‘“ = 0 if and only if ¢ € Ej; and
(Hf”)*f = P(¢f) for all f € E, where P is the Bergman projection.
Further, notice that ker Hf” C L? is invariant under multiplication
by z and ker H Er has finite codimension if Hf” is of finite rank. In
this section, we describe the interplay between the kernels of little

Hankel operators [15] and intermediate Hankel operators to establish
the results of the paper.

Lemma 1. Let ¢ € L>®°(D). Then kerhy = {0} if and only if
ker by = {0}. That is, ker hy = {0} if and only if Rangehy = L3.

Proof. Notice that S; = S+ where ¢*(2) = ¢(2). It is not
difficult to see that f € ker Sy if and only if f* € kerSy+. Thus,
if ker Sy = {0}, then ker S = {0}. Hence, Range Sy = L7. Conversely,
if Range Sy = L2, then ker Sy = {0}, and hence ker Sy = {0}.

If f € ker hg, then hg f = 0. Hence, JSgf = 0, and therefore Sy f = 0.
This implies f* € ker Sy+. Hence, Jf_Jr € ker Sy+J = ker h, as Sy+J =
(JSg)* = hy,. Now suppose g € L2 and § € ker hy,. This implies
Jg € ker S;. Hence, (Jg)" € ker S;. Therefore, (Jg)* € kerhg. That
is, g € ker hg. Thus, if f € L2, then f € ker hy if and only if f € ker .
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Hence, ker hy = {0} if and only if ker 2}, = {0}, and this is true if and
only if Range hy = L_g O

Lemma 2. Suppose f € L2 is not a polynomial and H € L%. Then
ker H?IE; = {0} if and only if kerH;’; = {0}. That is, kerH;i’I’ = {0}

if and only if Range H;H” =FE,.
Proof. Notice that

kerH?pr ={g€ E,: P(fHg) =0}
D kerh}H
={g€ L2: P(fHg) = 0}.

If ker H?Z” = {0}, then ker A2 = {0}. Hence, kerhz,, = {0}. Since,
E, 3 . E,
forh e L2, H?;Ih = h3ygh+ Py . gz (JHh), we obtain ker Hep = {0}.

Now, suppose ker Hf}’; = {0}. This implies ker th = {0}. Because,
if ker hz,, # {0}, then [6, 7, 9] there exists an inner function G' € L
such that G € ker h?H. That is, h?HG = 0. This is so as ker h?H =
ker S7;; is an invariant subspace of z. Observe that, for ¢ € L>(D),
hyT, = hy, and (Tzhd))* = thTz = S¢+JTZ. Further, for g € LZ,
Sy+ JTog = Sy+(J(29)) = P(J (2] g)) = P(hzg) = hjzg.

Similarly, one can show that (T:hy)* = h;z—k forall k=0,1,...,p.
Thus, h?HG = 0 implies (T3 hgy)* = 0. Hence, h_%HGE’“_E O._This
implies hgyoor = 0 for all k = 0,1,...,p. Hence, fHGzk € (L2)+.
That is, (FHGz*,zkg) = 0 for all g € L2 and k = 0,1,...,p. Thus,
e 1 E, E, _ . .
fHG € E,. Hence ker H_? # {0}. Thus, ker Ho ¥ = {(l} implies
ker hgy = {0}. H(che, kerhz = {0}. This implies ker HZ " = {0}.
Because, if ker H?*Hp # {0}, then there exists 0 # g € E, N L*> such
that fHg € (L?)*. That is, fHg € (L2)*. This implies gy = 0,
and therefore ker hgyy 2 GL2 N L2 # {0}, § € E, N L> = H*®. Thus,
ker HFEI; = {0} if and only if ker H?*:Ip ={0}. o
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3. Common zero sets. If N is a subspace of L2(D), let Z(N) =
{z € D: f(2) = 0forall f € N}, which is called the zero set of
functions in N. Here, if z; is a zero of multiplicity at most n of all
functions in N, then z; appears n times in the set Z(N), and they are
treated as distinct elements of Z(N).

In this section, we relate the concept of common zero set and the rank
of a Toeplitz operator. We have shown that, if ¢ € L>(D) is such that
T, is a finite rank Toeplitz operator and Card Z(ker Tq’;) = Rank of T},
then ¢ = 0. With the following result, we begin to link the ideas of
subspaces and zero-sets.

Proposition 3. If N is a subspace of L2(D) of finite codimension
in L2(D), then
ZN)={z€D: f(z)=0 foral feN}
s a finite set.

Proof. Suppose Z(N) is an infinite set. Let {z;}32; be distinct points
of Z(N), and let f1, fa, f3,. .. , fn be functions in L?(D) such that

filz1) == fi(zi—1) =0, fi(z;) =1 forall i > 2.

For example, we could take the functions (f;) to be polynomials. Then
f1, f2, ... are linearly independent modulo N, i.e., if

arfitasfo+--+anfn €N

where ai,a9,...,a, € C, then 1 = as = - = «a, = 0. This
contradicts the assumption that N has finite COdlmeanOn in L2(D).
Since each zero of an analytic function has finite multiplicity, the result
is proved. ]

Let k, be the normalized reproducing kernel for the Bergman space
L?(D). When |z| — 1, k. — 0 weakly and the normalized reproducing
kernels k., z € D span L2(D) [15].

Theorem 4. If ¢ € L>°(D) is such that Ty is a finite rank Toeplitz
operator and Card Z(ker Tg) = Rank of Ty, then ¢ = 0.
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Proof. Suppose T is of finite rank. Then Range T, is finite dimen-
sional and is a closed subspace of L2. Let n = dim RangeT,. Thus,
ker T; = (Range T4)* has finite codimension. Therefore, by Proposi-
tion 3, Z(ker T}}), the common zero set of ker 7} is a finite set. Without
loss of generality, we shall assume the elements of Z(kerT}) are dis-
tinct. Suppose Z(kerT}) = {a1,as,... ,a,}. Here aj,as,...,a, are
all distinct. Then kerTj C {f € L2 : f(a;) =0,i=1,2,... ,n}. But
{feL?: fla;)) =0,i=1,2,...,n} ={f € L2 : (f,ky,) = 0,i =
1,2,...,n} = {kay,kap,--- ka,} - Thus, sp{ka,kays--- 1ka,} C
(ker T;)l = RangeTy. In the case of repeated zeros (if a is a zero
of order m, say) the derivatives of the corresponding reproducing ker-
nel up to order m — 1, i.e., ka, (0/02)Ka, ... , (0™71)/(0a™ 1)k, are
included in the spanned set [9]. Now, since Range T has dimension n

and kq,,kas,. .. ,kq, are linearly independent, therefore RangeTy =
sp{ka,skass--- s ka, . Thus, ker Ty = {ka,, ks, - - ko }t = {f €
L?: f(a;) =0,i=1,2,...,n} is an invariant subspace of the Bergman

shift operator T, defined on L2(D). Since Ty is of finite rank implies
T; is of finite rank, therefore one can show that kerTy is also an in-
variant subspace of L2(D). Let P be the set of all polynomials in
L?(D) and M = kerT,. Since RangeT} has dimension n, therefore
Ty1,Tyz, ... ,Tez™ are linearly dependent. This implies that there ex-
ists a non-zero polynomial p of degree at most n such that Typ = 0.
That is, ¢p € (L2)1. Using the facts that codimension of M is fi-
nite, and T, M C M, it follows that P N M is a nontrivial ideal of
P. Since P is a principal ideal ring, there exists a ¢ € P such that
PN M = ¢P, see [10]. Thus, Tyq9 = 0 for all polynomials g € P. This
implies Ty,2" = 0 for all k > 0. That is, ¢q € (Z¥L2)* for all k > 0.
Hence, ¢q € Ng>0(Z¥L2)* = (Up>0Z¥L2)*. Therefore, it follows that
¢q L ZF2" for all k,n > 0. Now, ¢g € L= C L? implies that ¢g = 0.
Thus, ¢ = 0, except at the zeros of g which is a polynomial of degree
at most n. Hence, ¢ =0 as ¢ € L>°(D). o

For z and w in D, let ¢, (w) = (z — w)/(1 — Zw). These are involutive
Mobius transformations on D. In fact,

(1) ¢2 0 ¢=(w) = w;
(2) ¢z(0) =2z, ¢z('z) = 0;
(3) ¢, has a unique fixed point in D.
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Given z € D and f any measurable function on D, we define a function
U.f(w) = ky(w) f(¢.(w)). Since |k,|? is the real Jacobian determinant
of the mapping ¢, (see [15]), U, is easily seen to be a unitary operator
on L?(D,dA) and L2(D). It is also easy to check that U} = U,; thus,
U, is a self-adjoint unitary operator. If ¢ € L>*°(D,dA) and 2 € D,
then U, Ty = Tyoe,U,. This is because PU, = U,P and, for f € L2,
Tpop. U-f = T¢O¢z((f 0¢,)k.) = P((¢p0d.)(fo¢:)k.) = P(Us(of)) =
U.P(¢f) =U.Tyf. Let Aut (D) be the Lie group of all automorphisms
(biholomorphic mappings) of D and Gy the isotropy subgroup at 0; i.e.,
Go = {¥ € Aut (D) : ¥(0) = 0}. Notice also that ¢,(z), as a function
in a, is one-one and onto for any fixed z in D.

Proposition 5. If ¢ € L>*°(D), then Ty is of finite rank if and only
if Tgog, 15 of finite rank. In this case Rank of Ty = Rank of Tyog, .

Proof. Note that f € kerTy if and only if U, f € kerTyog,. Further
since U is unitary, dim ker T} = dim ker T, , . Thus dim RangeTy =
codim ker Tq’; = codim ker T;;O b = dim Range Tgo4, - O

For ¢ € L°(D), let ¢(z) = (Tpk-, k=) be the Berezin transform of ¢.
It is easy to check that HiHy = Tjg2 — T5Ty (see [15]). The following
also holds. O

Proposition 6. For ¢ € L>°(D),
MO (¢)(2) = [62(2) — [6(2)|? < | Hok|* + || Hgh- ||

Proof. 1t is easy to observe that
[Hok:|| = [[(I = P)(¢k2)|| = [(I = P)U.(¢ o ¢
=U-(I = P)(¢ o ¢:)| = [(I = P)(¢ 0 o)l
=l¢od.—P(dog.)|.
Similarly, we have

|Egk.ll = [0 6. — P(F06.)]

= ||¢O¢z —P@chz)”-
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Since ¢(z) = P(¢ 0 ¢.)(0) and Pg(z) = g(0) for any g € L2 and all
z € D, we have

MO (¢)(2) = [92(2) — |(=)]?
= ||¢O¢z - P(¢O¢2)(O)”2
= ||¢O¢z - P(¢O¢2)”2 + ||P(¢o ¢2) - P(¢O¢2)(O)H2

= | Hok|* + |P(¢ 0 ¢2) — P(é 0 ¢:)(0)|?
= | Hok:|I” + [ P(¢ 0 ¢ — P(¢ 0 6.))|”

< | Hpks||? + ||¢0 ¢ — P(¢o¢.)|?
= |Hyk-|” + |Hzk-|*>. O

Proposition 7. If T € L(L2(D)) and (Tk.,k.) =0 for all z € D,
then T = 0.

Proof. Define o(T)(z) = (Tk,,k,) for all z € D. If o(T) = 0
identically, then also (TK,,K,) = K(z,2)0(T)(z) = 0 identically
where K, = K(-,z) is the nonnormalized reproducing kernel. Thus,
the function F(z,y) = (T'Kz, Ky), which is holomorphic in z and
y, vanishes on the “anti-diagonal” z = %. Passing to the variables
u,v defined by z = u 4+ iv and y = u — iv, we get a holomorphic
function G(u,v) of w,v, which vanishes when w,v are real. Thus,
F(z,y) = G(u,v) = 0. Thus, even (TK,, K,) = 0 for any z,y. Since
linear combinations of K,, z € D are dense in £(L?2), it follows that
T=0. |

Notice that if, for all 2 € D, P(¢p o ¢,) = P(p o ¢.)(0) = 0, then
U, Tyk, = U, TpU,1 = Tyop,1 = 0. Hence, Tyk, = 0 for all z € D, and
therefore, (Tyk,, k;) = 0 for all z € D. By Proposition 7, T, = 0, and
thus ¢ = 0.

Lemma 8. For any z and w in D, there exists a unitary U € Gy
such that ¢ 0 ¢ = Ug_(w)-

Proof. Let U = ¢y 0 ¢- © ¢y (). Then U(0) = ¢y 0 ¢2(¢:(w)) =
¢w(w) = 0; thus, U € Gy. o
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4. Kernel of Toeplitz operators. In this section we describe the
kernel of a Toeplitz operator on the Bergman space. We have shown
that if Tj is a nonzero Toeplitz operator and if constants belong to both
ker Ty and kerT7, then these kernels contain only constants and are
not invariant subspaces of the Bergman shift operator T,. To establish
this, we need to study the properties of Hankel operators defined on
the harmonic Bergman space L? as follows.

For ¢ € L*°(D), define BE : L2 — (L2)* as BEf = (I -Q)f)

where @ is the orthogonal projection from L? onto L?. The operator
BE is well defined, and it is easy to see that

_ sn—k < n:
Q(Enzk):{(n k—l—l)/(n—i—l)zk ?fkfn,
(k—n+1)/(E+1)2"" ifk>n.
Further, one can verify that Bzn(zF) L Bsn(2?) if j # k and if
¢ = Yot apz¥,as, # 0 (that is, ag = -+ = as,—1 = 0) then
By(z") = Y52, arBzn(2"). 1t is shown in [14] that if ¥ and Q are
two functions in L2 such that ¥(0) = 0 = Q(0), then the operators By
and Bg are not of finite rank in L?. In fact, the set {Bg (")} _; is
linearly independent for all p > 0, and the set {Bﬁ(zk) b_, is linearly
independent for all p > 0. If g € L? and g = ¥ + Q, where ¥ and Q
are from L2, then Bg = By |12 is of finite rank if and only if Q = 0
and similarly By|z5 = By is of finite rank if and only if ¥ = 0. Notice
that for f € L2, B?L% = BTLz, and we shall also write Bf|r: = By.
Thus, By : Ly — (L3)* is defined as Byh = (I = Q)(fh) for all h € L
and ker By = {h € L} : fh € L3},

From [2], it follows that if f is not constant, ker By = sp{1}. If
f = constant , then ker Bf = L7, hence B = 0. Now B maps (L3)*
into L2 and B2k = P(fk) for all k € (L?)*. Tt therefore follows that,
for f e L2,

{0} if f = constant;

R Bx =
Anee Ly {(sp{l})L if f # constant.

Theorem 9. If ¢ € L>(D) is such that Tyl =T;1 =0, then either
¢ =0 orkerTj = sp{1} = kerTy. That is, either ¢ =0 or Ty is not
of finite rank.
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Proof. Given that T,1 =Tj1 = 0, hence ¢ € (L3)*. If ¢ € L*°(D),
then it is not difficult to Verlfy that S %= =0 if and only if 4 € (L2)*.

Thus s¢ =0 and S¢f =0 for all f € L2. Hence, (¢f) € (L2)* for

all fe L2 and kerT; ={f e L2:(pf) e (L)} ={feL?:(df) €
(L?)*}. Thus,

ker Ty ={fe€L:¢f € (L)}
={feL?:(¢f,g)=0 forallge L}}
={fel?: (¢, fg)=0 forallge L}}
={fely:(0,(I-Q)(fg))=0 forallge Ly}
={fel?: @Bfg)—O for all g € L?}.

Case 1. Let f € L?(D) be a polynomial of degree k& > 1 and
H(z) = zM' € L2, Then fH € E} for all p > 0 and Hf}; = 0.
Since fz¥ ¢ Ei- and ker H?” is an invariant subspace of z, hence
ker H? = ZFH1L2. Therefore, H;Z‘“ = 0 and ker H%E‘” = ZM1E, for
all p > 0.

Now ker B: = {g € (L})" : P(fg) =0} ={g € (L})* : fg € (L3)"}
and kerH%Ep ={g € E, : fg € (L?)*}. Hence, kerB?ﬂEp =
ker H%E” N(L?)*, and therefore,

ker B2 = | J (kerB_ﬂE ) = L>JO (kerH;E" ﬂ(Li)l>

p=>0
_ ( gokerH;E") Zi*t = ( L>Joz’<+1Ep> @™
{0} h

Thus, if ¢ € (L2)* and ¢ # 0, then B?E # 0.

Case 2. If f € L2(D) is a constant, then By = 0 and hence B% =0
and therefore B%a =0if ¢ #0.
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Case 3. If f € L?(D) is not a polynomial, then fg ¢ Ej; for any
g € L? g # 0, p > 0. Hence, kerH?’“ = {0} and therefore, by

Lemma 2, we obtain ker H?Ep = {0} for all p > 0. This implies
ker B2 = (Upzokerﬂf")m(L,%)L = {0} and B2o # 0 if ¢ € (L})*
and ¢ # 0.

Thus, from the above three cases, it follows that

ker Tj ={f e L2 : <$,BTg>:o forall g € L3}
={f € L}: B3¢ =0}
L? if ¢ = 0;
{sp{l} if ¢ 0.

Hence, either ¢ = 0 or T is not of finite rank. o

Notice that if ¢ € (L2)g, then P = (P¢)(0) = b, a constant. We
have the following corollary.

Corollary 10. If ¢ € (L?)g N L™, then either ¢ = (Pg¢)(0) or
ker Ty_(pgy(0) = ker Tj;_ pyy o) = sp{1}. That is, either ¢ = (P¢)(0)
or Ty_(pg)(0) 18 not of finite rank.

Proof. Notice that ¢ — (P¢)(0) and ¢ — (P¢)(0) belong to (L?)+. By
Theorem 9, we have

. L2 if ¢ = (P¢)(0);
ker Ty_(pg)(0) = ker T¢—(P¢)(0) = {sp {1} if¢p# EquiEO; i

If H is a Hilbert space, let L(H) be the C* algebra of all bounded
linear operators from H into itself. The operator T' € L(H) is said to
be Fredholm if and only if 7" has closed range, dimensions of kernel T’
and kernel T are finite. The Fredholm index of T is denoted by J(T),
and is defined by J(T') = dim ker T" — dim ker T™*.
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In the case where T is invertible, it is obvious that it is Fred-
holm and its index is zero. But there are Fredholm operators of
index zero that are not invertible. Let L%, (T) denote the Hilbert
space of C™-valued, norm square integrable, measurable functions
on the umit circle T and HZ.(T) the corresponding Hardy space
of functions in L%, (T) with vanishing negative Fourier coefficients.
If ¢ € L3 (T) = L*®(T) ® M,, (where M, is the algebra of
n X n matrices with complex entries), then B, denotes the Toeplitz
operator defined on HZ.(T) by Bef = Q(¢f) for f in HE.(T)
where @ is the orthogonal projection of L%, (T) onto H&. (T). O

In HZ.(T), for n = 2, let ¢ be defined by

Xm 0
¢:< 0 x_m>

where X, (€?) = ¢™% and X_,, (') = e~"m9,

Then det ¢ =1 and dim ker By = m for m € Z, as ker B, contains

(1) () ()

Thus, By is Fredholm [5] and of index zero but By is not invertible.
But for n =1, Coburn [4] proved the following. He showed that for
¢ in L*°(T), the subspace ker B4 and ker B;) cannot both be different
from zero. As a corollary to this result, he then showed that if ¢ is
in L*°(T) such that By is a Fredholm operator and of index zero then
By is invertible. Thus, for n =1, on the Hardy space a nontrivial
Toeplitz operator cannot have both a nontrivial kernel and a nontrivial
cokernel. But the situation in the Bergman space is rather different.
The following examples give some insight into it.

(i) Let ¢(z) = log2 — 1/(1 + |2|?). Notice that ¢ € C(D), and
0e(Ty) = log2 — 1/2. Therefore, Ty, is Fredholm, and since ¢ is real
valued, J(T3) = 0. It is not so difficult to verify that 1 € kerTy,
and thus Ty is not invertible. Now, since Ty = T;; = Tg, therefore
ker Ty # {0} and ker Tg # {0}.

There are also functions ¢ in h*°(D) such that the corresponding
Toeplitz operator Ty has nontrivial kernel.
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(ii) Let z € D, K, is the corresponding Bergman reproducing kernel
and ¢, (w) = (z —w)/(1 —Zw) for w in D. Then ker T = span (K.).
Note that

1

(1—2w)?’

It is easy to see that ¢.(z) = 0 and ¢,(w) # 0 for z # w. Hence,
(¢, Kiw) = 0if and only if z = w. Thus, for all g € L2(D), (¢.g, K.,) =
0 if and only if 2 = w. Thus, K, 1 ¢.g for every g € L2(D).
Hence, K, € (RangeT}, )" = ker T7;.. For the inclusion to follow the
other way, we first note that ||2"[|> = 1/(n+ 1) and P(|w|*™w") =
(n+1)/(n+m+1)w". Now let f(w) =3 " a,w™ and f € ker T} .
Then (T;_f,g) = 0 for every g € L%(D). Therefore, it follows that
(f,¢.9) = 0 for every g € L2(D). Let h(w) = 1/(1 — zw). It is easy to
see that hL2 = L2. Thus, we have P((Z —w)f(w)) = 0. Therefore,

K, (w) = K(z,w) =

[ee]

> n
z E apw” = g anpw™ !
n+1
n=0

and a, = (n+ 1)z"ag. Thus,

o0
ao

flz)= Z ap(n 4+ 1)(Zw)" = m = apK . (w).

n=0

But there exist Fredholm Toeplitz operators Ty € L(L2(D)), ¢ €
L*>(D) such that ker Ty = ker T; = {0}.

(iii) Let ¢(z) = |2|™, where n is a nonnegative integer. Then, by [13],
Ty is Fredholm, hence it has closed range. The operator Ty is self
adjoint. Further, one can check that ker Ty, = kerT; = {0}. For this,
we need to show that Ty is one-to-one. Suppose that Tyf = 0, f €
L2(D). Then (Tyf, f) = 0, and hence (¢f, f) = 0. Using the fact that
¢ > 0, this will imply that ¢|f|?> = 0, and hence, f = 0. Therefore, T,
is invertible.

There are also functions ¢ in h*°(D) such that the corresponding
Toeplitz operator Ty has trivial kernel and trivial cokernel.

(iv) Let ¢(z) = 2+ Z. Then kerT, = {0}. To verify this suppose
f €kerTy. Then ¢f € (L2)* and (¢f,g) =0 for all g € L2. Thus, f is
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orthogonal to Zg + zg for all g € L2. Now let f = > C,,2™ and g = z*.

The function f is orthogonal to ZzF + 2**1. But (f,ZzF) = (fz,2") =
(Ck—1)/(k+ 1) and (f, 2**1) = (Cx4+1)/(k + 2). Therefore, we see that
(Cr=1)/(k+1) + (Ck41)/(k+2) = 0 for all k¥ > 1. In particular,
since the function f is orthogonal to Z + z, hence f is orthogonal
to z. Therefore, C; =0 and Cy41 = —(k+2)/(k+1)Cx—1. Thus,
|Ck41]| > |Cr—1]. It is to note that Cy, =0 for all k =2n+ 1, n > 0. If
Co # 0, then Cy, # 0 for k = 2n and for all n > 0. But f belongs to L2
implies >°(C2)/(n + 1) < co. Hence, f = 0.

(v) Let ¢(z) = |2|?". Then ¢ € (L?)gNL>® and P(|z|*") = 1/(n+ 1).
Hence |z|?" — (1/n+1) € (L?)*. One can easily verify that 1 €
ker Tjzj2n—(1/(n+1)) @8

11 I
n+l1 n+1 n+1

n 1 n
PP - ) = PO -

From Corollary 10, it follows that ker T),j2n_(1/(n+1)) = sp {1}

From Theorem 9, it follows that if 0 # ¢ € (L3)* N L> and T,
has closed range then Ty is Fredholm and of index zero but Ty is
not invertible as Ty1 = 0. Further, we have shown that unlike the
intermediate Hankel operators the kernel of a Toeplitz operator may
not be an invariant subspace of L2(D).

If ¢ € L2(D) N L*>*(D) = h>(D), the space of bounded harmonic
functions on D, then it is not difficult to see that 7§ is not of finite
rank: let ¢(z) = > °_jamz"™ + >0 a—mz™. Then

/ +1 3 .

<T > #ak if k 2 0,
€n, € =

$Ems Cnth nt+k+1 if k 0

n—_,’_la,k 1 < 0.

Since {e,} converges to 0 weakly and T, is compact, hence lim,,_,
ITpen]| = 0. Thus, limy, o (Tpen, €ntr) = 0 for every integer k. Hence,
ar = 0 for all k£ € Z and therefore ¢ = 0. We shall show below that if
¢ € L>*(D) and ¢ # 0, then T}, cannot be of finite rank.

Theorem 11. If ¢ € L*°(D) and Ty is a finite rank Toeplitz operator
then ¢ = 0.
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Proof. We shall first show that if T is a finite rank Toeplitz operator
and ¢ # 0 then for all z € D, either

(%) P(¢o¢.) # P(¢o¢.)(0)
or
() P(¢0¢.) # P60 ¢:)(0).

Suppose Ty is of rank one. By Proposition 5, Ty, is of rank one for
all z € D. Let for z € D,

(1) Tpop. [ = (f,97)0°
Hence
(2) Thoo. | = (f,0h7)g”

Suppose for w € D, P(¢ o ¢) = P(¢ 0 ¢,)(0) and P(¢ o o) =
P(¢ o ¢,,)(0). Then it follows that

(3) g“(0)h* = g»(0)h*(0)
and
(4) h*(0)g" = h*(0)g"(0).

If g*(0) = 0, then A" (0) = 0; otherwise, g = 0, and therefore T, =0
and hence ¢ = 0.

If h“(0) = 0, then ¢¥(0) = 0; otherwise, h** = 0. Therefore,
Ty, = 0, and hence ¢ = 0. Suppose now that ¢*'(0) = h“(0) = 0,
but ¢¥ # 0 and hY # 0. Now Tyoe,1 = (1,9")hY = ¢gw(0)h” =0
and Tj,, 1 = (1,h")g” = h*(0)g* = 0. Hence, 1 € ker Tyop, and
1 € kerTj,, . Thus, by Theorem 9, either ¢ o ¢, = 0 or Tyo,, is not
of finite rank. If ¢ o ¢, = 0, then ¢ = 0 and if Ty, is not of finite
rank, then by Proposition 5, T is not of finite rank.

On the other hand, suppose g*(0) # 0,h*(0) # 0. Then, from (3)
and (4), it follows that g% = ¢*(0) # 0 and h* = h*(0) # 0. Hence,
ker Tyop, = {f € L7 : (f.g") = 0}
={feL;:{fg"(0) =0}
={feL::g°(0)f(0) =0}
={f €L : f(0)=0}.
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Thus, Card(Z(ker Tyop,)) = 1 = RankofT},, . Therefore, by
Theorem 4, Tyop,, = 0, which implies ¢o ¢y, = 0; since (¢ 0 du)(2) = 2
for all z € D, hence ¢ = 0. Then, we obtain that if Ty is a nonzero
Toeplitz operator of rank 1, then either (x) or (xx) holds.

Suppose Ty is a Toeplitz operator of rank n > 1. Then, by Proposi-
tion 5, Tog, is of rank n for all z € D. Suppose there exist w € D such

that P(¢o¢y) = P(¢0¢,)(0) and P(popyw) = P(¢odw)(0). Suppose
Tyog,1 = (Tpos,1.1) = 0. This implies T, 1= (T, 1.1) =0.
Thus, by Theorem 9, either ¢ o ¢, = 0 or Tyog,, is not of finite rank.
Hence, either ¢ = 0 or T is not of finite rank.

Now suppose there exists w € D such that P(¢ o ¢,,) = P(¢ o
$w)(0) = ¢ # 0 and P(¢p 0 ¢w) = P(¢ 0 ¢w)(0) = ¢ # 0. That is,
T¢O¢wl = <T¢o¢wl, 1> =cC 75 0 and T$O¢1ul = <T$O¢wl, 1> =c 7é 0. Let
Yy = ¢ 0 ¢y —c. Then Ty, 1 =0="T7 1. Thus, by Theorem 9, either
Y = 0 or Ty, is not of finite rank. Hence, either ¢ = c or Tyy_. is not
of finite rank. Further, it follows from Theorem 9 that

sp{1} if ¥ # 0;

ker Ty, =kerTy, = {LZ if 1y, = 0.

Thus, either ¢ = cor ker Ty; = sp {1}. If ¢ = ¢, then Ty is not of finite
rank. If ker T} = sp {1}, then RangeTy, = (sp{1})* = zL2. That
is, m = zL2. Let qAbz @0 Py

Suppose ¢ — ¢ # 0. Then ker Tg_c = ker Ti_c = (2L2)* =sp {1} and
Range Ti_c = Range Tgﬁc = zL?. Thus, Range Téi,c and Range Tgﬁc

are infinite-dimensional vector spaces. Suppose f € kerTg. Then
Tgf = 0. That is, Tgﬁcf = —cf. Hence, f € RaungeTgﬁc C 2L2. On
the other hand, since Tgl =c# 0 and T§1 =¢C#0, hence 1 ¢ kerTg

and 1 ¢ kerT%. Now f € kerT; if and only if of € (L2)*. This
is true if and only if f € (3L2)*. Further, g € ker T if and only if
gg € (L?)*. This is valid if and only if g € (aLi)J- Since ¢ € (L3)g,
hence f € (¢L2)* if and only if f € (¢L2)L. Thus, f € ker T if and
only if f € ker T;;i. That is, ker Tg = ker Tdi:. This can also be seen as

follows.
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For f € L2, define C5 : (L2)o — (L?)g as Czg = (I — Qo)(fg) where
Qo is the orthogonal projection from L? onto (L?)o. The operator Cs
is well defined. It can be verified that

(L2)o if f = constant;
{0}  if f # constant.
Further, proceeding as before, one can show that

ker Cx = ( U keeri‘Ep> ﬂ(L%)é‘

p=>0

ker CF = {

and
ker C* = {O} if f 7£ Constant;
“tr T ((L?)o)* if f = constant.

Now, since 0 # ¢ € ((L2)o)* and f € kerT$ imply f = zh for some
h € L2, we obtain

ker T ={f € L2 : of € (L2)"}
Li)'y

={feL?: of <

={f€Li:<¢f, g)=0 forallge L7}
={f€Li:<¢fg>—O forall g € L3}

={f €L2:(,(I-Qo)(fg)) =0 forallgeL}}
z{fELi:@ASCfg)—O forall g€ L3}
:{feL§:<C*¢, g)=0 forallge L}}

={feLi: Co=0y={0}.
Similarly, one can show that ker TA = {0}. Thus, ker TA = ker TA =

{0}, and therefore Range T = Range T$ = L2, and hence T is not of
finite rank. This implies Ty is not of finite rank.

Thus, we have shown that, if T} is a finite rank Toeplitz operator and
¢ # 0, then for all z € D either (x) or (#x) holds. Now

| Hsk= |2 + || Hsh |
=[lg 0. — P(¢po¢.)|* + [$o¢. — P(oe.)|?
<|lpo . — P(¢o¢.)(0)|I +[[d o ¢. — P(do¢.)(0)|
= 2(|¢2(2) — |6(=)]?)
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because of (x) and (xx). Let c, = (|[Hpk,|* + ||H$kz||2)/(|’¢\|/2(z) -
|<;(z)|2) Note that 1 < ¢, < 2 for all z € D. It follows from
Proposition 6 and from the argument given above.

Now Ty of finite rank implies T$T¢ = Tigpp2 — HjHy is of finite
rank. Thus, 0 < (T3 T4k, k) = [6]?(2) — ”Hﬂkjw —0as |z > 1.
Similarly, since T¢T; is of finite rank, 0 < [$|?(z) — ||H$I€Z||2 -0
as 2| = 17. Thus, 0 < 2[¢P2(2) — (|Hgk:|* + | Hzk:|?) — 0

as |z| — 17. Hence, it follows that 0 < 2|?¢;|12(z) — e (|92(2) —
6(2)1%) = 21¢2(2) — (| Hoh=|® + | Hghz|?) = 0 as |2] = 17. So
0 < (2—c)|62(2) + c|d(2)]? = 0as |2| — 1~ where 1 < ¢, < 2.
Since Ty is of finite rank, |(z)| = 0 as |z — 1~. Thus, w(z) —0
as |z| — 17. Similarly, since Tyo4, is of finite rank, we can show that

|¢/<;\g25:|2(z) — 0 as |z| = 17. Thus,

/D (6 0 62) () 2 k- (w) PdA(w) — 0

as |z| — 17. Hence, [ |¢(w)|?dA(w) = 0as U.k. = k.(¢.(w))k.(w) =
1. Tt follows therefore that ¢(w) = 0 almost everywhere, and hence
¢ = 0. Thus, there exists no nonzero finite rank Toeplitz operator on
the Bergman space. O

Remark 12. Notice that, if k, € Range Tgpop, 00, , then U, Tyoq, U. f =
k. for some f € L2. Hence, UyTpU,U,f = Tpop,U.f = 1. Hence,
ToUwU.f = ky and k,, € RangeTy. Similarly if k. € ker T404, 04,
then U2T¢o¢w Uk, = T¢o¢wo¢zl€z = 0. Therefore, UZT¢O¢“)1 =0, and
hence UyToUyl = Tgop,,1 = 0. Thus, Tyk,, = 0 and k,, € kerTy.

Suppose Tpop,, 1 = Tj,s,1 =0 and w = 0. Then it follows from [1]
that 7,1 = TJ1 = 0. This implies either ¢ = 0 or Ty is not of finite
rank. Further, let v’ = ¢,(w). From Lemma 8, it follows that

Range Tpop,,06. = {Tpop,o0.f [ € L2}
={P((popwod:)f): feL}
={P((¢oU¢s.u))f): f € L3}
= {P((¢OUO¢M’)JC) 1 fe Lz}
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= {Uw PlUw ((poUocdu)f)]: f € Li}
)

[
= {Uw Pl(¢poU o ¢pur 0w )(f © u)kwr] : f € Lz}
={Uw P[(¢oU)(f o ¢w)w]:f6Li}
= {Uw Pl(¢o U)Uu f]: f € L2}
= {UuwP[(¢oU)g): g € L2}.

Thus, Range T404, 06, = Range Uy Tyou -

Remark 13. There cannot be an uncountable subset E of D such
that, for all z € E, k, € Range T} = (ker T)*. Because, if k, L ker T,
for all z € E, then Z(kerTy) is an uncountable set and that implies
ker T, = {0}. Thus, if ker T, contains nonzero elements of L2, then
Z(kerTy) is at most a countable set and RangeT}; contains only a
countable number of the normalized reproducing kernels k., z € D.

Remark 14. If Tyl = T;1 = 0, then ¢ € (L?)* and Z(kerTy) =
This implies k, ¢ RangeT, for all z € D, z # 0. For, if k. €
RangeTy = (kerTq’;)J—, then (f,k.) = 0 for all f € kerT;. That is,
then f(2) =0 for all f € ker T} and z € Z(ker T}).

Let Q be a bounded symmetric domain in C. We assume that € is
in its standard (Harish-Chandra) realization so that 0 € © and Q is
circular. The domain € is also starlike, i.e., z € ) implies that tz € Q)
for all ¢ € [0,1]. Let Aut (£2) be the Lie group of all automorphisms
(biholomorphic mappings) of Q, and Gq the isotropy subgroup at 0;
ie, Gp = {¥ € Aut () : ¥(0) = 0}. Since Q is bounded symmetric,
we can canonically define [16] for each a in Q an automorphism ¢, in
Aut (©) such that

(1) @a © ¢a(z) =2z
(2) ¢a(0) = a, ¢a(a) =0
(3) ¢ has a unique fixed point in €.

Actually, the above three conditions completely characterize the ¢,’s
as the set of all (holomorphic) geodesic symmetries of Q2. When 2 = D,
we have noted that
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for all @ and z in D. They are involutive Mobius transformations on
D.

Let dA be the normalized Lebesgue measure on €2. We consider the
Bergman space L2(€2) of holomorphic functions in L?(Q,dA). The
reproducing kernel K (z,w) of L2(£,dA) is holomorphic in z and anti-
holomorphic in w, and

/Q K (2, w)|2dA(w) = K(2,2) > 0

for all z in Q. Thus, we can define for each A € Q a unit vector kjy
in L2(Q) by kx(2) = (K(2,N)/v/K(A\A). Given A € Q and f any
measurable function on , we define the operator Uy on L2(Q) by
Urf(2) = kx(2)f(éx(2)). Since |kx|? is the real Jacobian determinant
of the mapping ¢ (see [16]), the operator Uy is easily seen to be a
unitary operator on L2(2). It is also easy to check that U; = Uy;
thus, Uy is a self-adjoint unitary operator. For any ¥ € Aut (2), we
denote by Jy(z) the complex Jacobian determinant of the mapping
U:Q — Q If a € Q, then (for reference, see [16]), there exists a
unimodular constant (a) such that

Jga(2) = B(a)ka(2)

for all z € Q. In the simplest case Q@ = D, we have ¢q(2) =
(a—2)/(1—az) and Jy,(2) = ¢,(2) = —kq(2); thus, 6(a) = —1 is
independent of a. All the results proved in this work also carry over
to any bounded symmetric domain in C described above. Thus, there
exists no nonzero finite rank Toeplitz operator on the Bergman space

L2(Q).
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