
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 43, Number 5, 2013

BIFURCATIONS OF PATTERNED SOLUTIONS
IN THE DIFFUSIVE LENGYEL-EPSTEIN SYSTEM

OF CIMA CHEMICAL REACTIONS

JIAYIN JIN, JUNPING SHI, JUNJIE WEI AND FENGQI YI

ABSTRACT. Bifurcations of spatially nonhomogeneous pe-
riodic solutions and steady state solutions are rigorously
proved for a reaction-diffusion system modeling CIMA chemi-
cal reaction. The existence of these patterned solutions shows
the richness of the spatiotemporal dynamics including Turing
instability and oscillatory behavior. Examples of numerical
simulation are also shown to support and strengthen the an-
alytical approach.

1. Introduction. In 1744, Abraham Trembley published a book en-
titled Mémoires, Pour Servir à l’Histoire d’un Genre de Polypes d’Eau
Douce, à Bras en Forme de Cornes (Memoirs concerning the natural
history of a type of freshwater polyp with arms shaped like horns) [10,
19], which contained the first scientific study of the regeneration and
pattern formation of hydra, the freshwater polyp. In order to model this
interesting and important phenomenon in biological pattern formation,
in his seminal paper [20], Turing showed mathematically that a system
of coupled reaction-diffusion equations could give rise to spatial con-
centration patterns of a fixed characteristic length from an arbitrary
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initial configuration due to the so-called diffusion-driven instability,
that is, diffusion could destabilize an otherwise stable equilibrium of
the reaction-diffusion system and lead to nonuniform spatial patterns.

Over the years, Turing’s idea has attracted the attention of a great
number of investigators and was successfully developed on the theoret-
ical background. Not only it has been studied in biological and chemi-
cal fields, some investigations range as far as economics, semiconductor
physics and star formation (see [2, 3, 12]). However, the research for
Turing patterns in real chemical or biological systems turned out to be
difficult.

The first experimental observation of a Turing pattern in a chemical
reactor was due to De Kepper’s group, who observed a spotty pattern
in a chlorite-iodide-malonic acid (CIMA) reaction [1] in 1990. The ex-
periment on the CIMA reaction has revealed the existence of stationary
space periodic concentration patterns, the so-called Turing structures,
in open gel reactors. Later, Lengyel and Epstein suggested [8] that
these patterns could arise because the iodine activator species forms a
reversible complex of low mobility with the starch molecules used as
color indicator for this reaction. In particular, they have also devel-
oped [9] a simple two-variable model that includes the three overall
stoichiometric processes that lie at the heart of the mechanism of the
CIMA reaction: the chlorine dioxide-iodine-malonic acid model. The
corresponding dimensionless reaction-diffusion equations allowing for
complex formation take the form:

(1.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = Δu+ a− u− 4uv

1+u2 x ∈ Ω, t > 0,

vt = σ
[
cΔv + b(u− uv

1+u2 )
]

x ∈ Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω,

∂νu = ∂νv = 0 x ∈ ∂Ω, t > 0,

where Ω is a bounded connected domain (the reactor) in Rn, (n ≥ 1),
with smooth boundary ∂Ω. The reactor is assumed to be closed; thus,
reflexive Neumann boundary condition is imposed (here ∂νu is the outer
normal derivative of u); u(x, t) and v(x, t) denote the dimensionless
iodide (I−) and chlorite (ClO−

2 ) concentrations, respectively, a and b
are parameters related to the feed concentrations, c is the ratio of the
diffusion coefficients and σ > 1 is a rescaling parameter depending on
the concentration of the starch, which enlarges the effective diffusion
ratio to σc.
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The experimental observation of Turing patterns renewed the interest
in these complex systems, and subsequently, a lot of research has
been carried out employing theoretical investigations, including several
rigorous mathematical treatments [6, 7, 13, 17, 21, 24, 25].

In [13], Ni and Tang considered both existence and nonexistence for
the steady states of the system. They showed that, roughly speaking, if
parameter a (related to the feed concentrations), the size of the reactor
Ω (reflected by its first eigenvalue), or the “effective” diffusion rate
d = c/b is not large enough, then the system has no nonconstant steady
states. On the other hand, if parameter a lies in a suitable range,
then the system possesses nonconstant steady states for large d. These
results further verify the original idea in “diffusion-driven instability” of
Turing. Jang, Ni and Tang [6] further considered the global bifurcation
structure of the set of nonconstant steady states in the one-dimensional
case and clarified the limiting behavior of the steady states by using a
shadow system approach.

In [24], the authors gave a detailed Hopf bifurcation analysis for both
the ODE and PDE models, deriving a formula for determining the
direction of the Hopf bifurcation and the stability of the bifurcating
spatially homogeneous periodic solutions. On the other hand, in [25],
the authors considered the global asymptotical behavior of solutions of
the system, and they identified a parameter range in which the constant
steady state is globally asymptotically stable; they also showed that,
for small spatial domains and not so small a, all solutions eventually
converge to some spatially homogeneous and time-periodic solution
when the constant steady state is locally unstable. These results
provided another step towards the complete understanding of the
asymptotical dynamics of the diffusive Lengyel-Epstein system (1.1).

Although Turing instability results in spatiotemporal patterns that
are stationary in time, the diffusive Lengyel-Epstein system can also
exhibit a variety of complex spatiotemporal phenomena. Our main
contribution in this article is a bifurcation analysis from the constant
steady state solution when the spatial domain Ω is one-dimensional.
But, instead of using the effective diffusion rate d as bifurcation param-
eter (see [6, 13]), we use the feeding rate a of iodide (or equivalently
α = a/5) as the bifurcation parameter. Our main results are proved
for the case that the constant steady state in not stable even with re-
spect to ODE dynamics (recall the Turing instability region is when the
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system is stable with respect to the ODE but unstable for PDE). We
rigorously prove that, in this parameter range, the system undergoes a
sequence of bifurcations generating spatially nonhomogeneous steady
state solutions and also spatially nonhomogeneous time-periodic solu-
tions. This strongly suggests the richness of spatiotemporal patterns
for these parameters.

In a survey paper, Maini et al. [11] stated that, Exploration of a
more detailed RD model of the CIMA reaction may therefore reveal
behaviour not previously reported in the reaction. Examples include the
Turing-Hopf (or spatial-Hopf) bifurcation in which the resulting spatial
patterns oscillate in both space and time, the interaction of Turing-
Hopf and Turing-type patterns, and the interaction of two Turing-type
patterns. Here our results exactly answer the question about spatial
pattern oscillation in both space and time. We find parameter ranges
for spatial Hopf bifurcations, and numerical simulation in these ranges
suggests the existence of stable patterns oscillate in both space and
time (see Figure 4.5.)

Our results are robust as the parameter range covers almost all a > 0,
and the effective diffusion rate d does not have to be small or large as in
Turing bifurcation (see Theorems 2.1 and 3.2 for the precise statement).
On the other hand, our result can also recover the well-known Turing
bifurcation as in [6]. We also remark that the existence of spatially
nonhomogeneous periodic solutions for such an autonomous reaction-
diffusion system is rarely shown in the literature, and here we follow an
approach initiated in [26], in which a diffusive predator-prey system
was studied. These spatially nonhomogeneous periodic solutions are
not driven by a periodic force or a delay effect; hence, they are diffusion
driven periodic solutions. We use Hopf bifurcation theory to prove the
existence of these solutions. Hence, the existence is essentially local
(near the bifurcation points). Although there is an abstract theory of
global bifurcation for the periodic orbits [22, 23], not much information
is shown by the global theorem as there is little knowledge on the
period of these solutions. But our results are useful for future numerical
detection of branches of periodic orbits. Stability of the periodic orbits
is also not known except near the bifurcation points.

Our results also complement earlier results in [6, 13] in a few ways. It
was shown in [13] that, if d is small, then the system has no nonconstant
steady states. Our results imply that, when d is small, the system could
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still have many periodic solutions; hence, the system likely tends to
some periodic patterns instead of stationary ones (see Theorem 2.1).
Our results also suggest a rather complete bifurcation diagram with
parameter a: when a is small, the constant steady state is globally
asymptotically stable from [25]; then, when a increases, the constant
steady state loses stability either to a non-constant steady state via
a Turing bifurcation, or loses stability to a periodic solution via Hopf
bifurcation. A more precise and complete discussion on the bifurcation
diagram can be found in the concluding remarks in Section 5.

Some numerical simulations with appropriate parameters are in-
cluded in Section 4. These parameters are chosen motivated by the an-
alytical bifurcation analysis. Solutions can be seen to converge to con-
stant steady state and periodic solutions, or spatial dependent steady
state and periodic solutions, and these results agree nicely with what
our bifurcation analysis suggests. Numerical simulations also hint that
the full dynamics is still more complicated than what has been found
analytically. Further numerical and analytical investigation are still
desired for a complete understanding of the spatiotemporal dynamics.
Analysis of two spatial dimension domain problems and careful com-
parison to the patterns in the original Lengyel-Epstein system or CIMA
reaction experiment remain interesting open questions.

The remaining part of the paper is organized as follows. In Section 2,
we perform Hopf bifurcation analysis of the system. In Section 3, steady
state bifurcations and the interaction between Hopf and steady state
bifurcations are studied. Several examples with particular parame-
ters are discussed in Section 4, and numerical simulations are shown
to complement the analytical results. Concluding remarks are in Sec-
tion 5. Two general bifurcation theorems, Hopf bifurcation and steady
state bifurcation theorems, on the general reaction-diffusion system are
given in the Appendix, for the sake of completeness. Throughout the
paper, we always let N denote the set of all the positive integers, and
N0 = N ∪ {0}.

2. Hopf bifurcation analysis. In this section, we consider the Hopf
bifurcation for the diffusive Lengyel-Epstein model subject to Neumann
boundary conditions on the spatial domain Ω = (0, �π), with � ∈ R+,
by applying some general results on bifurcation (which are summarized



1642 J. JIN, J. SHI, J. WEI AND F. YI

in the Appendix). We introduce new parameters

d =
c

b
, m = σb, α =

a

5
,

so system (1.1) is now in the following form:

(2.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = uxx + 5α− u− 4uv

1+u2 x ∈ (0, �π), t > 0,

vt = m
(
dvxx + u− uv

1+u2

)
x ∈ (0, �π), t > 0,

ux(x, t) = vx(x, t) = 0 x = 0, �π, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ (0, �π).

In the following, we shall work with the new parameters α, m and
d instead of the original four parameters α, σ, b and c. Note that d
is the effective diffusion coefficient used in [13] and m and α are two
essential parameters for the ODE system (see the bifurcation diagram
in [24]). System (2.1) has one unique positive constant steady state
solution (α, 1 + α2) := (uα, vα). In the following, we choose the fixed
parameters d, m and � properly and use α as the main bifurcation
parameter.

We define

X :=
{
(u, v) ∈ H2[(0, �π)]×H2[(0, �π)]

∣∣
u′(0) = v′(0) = u′(�π) = v′(�π) = 0

}
.

The linearized operator of system (2.1) evaluated at (α, 1 + α2) is

L(α) :=

(
∂2

∂x2 + 3α2−5
1+α2 − 4α

1+α2

2mα2

1+α2 md ∂2

∂x2 − mα
1+α2

)
.

It is well known that the eigenvalue problem

−ψ′′ = μψ, x ∈ (0, �π), ψ′(0) = ψ′(�π) = 0,

has eigenvalues μn = n2/�2 (n = 0, 1, 2, . . . ), with corresponding
eigenfunctions ψn(x) = cos(n/�)x. Let(

φ
ϕ

)
=

∞∑
n=0

(
an
bn

)
cos

n

�
x
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be an eigenfunction for L(α) with eigenvalue μ(α), that is, L(α)(φ, ϕ)T =
μ(α)(φ, ϕ)T . Then it is easy to show (see [26]) that, for any n ∈ N0,
such that Ln(α)(an, bn)

T = μ(α)(an, bn)
T , where Ln is defined as

Ln(α) :=

(
−n2

�2 + 3α2−5
1+α2 − 4α

1+α2

2mα2

1+α2 −mdn2

�2 − mα
1+α2

)
, n = 0, 1, 2, . . . ,

the characteristic equation of Ln(α) is

μ2 − μTn +Dn = 0, n = 0, 1, 2, . . . ,

where

(2.2)

Tn(α) :=
3α2 − 5−mα

1 + α2
− n2

�2
(1 +md),

Dn(α) := m

[
5α

1 + α2
− n2

�2

(
d(3α2 − 5)− α

1 + α2

)
+
n4

�4
d

]
,

and the eigenvalues μ(α) of Ln(α) are given by

μ(α) =
Tn(α) ±

√
T 2
n(α)− 4Dn(α)

2
, n = 0, 1, 2, . . . .

We identify the Hopf bifurcation value α satisfying the condition for
Hopf bifurcation, which takes the following form (see Appendix, or [26]
for details):

(H1) There exists an n ∈ N0, such that

Tn(α) = 0, Dn(α) > 0; Tj(α) �= 0, Dj(α) �= 0 for j �= n;

and let the unique pair of complex eigenvalues near the imaginary axis
be γ(α)± iω(α). Then the following transversality condition holds:

(2.3) γ′(α) �= 0.

We rewrite Tn(α) as Tn(α) = A(α)−p(1+md), where p = n2/�2 and

A(α) =
3α2 −mα− 5

1 + α2
.
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Solving p from Tn(α) = 0, we have

(2.4) p =
1

1 +md
A(α).

It follows by direct calculation that

A′(α) =
mα2 + 16α−m

(1 + α2)2

⎧⎨⎩
> 0 if α > α∗,
= 0 if α = α∗,
< 0 if 0 < α < α∗,

where α∗ = (−8 +
√
64 +m2)/m. Obviously, 0 < α∗ < 1. A

straightforward analysis shows that A(α) achieves its minimal value
A(α∗) = −(3α4 + 8α2 + 5)/(1− α4)

∣∣
α=α∗ < 0 at α = α∗, and

supα>0A(α) = limα→∞A(α) = 3 > 0. Then there exists a unique

point α0, with α
∗ < 1 < α0 := (m+

√
m2 + 60)/6 such that A(α0) = 0.

In particular, A(α) > 0 and A(α) is strictly increasing in (α0,∞).

Define

�n = n

√
1 +md

3
, n = 0, 1, 2, . . . .

Then, for �n < � ≤ �n+1 and 0 ≤ j ≤ n, we define αH
j to be the solution

of (2.4) satisfying 0 < α0 ≤ αH
j < +∞. In fact, if we define

α1(p̃) =
m+

√
m2 + 4(3− p̃)(5 + p̃)

2(3− p̃)
,

then αH
j = α1((1 +md)j2/�2) from (2.4). These points satisfy

0 < α∗ < αH
0 (= α0) < αH

1 < · · · < αH
n < +∞.

Clearly, Tj(α
H
j ) = 0 and Ti(α

H
j ) �= 0 for i �= j. Now we only

need to verify whether Di(α
H
j ) �= 0 for all i ∈ N0 and, in particular,

Dj(α
H
j ) > 0.

Here we will derive a set of conditions on the parameters so that
Di(α

H
j ) > 0, for each i = 0, 1, 2, . . . . Then we have the following main

result in this section:
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Theorem 2.1. For any n ∈ N, m > 0, if

(2.5) � >
√
2n/

√
3,

then there exists a d∗ = d∗(m, �, n) > 0 such that, when 0 < d < d∗,
there exist n+ 1 points αH

j = αH
j (d,m, �), 0 ≤ j ≤ n, satisfying

0 < αH
0 < αH

1 < αH
2 < · · · < αH

n <∞.

At each α = αH
j , system (2.1) undergoes a Hopf bifurcation, and the

bifurcating periodic solutions near (α, u, v) = (αH
j , α

H
j , 1 + (αH

j )2) can
be parameterized as (α(s), u(s), v(s)) so that α(s) ∈ C∞ in the form of
α(s) = αH

j + o(s) for s ∈ (0, δ) for some small δ > 0, and,{
u(s)(x, t) = α+

j s(ane
2πit/T (s) + ane

−2πit/T (s)) cos n
� x+ o(s),

v(s)(x, t) = 1 + (αH
j )2 + s(bne

2πit/T (s) + bne
−2πit/T (s)) cos n

� x+ o(s),

where (an, bn) is the corresponding eigenvector, and T (s) = 2π/
√
Dj(αH

j )

+ o(s) (Dj is defined in (2.2)). Moreover,

1. The bifurcating periodic solutions from α = αH
0 are spatially homo-

geneous, which coincide with the periodic solutions of the corresponding
ODE system;

2. The bifurcating periodic solutions from α = αH
j are spatially

nonhomogeneous.

Proof. We assume that 0 < d < m−1, and hence 0 < md < 1.
We define pj := j2/�2. Since � satisfies (2.5), then � > �̃n under the
assumption md < 1, and αH

j (j = 0, 1, 2, . . . , n) are well-defined. First
it is clear that

d[3(αH
j )2 − 5]− αH

j

1 + (αH
j )2

< 3d.

On the other hand,

3(αH
j )2 − 5−mαH

j

1 + (αH
j )2

= (1 +md)pj ≤ (1 +md)pn;
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hence, from md < 1,

αH
j <

m+
√
m2 + 64

2(3− (1 +md)pn)
<
m+

√
m2 + 64

2(3− 2pn)
.

Also, αH
j ≥ αH

0 > 1. Then

5αH
j

1 + (αH
j )2

≥M∗(m, �, n) := 5ϕ(M1(m, �, n)),

where

ϕ(α) :=
α

1 + α2
, M1(m, �, n) :=

m+
√
m2 + 64

2(3− 2pn)
.

From these estimates, we have

Di(α
H
j ) > m[dp2i − 3dpi +M∗(m, �, n)]

= m[dpi(pi − 3) +M∗(m, �, n)]

≥ m

[
− 9

4
d+M∗(m, �, n)

]
.

Therefore, if we choose d so that

0 < d < min

{
m−1,

4

9
M∗(m, �, n)

}
:= d∗(m, �, n),

then Di(α
H
j ) > 0 for each i ∈ N0. Finally, let the eigenvalues close

to the pure imaginary one near α = αH
j be γ(α) ± iω(α). Then

γ′(αH
j ) = T ′

j(α
H
j )/2 = A′(αH

j )/2 > 0, since we have shown that
A′(α) > 0 for all α ≥ α0. Hence, all the conditions in (H1) are satisfied.
Now we can apply the Hopf bifurcation theorem (see Lemma 5.1) to
obtain the desired results.

Next, we consider the bifurcation direction (α′(0) > 0 or < 0) and
stability of the bifurcating periodic solutions bifurcating from α = αH

0

according to [26].
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Theorem 2.2. Let αH
0 be defined as in Theorem 2.1, and let the

constant M0 > 0 be defined as

M0 =

√
19

√
769− 147

2
≈ 9.7453.

Then, for system (2.1),

1. If 0 < m < M0, then Hopf bifurcation at α = αH
0 is supercritical,

α(s) > αH
0 for small s, and the bifurcating (spatially homogeneous)

periodic solutions are locally asymptotically stable;

2. If m > M0, then Hopf bifurcation at α = αH
0 is subcritical,

α(s) < αH
0 for small s, and the bifurcating (spatially homogeneous)

periodic solutions are unstable.

Proof. Here we follow the notations and calculations in [26]. We set⎧⎪⎪⎪⎨⎪⎪⎪⎩
q := (a0, b0)

T =
(
1,

3α2
0−5

4α0
− i

ω0(1+α2
0)

4α0

)T
,

q∗ := (a∗0, b
∗
0)

T

=
(

1
2�π + i

3α2
0−5

2ω0�π(1+α2
0)
,−i 2α0

�πw0(1+α2
0)

)T
,

where ω0 =
√
(5mα0)/(1 + α2

0). By direct calculation, it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

guu = m
4 fuu, guv = m

4 fuv,

guuu = m
4 fuuu, guuv = m

4 fuuv,

fvv = fvvv = fuvv = gvv = guvv = gvvv = 0,

fuu = 8α(3−α2)
(1+α2)2 , fuv = 4(α2−1)

(1+α2)2 ,

fuuu = 24(α4−6α2+1)
(1+α2)3 ,

fuuv = 8α(3−α2)
(1+α2)3 .

Then⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0 = −2

α4
0−4α2

0−5

α0(1+α2
0)

2 − i
2ω0(α

2
0−1)

α0(1+α2
0)
,

d0 = m
4 c0, e0 = −2

α4
0−4α2

0−5

α0(1+α2
0)

2 ,

f0 = m
4 e0, crg0 = 6

α4
0−10α2

0−11

(1+α2
0)

3 + i
2ω0(α

2
0−3)

(1+α2
0)

2 , h0 = m
4 g0,
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and
〈q∗, Qqq〉 = 〈q∗, Qqq〉 = c0

2
, 〈q∗, Qqq〉 = 〈q∗, Qqq〉 = e0

2
.

Hence,

H20 =

(
c0
d0

)
− c0

2

(
a0
b0

)
− c0

2

(
a0
b0

)
= c0

(
1

m/4

)
− c0

(
1

(3α2
0 − 5)/(4α0)

)
= 0,

H11 =

(
e0
f0

)
− e0

2

(
a0
b0

)
− e0

2

(
a0
b0

)
= e0

(
1

m/4

)
− e0

(
1

(3α2
0 − 5)/(4α0)

)
= 0,

which implies that ω20 = ω11 = 0. Then

〈q∗, Qω11,q〉 = 〈q∗, Qω20,q〉 = 0.

Thus,

(2.6)

Re (c1(α
H
0 )) = Re

{
i

2ω0
〈q∗, Qqq〉 · 〈q∗, Qqq〉+ 1

2
〈q∗, Cq,q,q〉

}
= − (α2

0 − 1)(α2
0 − 5)

2α2
0(α

2
0 + 1)2

+
3(α2

0 − 11)

2(1 + α2
0)

2

=
2α4

0 − 27α2
0 − 5

2α2
0(1 + α2

0)
2
.

From (2.6) and simple algebraic calculations, we know that if 0 <
m < M0, Re (c1(α

H
0 )) < 0, and if m > M0, Re (c1(α

H
0 )) > 0. From the

proof of Theorem 2.1, we know that γ′(αH
0 ) > 0. Hence, we obtain the

direction of bifurcation according to Lemma 5.1 in the Appendix.

We make the following remarks for this section:

1. The bifurcation of spatially homogeneous periodic orbits at α =
αH
0 has been considered in [24], where we used b (equivalent to m in

(2.1)) in (1.1) as the bifurcation parameter.

2. In Theorem 2.2, if the Hopf bifurcation at α = αH
0 is supercritical,

then the periodic orbit for α > αH
0 appears to be unique, see Figure 2.1
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for phase portraits of m = 2 and α > αH
0 . When α is larger, the u-

component of the limit cycle tends to have a zigzag profile, while the
v-component appears to be hump shaped, see the solution curve in
Figure 2.1. The pulse profile of the limit cycle in predator-prey model
was recently studied by Hsu and Shi [5].

3. In Theorem 2.2, if the Hopf bifurcation at α = αH
0 is subcritical,

then for α ∈ (αH
0 −ε, αH

0 ), there exist two periodic orbits with the outer
one being a limit cycle, see Figure 2.2 for phase portraits of m = 20
and α < αH

0 . It appears that there exists an αH∗ < αH
0 such that

the ODE system has two periodic orbits for α ∈ (αH
∗ , α

H
0 ), there is a

unique limit cycle for α ≥ αH
0 , and all periodic orbits lie on a curve

with a saddle-node bifurcation. The uniqueness or exact multiplicity
of periodic orbits for either m < M0 or m ≥M0 is not known.

4. The bifurcation direction and the stability of the bifurcating
periodic solutions for the spatially nonhomogeneous periodic orbits can
also be determined by the formulae given in the Appendix or in [26].
However, the calculations are very lengthy; here, we leave them to the
interested readers.

5. Since M1(m, �, n) = (m+
√
m2 + 64)/4((3/2) − (n2/�2))−1, then

indeed M1(m, �, n) =M1(m,n
2/�2). Notice that an appropriate maxi-

mum n can be chosen by a fixed �, so M1 essentially depends only on
m and �.

6. Theorem 2.1 is a great complement of [13, Theorem 1], in which it
was shown that, for fixed α and domain Ω, if d is sufficiently small,
then (2.1) has no nonconstant steady state solutions. Our results
show that, when d is small, in spite of the nonexistence of steady
state patterns, there possibly exist spatially homogenous and non-
homogeneous oscillatory patterns. On the other hand, from the proof
of Theorem 2.1, we show that Di(α

H
j ) > 0 for all i ∈ N. Indeed, the

proof works for any bounded α if we make d small, which implies that,
for any αM > 0, there is no steady state bifurcations for α ∈ [0, αM ] if
we choose d small enough, and this agrees with the nonexistence result
in [13, Theorem 1]. Combining the two results, one can say that, for
any fixed α > α0, if we choose d to be small enough, then there is only
one (unstable spatially homogeneous) steady state but possibly many
spatially nonhomogeneous periodic orbits.
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FIGURE 2.1. Phase portraits and solution curves for the ODE system correspond-

ing to (2.1). Here, m = 2, the primary Hopf bifurcation point αH
0 = 5/3 ≈ 1.667,

and it is supercritical. Left: α = 1.69, one small amplitude limit cycle; Right:
α = 6, a large amplitude limit cycle; Top: phase portraits; Bottom: solution curves
(solid curve u(t), dotted curve: v(t)).

3. Steady state bifurcation analysis. In this section we con-
sider the steady state bifurcations of system (2.1). We consider the
equations:

(3.1)

⎧⎨⎩
uxx + 5α− u− 4uv

1+u2 = 0 x ∈ (0, �π),

dvxx + u− uv
1+u2 = 0 x ∈ (0, �π),

ux(0) = vx(0) = ux(�π) = vx(�π) = 0.

The existence of solutions to (3.1) has been considered in [13], and
the related bifurcation problem has been discussed in [6]. Note that
the bifurcations of steady state are independent of parameter m. It is
known that, when α is small, or d is small or � is small, then (3.1) has
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FIGURE 2.2. Phase portrait for the ODE system corresponding to (2.1). Here,

m = 20, the primary Hopf bifurcation point αH
0 ≈ 6.908, and it is subcritical. Left:

α = 6.90, the small amplitude unstable periodic orbit is from Hopf bifurcation, and
the larger one is stable; Right: α = 6.73, two nearly identical periodic orbits when
α is close to the saddle-node bifurcation point (≈ 6.727).

only the trivial constant solution (α, α2 + 1); on the other hand, with
some other appropriate conditions, (3.1) possesses a nontrivial solution
if d is large (see [13]). In [6], d was used as bifurcation parameter,
and it was shown that continua of nontrivial solutions of (3.1) exist
in the space of (d, u, v), which is unbounded in positive d direction
but bounded in (u, v) due to the a priori estimates for fixed (α, �). In
this section we continue the approach used in the previous section, and
we use α as the bifurcation parameter to consider the bifurcation of
solutions of (3.1).

Now we identify steady state bifurcation value α, which satisfies the
steady state bifurcation condition

(H2): there exists an n ∈ N0 such that

Dn(α) = 0, Tn(α) �= 0, and Tj(α) �= 0, Dj(α) �= 0 for j �= n;

and
d

dα
Dn(α) �= 0.

Clearly, D0(α) �= 0 for α > 0; hence, we only consider n ∈ N. In the
following we fix an arbitrary d > 0. To determine α-values satisfying
condition (H2), we notice that Dn(α) = 0 is equivalent to

(3.2) D(α, p) := d(1 + α2)p2 − p[d(3α2 − 5)− α] + 5α = 0,
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where p = n2/�2. Solving for α from the equation and choosing the
positive one, we obtain

(3.3) α2(p) =
p+ 5 +

√
(p+ 5)2 + 4d2p2(3− p)(p+ 5)

2dp(3− p)
.

Define

(3.4) �̃n = n

√
1

3
, n = 0, 1, 2, . . . ;

then, for any � > �̃n, there exists a unique αS
n := α2(n

2/�2) such that
Dn(α

S
n) = 0, where α2(·) is defined in (3.3). These points αS

n are
potential steady state bifurcation points.

To further study these possible bifurcation points, we also solve p
from equation (3.2), and we have
(3.5)

p = p±(α) :=
d(3α2 − 5)− α±√[d(3α2 − 5)− α]2 − 20dα(1 + α2)

2d(1 + α2)
.

We prove the following lemma:

Lemma 3.1. The function α2 : (0, 3) → R+ defined in (3.3)
has a unique critical point p∗ ∈ (0, 3), which is the global mini-
mum of α2(p) on (0, 3), and limp→0+ α2(p) = limp→3− α2(p) = ∞.
Consequently, for α ≥ α∗ := α2(p∗), p±(α) is well defined as in
(3.5); p+(α) is monotone increasing and p−(α) is monotone decreas-
ing; and p+(α∗) = p−(α∗), supα>α∗ p+(α) = limα→∞ p+(α) = 3,
infα>α∗p−(α) = limα→∞ p−(α) = 0.

Proof. Let D(α, p) be defined as in (3.2). Then the set Λ := {(α, p) :
α > 0, p > 0} is given by the curve {(α2(p), p) : 0 < p < 3}. We prove
that α2(p) has a unique critical point. Differentiating D(α2(p), p) = 0
twice and letting α′

2(p) = 0, we obtain that

−2dα2
2(p) + 2dp(3− p)α2(p)α

′′
2 (p)− (p+ 5)α′′

2 (p)− 2d = 0.

Thus,

α′′
2 (p) =

2d(α2
2(p) + 1)

2dp(3− p)α2(p)− (p+ 5)

=
2d(α2

2(p) + 1)

dp(p+ 5)α−1
2 (p) + dp(3− p)α2(p)

> 0.



BIFURCATIONS IN CIMA CHEMICAL REACTIONS 1653

Here in the last equality we use the equation

(3.6) [dp(3− p)α2(p)− (p+ 5)]α2(p) = dp(p+ 5),

which is from D(α2(p), p) ≡ 0. Therefore, for any critical point p of
α2(p), we must have α′′

2 (p) > 0, and thus the critical point must be
unique and a local minimum point.

It is easy to see that limp→0+ α2(p) = limp→3− α2(p) = ∞; hence,
the unique critical point p∗ is the global minimum point. Since (3.5)
is also obtained by solving (3.2), then Λ = {(α2(p), p) : 0 < p < 3},
and the curves (α, p±(α)) are identical. Then the properties of α2(p)
determine the monotonicity and limiting behavior of p±.

Now, from Lemma 3.1, it is possible that, for some i < j, α2(pi) =
α2(pj) and p−(αS

i ) = p+(α
S
j ). In this case, for α = αS

i = αS
j , 0 is not a

simple eigenvalue of L(α), and we shall not consider bifurcations at such
points. We notice that, from the properties of p±(α) in Lemma 3.1,
the multiplicity of 0 as an eigenvalue of L(α) is at most 2. On the
other hand, it is also possible that some αS

i = αH
j . So the dimension

of center manifold of the equilibrium (uα, vα) can be between 1 and 4.

We claim that there are only countably many � > 0; in fact, only
finitely many � ∈ (0,M) for any given M > 0, such that α = αS

i = αS
j

or αS
i = αH

j for these � and some i, j ∈ N. Let En(α, �) = �4(1 +

α2)Dn(α) and Fn(α, �) = �2(1 + α2)Tn(α). Then, for any n ∈ N,
En(α, �) and Fn(α, �) are polynomials of α and � with real coefficients.
Hence, on the (α, �)-plane, the set qn = {(α, �) : En(α, �) = 0} or
pn = {(α, �) : Fn(α, �) = 0} is the union of countable analytic curves.
Moreover, we require α ∈ [α∗,∞); then, for any M > 0, there are
only finitely many i, j ∈ N such that qi ∩ ([α∗,∞) × [0,M ]) �= ∅ and
pj∩([α∗,∞)× [0,M ]) �= ∅. These finitely many qi, pj have only finitely
many intersection points in [α∗,∞)× [0,M ] due to the analyticity, and
thus the intersection points of different qi, pj in [α∗,∞) × [0,∞) is
countable. We define

(3.7) LE = {� > 0 : Ei(α, �) = Ej(α, �) or Ei(α, �) = Fj(α, �)

for some α ∈ [α∗,∞), and i, j ∈ N}.
Then the points LE can be arranged as a sequence whose only limit
point is ∞.
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Hence, if � ∈ R\LE and αS
j is well defined, then (H2) is satisfied at

α = αS
j . Now we show that (d/dα)Dj(α

S
j ) �= 0. By direct calculation,

we have

d

dα
Dj(α

S
j ) =

m

1 + (αS
j )

2

∂D

∂α
(αS

j , pj)

=
−m

1 + (αS
j )

2
[2dpj(3− pj)α

S
j − (pj + 5)]

=
−m

1 + (αS
j )

2
[dpj(pj + 5)(αS

j )
−1 + dpj(3 − pj)α

S
j ] < 0,

by using (3.6), where pj = j2/�2.

Summarizing the above discussions, and using a general bifurcation
theorem (see Theorem 5.2 in the Appendix and [16]), we obtain the
main result of this section on the global bifurcations of steady state
solutions:

Theorem 3.2. For any d > 0, if � ∈ (0,∞)\LE and �̃n < � < �̃n+1

for some n ∈ N, where �̃n is defined in (3.4) and LE is a countable
subset of R+ defined in (3.7), then there exist n points αS

j = αS
j (d, �),

1 ≤ j ≤ n, satisfying

α∗ < αS
1 < αS

2 < · · · < αS
n <∞,

with αS
j = α2(j

2/�2) or, equivalently, p±(αS
j ) = j2/�2, and α = αS

n is
a bifurcation point for (3.1). Moreover,

1. There exists a C∞ smooth curve Γj of solutions of (3.1) bifurcating
from (α, u, v) = (αS

j , uαS
j
, vαS

j
), with Γj contained in a global branch Cj

of solutions of (3.1);

2. Near (α, u, v) = (αS
j , uαS

j
, vαS

j
), Γj = {(αj(s), uj(s), vj(s)) :

s ∈ (−ε, ε)}, where uj(s) = αS
j + saj cos(jx/�) + sψ1,j(s), vj(s) =

(1+αS
j )

2+sbj cos(jx/�)+sψ2,j(s) for s ∈ (−ε, ε) for some C∞ smooth

functions αj , ψ1,j , ψ2,j such that αj(0) = αS
j and ψ1,j(0) = ψ2,j(0) = 0.

Here aj and bj satisfy

L(αS
j )[(aj ,bj)

T cos(nx/�)] = (0, 0)T .
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3. Each Cj is unbounded, that is, the projection of Cj on the α-axis
contains (αS

j ,∞).

Proof. To apply Theorem 5.2, one only needs to show the local
conditions (H2) and (d/dα)Dj(α

S
j ) �= 0, which have been proved in

previous paragraphs. Note that we exclude LE so α = αS
j is always

a bifurcation from a simple eigenvalue point. Thus, the results stated
here except the unboundedness of Cj follow from Theorem 5.2 in the
Appendix or [16].

We follow an argument in [6], as well as an earlier work of Nishiura
[14] and Takagi [18], to prove that Cj is unbounded. From the results of
[13, 25], (3.1) has no non-constant solutions, and [13, Proposition 2.2]
shows that all non-constant solutions of (3.1) satisfy 0 < u(x) < 5α and
0 < v(x) < 1 + 25α2. That implies that Cj must remain bounded for
finite α. Suppose that the projection of Cj in α-axis is bounded. Then
Cj must contain another bifurcation point (αS

i , α
S
i , 1+ (αS

i )
2) for some

i �= j from Theorem 5.2. Indeed, Cj contains finitely many bifurcation
points in form of (αS

i , α
S
i , 1+(αS

i )
2), since there are only finitely i ∈ N

such that i2/�2 < 3 for fixed � > 0. Among these finitely many αS
i ,

there is one with the largest index iM . Notice that equation (3.1) is
also well defined for the interval (0, �π/iM), and the bifurcation points
(depending on the length) have the relation

αS
iM (�π) = α2(i

2
M/�

2) = αS
1 (�π/iM ) := αM .

Hence, αM is also a bifurcation point for equation (3.1) with interval
(0, �π/iM). From the global bifurcation theorem, the global branch CM

1

bifurcating from α = αM for equation (3.1) with interval (0, �π/iM )
is also unbounded or contains another bifurcation point. But any
solution of (3.1) with interval (0, �π/iM ) can be extended to (0, �π) by
reflection; hence, that CM

1 is unbounded implies that Cj is unbounded,
which contradicts our assumption. Or CM

1 contains another bifurcation
point αS

k (�π/iM ), but that will imply αS
kiM

(�π) = αS
k (�π/iM ) is on the

branch Cj , and clearly kiM > iM since k > 1, which contradicts with
the maximality of iM . Therefore, the projection of Cj in α-axis is not
bounded.
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The unboundedness of the solution component Cj implies the exis-
tence of at least one non-constant solution for α > min{αS

i } except
at αS

i if � /∈ LE . Since the set of bifurcation points is finite here, we
can state the following result regarding the existence of steady state
solutions:

Corollary 3.3. For any d > 0 and � > 0 except � ∈ LE, there exists
an αM := αM (d, �) > 0 such that, when α > αM , (3.1) possesses at
least one non-constant steady state solution.

Note that � /∈ LE is only technical and, for � ∈ LE, as long as
there is one bifurcation point that is simple, then the existence still
holds. We also remark that, at each bifurcation point, α = αS

j , the
steady state bifurcation is a pitchfork one so that α′

j(0) = 0. This is
natural since (u(�π − x), v(�π − x)) is also a solution if (u(x), v(x))
is a solution. The direction of the bifurcation thus is determined
by α′′

j (0). In Lemma 5.3 in the Appendix, we show that α′′
j (0) can

be calculated, so one can determine whether it is a supercritical or
subcritical pitchfork bifurcation.

We conclude this section by discussing the relation between Hopf
bifurcations and steady state bifurcations. We can look at a fixed
eigenmode cos(nx/�), and the bifurcations related to this mode have
the following possible scenarios:

(Case 1) If � ≤ n/
√
3, then neither αH

n nor αS
n exists, and there is no

bifurcation for this mode;

(Case 2) If n/
√
3 < � ≤ n

√
(1 +md)/3, αS

n exists but not αH
n , then

there exists only a steady state bifurcation but no Hopf bifurcation for
this eigenmode;

(Case 3) If � > n
√
(1 +md)/3, then both of αS

n and αH
n exist. Now

there are two subcases:

(a) If αH
n < αS

n , then there are one steady state bifurcation at α = αS
n

and one Hopf bifurcation at α = αH
n ;

(b) If αS
n < αH

n , then there is a steady state bifurcation at α = αS
n

but no Hopf bifurcation as Dn(α) < 0 at αH
n .

In fact, Case 3 (a) above suggests a more general Hopf bifurcation
theorem than the one in Theorem 2.1:
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Theorem 3.4. Suppose that n ∈ N, m, d > 0, and

(3.8) � >

√
1 +md

3
n.

If

(3.9)

αH
n :=

m+
√
m2 + 4(3− p̃)(5 + p̃)

2(3− p̃)

<
p+ 5 +

√
(p+ 5)2 + 4d2p2(3 − p)(p+ 5)

2dp(3− p)

:= αS
n ,

where p̃ = (1 + md)n2/�2 and p = n2/�2, and αH
n �= αS

j for j �= n,

then system (2.1) undergoes a Hopf bifurcation at α = αH
n , and the

bifurcating periodic solutions satisfy the description in Theorem 2.1.
In particular, this occurs for any given d > 0 and � > n/

√
3, and

m > 0 is chosen to be small so that (3.9) is satisfied.

Proof. If the conditions stated are satisfied, then (H1) and (2.3) are
satisfied; thus, Hopf bifurcation occurs as in Theorem 2.1. If we choose
m small enough, then (3.8) is satisfied if � > n/

√
3, and αH

n (m) < αS
n

since p̃→ p and αH
n (m) →√

(3− p)(p+ 5)/(3− p) < αS
n .

4. Examples and numerical simulations. We use some examples
of parameters to illustrate different bifurcation diagrams. In the
following, we use the graphs of

T (α, p) :=
3α2 −mα− 5

1 + α2
− p(1 +md) = 0, (Hopf)

and

D(α, p) := d(1 + α2)p2 − p[d(3α2 − 5)− α]

+ 5α = 0, (steady state)

as bifurcation diagrams, see Figures 4.1 and 4.3. In these bifurcation
diagrams, the horizontal lines are p = pn := n2/�2; the monotone
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FIGURE 4.1. Graph of T (α, p) = 0 and D(α, p) = 0. Here m = 2, d = 0.5 and

� = 5. The horizontal lines are p = n2/�2 where 1 ≤ n ≤ 9. In this case α∗ > αH
0 ,

and Hopf bifurcations occur before steady state bifurcations.

increasing curve is T (α, p) = 0, and the parabola-like curve is D(α, p) =
0. The α-value of each intersection of T (α, p) = 0 with a horizontal
line p = pn is a potential Hopf bifurcation point; and the intersection
of D(α, p) = 0 with p = pn is a possible steady state bifurcation. The
primary Hopf bifurcation point is α0 = (m+

√
m2 + 60)/6.

Example 4.1. In Figure 4.1, we set m = 2, d = 0.5 and � = 5. The
primary Hopf bifurcation point is αH

0 = 5/3 = 1.667, and the minimum
α∗ ≈ 6.283 on D(α, p) = 0 is larger than αH

0 .

All four cases of order of bifurcations listed at the end of Section 3
could happen for this set of parameters. For 1 ≤ n ≤ 5, Case 3 (a)
occurs: there exists a true Hopf bifurcation point and a true steady
state bifurcation point. For n = 6, Case 3 (b) occurs: there exists
a true steady state bifurcation point, but the Hopf bifurcation point
does not occur. For n = 7 and n = 8, Case 2 occurs: there exists only
a steady state bifurcation point but no Hopf bifurcation points. For
n > 8, Case 1 occurs: no bifurcation. More precisely,

αH
0 ≈ 1.667 < αH

1 ≈ 1.705 < αH
2 ≈ 1.831

< αH
3 ≈ 1.2082 < αH

4 ≈ 2.579 < αH
5 ≈ 3.828 < αH

6 ≈ 19.96,
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FIGURE 4.2. Numerical simulation of the system (2.1). Here m = 2, d = 0.5,

� = 5. Left: Graph of u(x, t). Right: Graph of v(x, t); Top: α = 1.69 > αH
0 ≈ 1.667

and the initial values u0(x) = 1.7+0.2 cos x and v0(x) = (1.72 +1)+0.2 cos x. The
solution tends to the spatially homogenous periodic orbit; Bottom: α = 6 < α∗ ≈
6.283 and the initial values u0(x) = 6 + 0.5 cos x and v0(x) = (62 + 1) + 0.5 cos x.
The solution tends to the large amplitude spatially homogenous periodic orbit.

(αH
6 is not a true Hopf bifurcation point), and

αS
1 ≈ 85.16 > αS

2 ≈ 22.79 > αS
8 ≈ 14.6 > αS

3

≈ 11.46 > αS
4 ≈ 7.776 > αS

7 ≈ 7.693

> αS
5 ≈ 6.464 > αS

6 ≈ 6.382.

For this parameter set, there are six Hopf bifurcation points all less
than α∗ ≈ 6.283, and there are eight steady state bifurcation points all
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FIGURE 4.3. Graph of T (α, p) and D(α, p) = 0. (A) Left: m = 145, d = 0.15 and
� = 5; (B) Right: m = 20, d = 0.5 and � = 5.

larger than α∗. From Theorem 2.2, the Hopf bifurcation at α = αH
0

is supercritical, and the bifurcating (spatially homogeneous) periodic
solutions are locally asymptotically stable since 0 < m < M0.

Two numerical simulations are shown in Figure 4.2 for the cases
of α = 1.69 and α = 6 and, in both cases, the solutions converge
to the spatially homogenous periodic orbit (see Figure 2.1 for the
corresponding phase portraits and solution curves). In both cases, the
initial value is a non-constant perturbation of the constant steady state.

Example 4.2. In Figure 4.3 (A), we set m = 145, d = 0.15, � = 5.
We have:

αH
0 ≈ 48.37 < αH

1 ≈ 69.42,

αS
1 ≈ 283.8 > αS

2 ≈ 75.73 > αS
8 ≈ 45.11 > αS

3 ≈ 37.64 > αS
4 ≈ 24.99

> αS
7 ≈ 23.06 > αS

5 ≈ 20.15 > αS
6 ≈ 19.32,

and

α∗ ≈ 19.20 < αH
0 ≈ 48.37.
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FIGURE 4.4. Numerical simulation of system (2.1). Here m = 145, d = 0.15,

� = 5 and 19.32 ≈ αS
6 < α = 19.33 < αH

0 ≈ 48.37. Left: Graph of u(x, t).
Right: Graph of v(x, t); Top: the initial values u0(x) = 19 + 5 cos(6x/5), v0(x) =
(192+1)+5 cos(6x/5), and the solution tends to a spatially nonhomogeneous steady
state with mode cos(6x/5); Bottom: the initial values u0(x) = 19 + 5 cos(4x/5),
v0(x) = (192+1)+5 cos(4x/5), and the solution tends to the constant steady state.

In this example α∗ < α0, and some Turing bifurcations occur for
α < α0. When α increases, the first bifurcation point is αS

6 ≈ 19.32.
Some numerical simulations are shown for α = 19.33, see Figure 4.4.

In this case, it appears that two stable steady states exists: the
constant one (α, 1+α2), and one with eigenmode cos(6x/5). Figure 4.4
demonstrates the convergence to either steady state. Indeed, one
can notice that the steady state with eigenmode cos(6x/5) is a large
amplitude one. This is caused by a subcritical pitchfork bifurcation
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FIGURE 4.5. Numerical simulation of system (2.1). Here m = 20, d = 0.5, � = 5

and 6.382 ≈ αS
6 < α = 6.9 < αH

0 ≈ 6.908. Left: Graph of u(x, t). Right: Graph

of v(x, t); Top: the initial values u0(x) = 6 + 0.5 cos(8x/5), v0(x) = (62 + 1) +
0.5 cos(8x/5), and the solution tends to a spatially homogeneous time periodic orbit;
Bottom: the initial values u0(x) = 6+0.5 cos(2x/5), v0(x) = (62+1)+0.5 cos(2x/5),
and the solution tends to the spatially nonhomogeneous time periodic orbit.

occurring at α = αS
6 . By using the algorithm in the Appendix, one

can show that α′′
6(0) = −0.3386, and further numerical simulations

suggest that a stable steady state with eigenmode cos(6x/5) exists for
α > 17.47. For α < 17.47, the constant steady state appears to be the
global attractor.

Example 4.3. In Figure 4.3 (B), we set m = 20, d = 0.5 and � = 5.
The bifurcation points in this case are
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αH
0 ≈6.908<αH

1 ≈8.076, αS
2 ≈22.79>αS

8 ≈14.6>αS
3 ≈11.46

> αS
4 ≈7.776>αS

7 ≈7.693>αS
5 ≈6.464>αS

6 ≈6.382,

and

α∗ ≈6.283.

Here we notice that m > M0; thus, the primary Hopf bifurcation is
subcritical, and there exist two spatially homogenous periodic orbits
for 6.73 ≤ α < 6.908 = αH

0 (see Figure 2.2). At α = 6.9, the large
amplitude spatially homogeneous periodic orbit appear as a stable
pattern (see the top one in Figure 4.5), but a surprising pattern is
a spatially nonhomogeneous periodic orbit with eigenmode cos(6x/5)
(see the bottom one in Figure 4.5). The nonhomogeneous periodic orbit
with mode cos(6x/5) cannot bifurcate from the constant steady state
as only αH

0 and αH
1 exist here. However, αS

6 ≈ 6.382 is a steady state
bifurcation point, and we suspect that Hopf bifurcation could occur on
the branch of steady state solutions with mode cos(6x/5). This is not
covered by the theory we present here.

From these examples, we make some general remarks on the bifurca-
tion diagrams of (2.1).

1. The parameter � determines the number of possible eigenmodes
regardless of d and m. For larger �, bifurcations with more spatial
modes are possible.

2. For a fixed �, the number n of possible eigenmodes is fixed. Then
a steady state bifurcation with each of these eigenmodes occurs at
α = αS

j (unless they overlap), but Hopf bifurcation points could be
fewer if md is large. On the other hand, on bifurcation diagrams like
Figures 4.1 and 4.3, not every intersection of the Hopf bifurcation curve
T (α, p) = 0 and horizontal line p = pj produces a true Hopf bifurcation
point. Now Theorem 3.4 can be interpreted as: if an intersection of
the Hopf bifurcation curve T (α, p) = 0 and horizontal line p = pj is
outside of the curve D(α, p) = 0, then it is a true Hopf bifurcation
point, otherwise it is not.

3. The combined influence of parametersm and d changes the nature
of the bifurcation diagram. For fixed m, decreasing d will “push”
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the curve D(α, p) = 0 to the right, so most or all potential Hopf
bifurcation points are outside of the curve D(α, p) = 0. This is just
another interpretation of Theorem 2.1. For the case of small d, the
Hopf bifurcations occur at smaller α (but larger than α0), and all
steady state bifurcations occur at large α. But, for large d, intervening
Hopf and steady state bifurcations could generate more complicated
spatiotemporal patterns as shown in Examples 4.2 and 4.3.

5. Concluding remarks. The Hopf and steady state bifurcation
analysis here makes another step toward a complete understanding of
the global dynamics of the Lengel-Epstein model of CIMA reaction.
We use a new bifurcation parameter α, the rescaled feed concentration
of I−, in this article, which turns out to be the most important
barometer of the system. We summarize the previous and new results
regarding (2.1) with parameter α and fixed d,m > 0: (recall that
(uα, vα) = (α, α2 + 1) is the unique positive constant steady state)

1. For 0 < α <
√
27/5 ≈ 1.0392, (uα, vα) is globally asymptotically

stable ([25] and Theorem 2.3);

2. For
√
27/5 < α <

√
5/3 ≈ 1.2910, (uα, vα) is locally asymptoti-

cally stable, and there is no other known patterned solution;

3. For
√
5/3 < α < α0 := (

√
m2 + 60 + m)/6, (uα, vα) is locally

asymptotically stable for the ODE dynamics but could be unstable
for PDE dynamics if d is small ([15, Lemma 5.1]); Turing bifurcation
from (uα, vα) occurs if d decreases ([7, Theorem 3.4]) or α increases
(Theorem 3,2); no Hopf bifurcation is possible for α in this range;

4. α = α0 is the smallest Hopf bifurcation point, where a spatially
homogenous periodic orbit bifurcates from (uα, vα), and for any α > α0,
a spatially homogenous periodic orbit exists (Theorem 2.1);

5. For α > α0, (uα, vα) is unstable even for the ODE dynamics;
if � is small, no spatial (steady state or periodic) patterns exist, and
each solution converges to a spatially homogenous periodic orbit ([25,
Theorem 2.6]); if � is not small, then finitely many steady state and
Hopf bifurcations are possible depending on the length �π of the interval
(Theorems 2.1, 3.2, 3.4). If d is small, then (uα, vα) is the unique steady
state for α ∈ [α0, αM ] for some αM > 0 ([15, Theorem 1]), but the
system could have a large number of periodic orbits for α in that range
(Theorems 2.1, 3.4); for α > αM , the system possesses at least one
nonhomogeneous steady state (Theorem 3.2 and Corollary 3.3).
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APPENDIX

In this Appendix, we recall some known bifurcation results on the
general reaction-diffusion equations in one dimensional space (see [26]
for details). Consider

(5.1)

⎧⎨⎩
ut − d1uxx = f(α, u, v), vt − d2vxx = g(α, u, v),

x ∈ (0, �π), t > 0,

ux(0, t) = ux(�π, t) = vx(0, t) = vx(�π, t) = 0

where d1, d2, α ∈ R+, f, g : R × R2 → R are Ck+2 (k ≥ 2), with
f(α, 0, 0) = g(α, 0, 0) = 0. The corresponding steady state equation of
(5.1) is

(5.2)

{−d1uxx = f(α, u, v), −d2vxx = g(α, u, v) x ∈ (0, �π),

ux(0) = ux(�π) = vx(0) = vx(�π) = 0.

Define the real-valued Sobolev space

X := {(u, v) ∈ H2(0, �π)×H2(0, �π)
∣∣(ux, vx)|x=0, �π = 0}.

and define the complexification of X to be XC := X⊕ iX = {x1+ ix2 |
x1, x2 ∈ X} if necessary. We also define Y = L2(0, �π)×L2(0, �π). The
linearized operator of system (5.2) evaluated at (α, 0, 0), is

L(α) :=

(
d1∂

2/∂x2 + A(α) B(α)
C(α) d2∂

2/∂x2 +D(α)

)
,

with the domainDL(α) = X (orXC), where A(α) = fu(α, 0, 0), B(α) =
fv(α, 0, 0), C(α) = gu(α, 0, 0), and D(α) = gv(α, 0, 0). Accordingly, we
define,

Ln(α) :=

(−d1n2/�2 +A(α) B(α)
C(α) −d2n2/�2 +D(α)

)
.

To consider the Hopf bifurcation, we assume that, for some α0 ∈ R,
the following condition holds:

(H3) There exists a neighborhood O of α0 such that, for α ∈ O,
L(α) has a pair of complex, simple, conjugate eigenvalues γ(α)± iω(α),



1666 J. JIN, J. SHI, J. WEI AND F. YI

continuously differentiable in α, with γ(α0) = 0, ω(α0) = ω0 > 0, and
γ′(α0) �= 0; all other eigenvalues of L(α) have non-zero real parts for
α ∈ O.

We assume that (H3) holds. Then, by (H3), we can assume q =
(an, bn)

T cos(n/�)x, with an, bn ∈ C, such that L(α0)q = iω0q. Define
Qqq, Qqq̄ and Cq,q,q̄ :

Qq,q =

(
cn
dn

)
cos2

n

�
x,

Qq,q̄ =

(
en
fn

)
cos2

n

�
x,

Cq,q,q̄ =

(
gn
hn

)
cos3

n

�
x,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn = fuua
2
n + 2fuvanbn + fvvb

2
n,

dn = guua
2
n + 2guvanbn + gvvb

2
n,

en = fuu|an|2 + fuv(anbn + anbn) + fvv|bn|2,
fn = guu|an|2 + guv(anbn + anbn) + gvv|bn|2,
gn = fuuu|an|2an + fuuv(2|an|2bn + a2nbn)

+fuvv(2|bn|2an + b2nan) + fvvv|bn|2bn,
hn = guuu|an|2an + guuv(2|an|2bn + a2nbn)

+guvv(2|bn|2an + b2nan) + gvvv|bn|2bn,
with all the partial derivatives of f and g evaluated at (α0, 0, 0). Denote
by L∗(α0), the adjoint operator of L(α0),

L∗(α0) :=

(
A(α0) + d1∂

2/∂x2 C(α0)
B(α0) D(α0) + d2∂

2/∂x2

)
,

with the domain DL∗(λ0) = XC, and if (H3) holds, then there exists
q∗ := (a∗n, b

∗
n)

T cos(n/�)x ∈ X ⊕ iX so that

L∗(α0)q
∗ = −iω0q

∗, 〈q∗, q〉 = 1 and 〈q∗, q〉 = 0.

Denote{
q̃ = −[L(α0)]

−1 · [Qqq − 〈q∗, Qqq〉q − 〈q∗, Qqq〉q] .
q̂ = (2iω0I − L(α0))

−1
[Qqq − 〈q∗, Qqq〉q − 〈q∗, Qqq〉q] ,
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then by [26],

c1(α0) =
i

2ω0
〈q∗, Qqq〉 · 〈q∗, Qqq̄〉

+ 〈q∗, Qq̃,q〉+ 1

2
〈q∗, Qq̂,q̄〉+ 1

2
〈q∗, Cq,q,q̄〉.

With these notations, from [26], we have the following Hopf bifurca-
tion theorem for the general reaction-diffusion system (5.1).

Lemma 5.1 (Hopf bifurcation theorem). Suppose (H3) is satis-
fied. Then system (5.1) possesses a family of real-valued T (s)-periodic
solutions (α(s), u(s)(x, t), v(s)(x, t)), for s sufficiently small, bifurcat-
ing from (α0, 0, 0) at α = α0 in the space R × X, with α(s), T (s) ∈
Ck+1. More precisely, there exists a unique n ∈ N0 such that
(u(s)(x, t), v(s)(x, t)) can be parameterized in the following form:⎧⎪⎨⎪⎩

α(s) = α0 +
∑[k/2]

i=1 μ2is
2i + o(sk+1),

u(s)(x, t) = s(ane
2πit/T (s) + ane

−2πit/T (s)) cos n
� x+ o(s2),

v(s)(x, t) = s(bne
2πit/T (s) + bne

−2πit/T (s)) cos n
� x+ o(s2),

where{
T (s) = 2π

ω0
[1 +

∑[k/2]
j=1 τ2js

2j ] + o(sk+1),

T ′′(0) = 4π
ω0
τ2 = − 4π

ω2
0
(Im (c1(α0))− Re (c1(α0))ω

′(α0)/γ
′(α0)),

and (an, bn) is the eigenvector defined by

Ln(α0)(an, bn)
T = iω0(an, bn)

T .

Here the coefficients μ2i and τ2i can be calculated according to [4].
In particular, τ2 = −(1/ω0)(Im (c1(α0)) − Re (c1(α0))ω

′(α0)/γ
′(α0)).

Moreover,

1. The bifurcation is supercritical, respectively subcritical, if

1

γ′(α0)
Re (c1(α0)) < 0 (respectively, > 0)
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2. If, in addition, all other eigenvalues of L(α0) have negative real
parts, then the bifurcating periodic solutions are stable, respectively
unstable, if Re (c1(α0)) < 0, respectively > 0.

Next, we consider the steady state bifurcation for equation (5.2). We
assume that, for some α0 ∈ R, the following condition holds:

(H4) There exists a neighborhood O of α0 such that, for α ∈ O, L(α)
has a simple real eigenvalue γ(α), continuously differentiable in α, with
γ(α0) = 0 and γ′(α0) �= 0; all other eigenvalues of L(α) have non-zero
real parts for α ∈ O.

The following global bifurcation theorem is recalled from [26], and it
is an application of a more general result in [16].

Lemma 5.2 (Steady state bifurcation theorem). Let I be a close
interval which contains α0 ∈ R. Suppose that (H4) is satisfied at
α = α0. Then there is a smooth curve Γ of solutions to (5.2) bifurcating
from (α0, 0, 0), and Γ is contained in a connected component C of the
set of nonzero solutions of (5.2); either C is unbounded in I × X, or
C∩(∂I×X) �= ∅, or C contains a further bifurcation point (α∗, 0, 0) with
α∗ �= α0 such that 0 is an eigenvalue of L(α∗). More precisely, near
(α0, 0, 0), Γ can be expressed as: Γ = {(α(s), u(s), v(s)) : s ∈ (−ε, ε)},
where

(5.3)

u(s) = san cos(nx/�) + sψ1(s),

v(s) = sbn cos(nx/�) + sψ2(s),

s ∈ (−ε, ε)

and α : (−ε, ε) → R, ψ1, ψ2 : (−ε, ε) → Z are Ck+1 functions, such
that α(0) = α0, ψ1(0) = ψ2(0) = 0. Here,

1. Z = Z1 × Z1, with Z1 = {u ∈ L2(0, �π) :
∫ �π

0 u(x) cos(nx/�) dx =
0};
2. In (5.3), an and bn satisfy: L(α0)[(an,bn)

T cos(nx/�)] = 0, for
some n ∈ N ∪ {0}.
The following lemma presents an algorithm to determine the bifur-

cation direction of the steady state bifurcations of (5.2). This appears
to be of independent interest.
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Lemma 5.3. Suppose that the conditions in Lemma 5.2 hold. Then
the steady state bifurcations are always pitchfork bifurcations, that is,
α′(0) = 0; the bifurcations are supercritical bifurcations if α′′(0) > 0
and subcritical bifurcations if α′′(0) < 0, where α′′(0) is given by (5.5)
below.

Proof. By (H4), we can assume that q = (an,bn)
T cos(n/�)x with

an,bn ∈ R satisfying L(α0)q = 0. We define F : R×X → Y by

F (α, u, v) := (d1uxx + f(α, u, v), d2vxx + g(α, u, v))T .

By [15], it follows that

α′(0) = −〈l, F(u,v),(u,v)[q, q]〉
2〈l, Fα(u,v)[q]〉 ,

where, l ∈ Y ∗(= Y ) satisfying N(l) = R(L(α0)). The functional l here

is given by 〈l, (p1, p2)〉 =
∫ �π

0
(d−1

1 a∗np1(x) + d−1
2 b∗

np2(x)) cos(nx/�) dx,
where (p1, p2) ∈ Y , and (a∗n,b

∗
n) is an eigenvector of L∗

n(α0), the adjoint
matrix of Ln(α0). Notice that, for n ∈ N∪{0}, L∗(α0)[(a

∗
n,b

∗
n)

T cos(nx/
�)] = 0, we have,

〈l, F(u,v),(u,v)[q, q]〉 =
∫ �π

0

F(u,v),(u,v)[q, q] · p dx,

where p = (d−1
1 a∗n, d

−1
2 b∗

n) cos(nx/�). Then,

α′(0) = −
∫ �π

0 F(u,v),(u,v)[q, q] · p dx
2
∫ �π

0
Fα(u,v)[q] · p dx

.

From direct calculations, it follows that

∫ �π

0

F(u,v),(u,v)[q, q] · p dx =

∫ �π

0

kn cos3(nx/�) dx,∫ �π

0

Fα(u,v)[q] · p dx =

∫ �π

0

rn cos2(nx/�) dx,
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where

kn = d−1
1 a∗n(fuua

2
n + 2fuvanbn + fvvb

2
n

+ d−1
2 b∗

n(guua
2
n + 2guvanbn + gvvb

2
n),

rn = d−1
1 a∗n(fαuan + fαvbn) + d−1

2 b∗
n(gαuan + gαvbn),

with all the partial derivatives of f and g evaluated at (α0, 0, 0). Thus,

α′(0) = − kn
∫ �π

0 cos3(nx/�) dx

2rn
∫ �π

0
cos2(nx/�) dx

= 0,

since, for n ∈ N,
∫ �π

0
cos3(nx/�) dx = 0. Hence, the bifurcation is

pitchfork bifurcation. To determine the bifurcation direction, we need
to calculate α′′(0), which, according to [15], is given by

α′′(0) = −〈l, F(u,v),(u,v),(u,v)[q, q, q]〉+ 3〈l, F(u,v),(u,v)[q, θ]〉
3〈l, Fα(u,v)[q]〉

= −
∫ �π

0
F(u,v),(u,v),(u,v)[q, q, q] · p dx
3
∫ �π

0 Fα(u,v)[q] · p dx

+
3
∫ �π

0
F(u,v),(u,v)[q, θ] · p dx

3
∫ �π

0 Fα(u,v)[q] · p dx

where θ ∈ Z uniquely solves the following equation:

(5.4) F(u,v),(u,v)[q, q] + F(u,v)[θ] = 0.

Direct computation implies that

F(u,v),(u,v),(u,v)[q, q, q]

=

(
fuuua

3
n + 3fuuvbna

2
n + 3fuvvb

2
nan + fvvvb

3
n

guuua
3
n + 3guuvbna

2
n + 3guvvb

2
nan + gvvvb

3
n

)
cos3(nx/�)

Then
∫ �π

0
F(u,v),(u,v),(u,v)[q, q, q] · p dx = sn

∫ �π

0
cos4(nx/�) dx, where

sn = d−1
1 a∗n(fuuua

3
n + 3fuuvbna

2
n + 3fuvvb

2
nan + fvvvb

3
n),

+ d−1
2 b∗

n(guuua
3
n + 3guuvbna

2
n + 3guvvb

2
nan + gvvvb

3
n).
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Now we shall compute the value of
∫ �π

0 F(u,v),(u,v)[q, θ] · p dx. To that
end, we let

θ =

∞∑
m=0

(
θ1m
θ2m

)
cos

m

�
x,

with the coefficients θ1m and θ2m to be determined later. Then (5.4) is
equivalent to(

fuua
2
n + 2fuvbnan + fvvb

2
n

guua
2
n + 2guvbnan + gvvb

2
n

)
cos2(nx/�)

= −
(
fu + d1

∂2

∂x2 fv

gu gv + d2
∂2

∂x2

) ∞∑
n=0

(
θ1m
θ2m

)
cos

m

�
x.

Thus, by comparing the coefficients of cos(mx/�) with m ∈ N∪ {0} in
the equation, we obtain that(

θ1m
θ2m

)
=

(
0
0

)
,

for all m ∈ N\{2n},(
θ10
θ20

)
=

1

2D0

(
gv(fuua2

n + 2fuvbnan + fvvb2
n)− fv(guub2

n + 2guvbnan + gvvb2
n)

fu(guua2
n + 2guvbnan + gvvb2

n)− gu(fuub2
n + 2fuvbnan + fvvb2

n)

)
,

and(
θ12n
θ22n

)
=

1

2D2n

×
(

(gv− 4d2n
2

�2
)(fuua2

n+2fuvbnan+fvvb2
n)−fv(guua2

n+2guvbnan+gvvb2
n)

(fu− 4d1n
2

�2
)(guua2

n+2guvbnan+gvvb2
n)−gu(fuua2

n+2fuvbnan+fvvb2
n)

)
,

where D0 and D2n are the determinants of L0 and L2n, respectively.
Thus, we have,

θ =

(
θ12n
θ22n

)
cos

2n

�
x+

(
θ10
θ20

)
,
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or equivalently,

θ =

(
Θ1

n

Θ2
n

)
cos2

n

�
x+

(
Θ1

0

Θ2
0

)
,

where

Θ1
n = 2θ12n, Θ2

n = 2θ22n, Θ1
0 = θ10 − θ12n, Θ2

0 = θ20 − θ22n.

Direct calculations show that

F(u,v),(u,v)[q, θ]

=

(
(fuuan + fuvbn)Θ

1
0 + (fuvan + fvvbn)Θ

2
0

(guuan + guvbn)Θ
1
0 + (guvan + gvvbn)Θ

2
0

)
cos(nx/�)

+

(
(fuuan + fuvbn)Θ

1
n + (fuvan + fvvbn)Θ

2
n

(guuan + guvbn)Θ
1
n + (guvan + gvvbn)Θ

2
n

)
cos3(nx/�),

By ∫ �π

0

cos2
(
nx

�

)
dx =

�π

2

and ∫ �π

0

cos4
(
nx

�

)
dx =

3�π

8
,

we have ∫ �π

0

F(u,v),(u,v)[q, θ] · p dx =
�π

2
t1n +

3�π

8
t2n,

where

t1n = d−1
1 a∗n[(fuuan + fuvbn)Θ

1
0 + (fuvan + fvvbn)Θ

2
0]

+ d−1
2 b∗

n[(guuan + guvbn)Θ
1
0 + (guvan + gvvbn)Θ

2
0],

t2n = d−1
1 a∗n[(fuuan + fuvbn)Θ

1
n + (fuvan + fvvbn)Θ

2
n]

+ d−1
2 b∗

n[(guuan + guvbn)Θ
1
n + (guvan + gvvbn)Θ

2
n],
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Therefore,

(5.5) α′′(0) = −sn + 4t1n + 3t2n
4rn

.

This completes the proof of this lemma.
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