
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 43, Number 5, 2013

ISOSPECTRAL MEASURES

DORIN ERVIN DUTKAY AND PALLE E.T. JORGENSEN

ABSTRACT. In recent papers a number of authors have
considered Borel probability measures µ in Rd such that
the Hilbert space L2(µ) has a Fourier basis (orthogonal) of
complex exponentials. If µ satisfies this property, the set of
frequencies in this set is called a spectrum for µ. Here we fix
a spectrum, say Γ, and we study the possibilities for measures
µ having Γ as spectrum.

1. Introduction. We consider a spectral analysis of families of
singular measures, introducing pairs (μ,Γ) where μ is a measure, and
where Γ is a set which serves as spectrum for μ; see the definition below.
We refer to these as spectral pairs. While the measures arising in this
way have a special flavor, they are nonetheless useful in the analysis of
models arising in a host of different areas.

We are motivated in part by a renewed interest in families of sin-
gular measures, driven in turn both by applications, and by current
problems in spectral theory and geometric measure theory. The ap-
plications include Schroedinger operators from physics, especially their
scattering theory [1, 4, 14]. In these problems, it is helpful to have at
hand concrete model-examples involving measures amenable to direct
computations. In stochastic processes and stochastic integration, key
tools depend on underlying spectral densities. For problems involv-
ing fluctuations and chaotic dynamics, the measures are often singular
and model-measures are helpful, see e.g., [2, 3, 5, 15, 24, 28]. In
determining the nature of orbits in ergodic theory, the first question
is often “what is the spectral type?” The measures in these applica-
tions are typically not compactly supported. Nonetheless, there is a
procedure from geometric measure theory which produces compactly
supported measures, see [17], and much of the earlier literature has
focused on measures of compact support. Our results below show that
non-compactly supported measures arise in every spectral pair.
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We consider Borel probability measures μ in Rd such that the Hilbert
space L2(μ) has a Fourier basis (orthogonal, ONB for short) of complex
exponentials; for λ ∈ Rd, we use the notation

eλ(x) := e2πiλ·x (x ∈ Rd).

If μ satisfies this property, the set of frequencies in an ONB is called
a spectrum for μ. Here we fix a spectrum, say Γ, and we study the
possibilities for measures μ having Γ as spectrum. The reader will
notice that there are examples with Lebesgue measure restricted to
the unit interval based on translation congruence. But it is of interest
to extend these constructions to the general case (including cases with
non-compact support but spectral). The more traditional spectral pairs
(μ,Γ) typically come from contractive affine iterated function systems,
and these measures μ will automatically be compactly supported in
Rd.

Here we explore the general theory, and we find very general and
varied families: a rich family of iso-spectral fractals. There is a number
of reasons that it is of interest to explore such; details are below!

To help the reader understand the ideas, consider Borel probability
measures that are iso-spectral; i.e., every measure in the family has
the same spectrum, say Γ. Specifically, we fix a spectrum. What are
natural families of Borel probability measures with this spectrum?

Indeed, consider the most general spectral pair (μ,Γ) in Rd and then
develop algorithms yielding indexed families of measures (μa) with the
index a in a specific index set A. A natural choice for A is a suitable
family of partitions of a basepoint measure μ in the family. We find
extensive families, but there are probably other bigger and intriguing
families of iso-spectral measures.

We elaborate on the set A below in Theorem 2.4. The two steps in
the algorithm consist of choosing measurable partitions of the d-cube
(in Rd) and translations by Zd defining a translation congruence, see
Definition 2.3. The set A of all translation congruences labels the iso-
spectral measures.

In the simplest case, take a as the trivial partition; and this yields
back μ itself, up to a translation. There are at least four reasons this
is of interest:
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(a) There is a big classical literature going back to Mark Kac’s
question: “Can one hear the shape of a drum?” In our context, we
will be considering the Fourier transform of μ as a function on Rd,
and the possible drums will be iso-spectral data, typically iso-spectral
fractals, or fractal measures. The idea of making connections between
geometric features and spectral theoretic data, of course, dates back to
Fourier, but it was made popular by Kac in [24]. While Kac had in
mind a Laplacian on a planar domain, the question has generated a host
of formulations involving various forms of spectral data, and various
geometries; see, for example, [27 and the references cited there]. Here
we are concerned with Fourier frequencies on one side of the divide,
and geometric measure theory on the other.

(b) The Fourier transform of μa, Fa(t) = μ̂a(t), t ∈ Rd is interesting
as we vary a ∈ A. We can get Fa(t) non-differentiable, and anything
in between continuous and entire analytic. In a more fundamental
setting, the problem of recovering a function of a measure from a Fourier
transform lies at the root of obstacle scattering, but in a classical
context, the paper [16] illustrates some of the subtleties.

(c) And, going back to Paley-Wiener, there is much literature on the
interplay between the possibility of analytic continuations of geometric
Fourier transforms and the geometry itself. Here, by Paley-Wiener, we
mean questions dealing with asymptotic estimates on a complex Fourier
transform. The classical literature includes [30] and papers cited there,
but, by contrast, there are relatively few parallel results dealing with
classes of fractal measures.

(d) There is an analogy of these families to wavelet sets that play an
important role in the spectral theory of wavelets in higher dimensions.
Here we refer to tiling properties for wavelet sets, see e.g., [29]. This is
only a parallel as wavelet sets involve two operations, translation and
scaling. Our focus here is on translations by integer lattices.

We further discuss applications as they relate to tiling properties of
the integer lattices Zd, both for d = 1, as well as for higher dimensions.
The examples we include are from the theory of wavelets and from
harmonic analysis of affine fractals.

2. Main results. While it is not true in general, for given measures
μ, that the Hilbert space L2(μ) is amenable to Fourier analysis, at least
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not in a direct way, in earlier papers, e.g., [7, 10, 22] the notion of
spectrum was introduced for the analysis of certain singular measures
μ. Here our aim is to fix sets Γ that serve as spectrum, and ask for the
variety of measures μ that have Γ as their spectrum. In fact, in the
setting from [13] our Theorem 2.1 offers a rather complete answer to
this question.

Our study of spectral pairs (μ,Γ) extends the more familiar theory
of Pontryagin duality for locally compact abelian groups. For other
results on spectral pairs, the reader may wish to consult [10, 11, 12,
13, 21, 22]. For recent related results see also [19, 20]. The simplest
instance of interesting spectral pairs include the compact d-torus Td

and its Fourier dual the rank-d lattice Zd, the setting of multivariable
Fourier series. In this context, the required and more standard Fourier
tools for d = 1 do carry over to d > 1. Instead, one may rely on the
canonical Fourier duality of the d-torus Td = Rd/Zd and Zd, see [31].
It will be convenient to model Td as the d-cube in Rd, i.e., as Qd := Id,
where I := [0, 1).

There are many differences between classical multivariable Fourier
analysis (e.g., [31]) on the one hand and spectral pairs (μ,Γ) on the
other; for example, this: the absence of groups in the context of general
spectral pairs. Indeed, typically for general spectral pairs, neither of
the two sets in the pair, the support of the measure nor its spectrum,
is a group.

Nonetheless, there are important spectral theoretic questions for
those particular spectral pairs where the measure μ is d-dimensional
Lebesgue measure restricted to Qd. There are several questions here.
First, what sets Γ in Rd make (Qd,Γ) a spectral pair? The answer
was found in the two papers [18, 23]. These authors proved that a
discrete subset Γ in Rd is a spectrum for Qd if and only if it tiles Rd

by translations of Qd.

This spectral/tile duality in fact is a part of a wider duality theory.
It was initiated in [23], and further studied in the follow-up paper [18].
The first one of the two papers introduced the problem, solved it and
listed the possibilities for d < 4. The second proved the theorem in
general, but without classification. Higher dimensions are of interest
because of the existence of exotic “cube-tilings” in Rd for d = 10 and
higher, see [25], found by Lagarias and Shor. Our purpose here is to
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turn the question around: Rather than fixing one part in a particular
spectral pair, in this case Qd, instead we pick the simplest spectrum
Γ = Zd, and we then ask what are the possibilities for measures μ in
spectral pairs (μ,Zd). The theorem below answers this question!

Theorem 2.1. Let μ be a Borel probability measure on Rd. The
following statements are equivalent:

(i) The set {en : n ∈ Zd} forms an orthonormal set in L2(μ).

(ii)There exists a bounded measurable function ϕ ≥ 0 that satisfies

(2.1)
∑
k∈Zd

ϕ(x+ k) = 1, for Lebesgue almost everywhere x ∈ Rd,

such that dμ = ϕdx.

Proof. Let Q := [0, 1)d. Assume (ii). Then, for n ∈ Zd,∫
Rd

en(x) dμ(x) =

∫
Rd

en(x)ϕ(x) dx

=
∑
k∈Zd

∫
Q

ϕ(x+ k)en(x+ k) dx

=

∫
Q

en(x)

( ∑
k∈Zd

ϕ(x+ k)

)
dx

=

∫
Q

en(x) dx =

{
1 if n = 0,

0 if n �= 0.

This proves (i).

Assume (i). Define the measure μ̃ on Q as follows: for all Borel
subsets E of Q,

(2.2) μ̃(E) =
∑
k∈Zd

μ(E + k).

Uniformly approximating any continuous functions on [0, 1)d by step
functions we obtain∫

Q

f dμ̃ =
∑
k∈Zd

∫
Q+k

f(x− k) dμ(x),
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for all continuous functions f on Q.

Then ∫
Q

en dμ̃ =
∑
k∈Zd

∫
Q+k

en(x− k) dμ(x)

=
∑
k∈Zd

∫
Q+k

en(x) dμ

=

∫
Rd

en(x) dμ(x) = δn,

by assumption.

But then, using the Stone-Weierstrass theorem, it follows that μ̃ must
coincide with the Lebesgue measure on Q on continuous functions, so
they are the same.

Next, we prove that μ is absolutely continuous with respect to the
Lebesgue measure on Rd. Suppose that there is a Borel set E of
Lebesgue measure zero with μ(E) > 0. Then, for some k ∈ Zd,
μ(E ∩ (Q + k)) > 0. Then define F := (E ∩ (Q + k))) − k ⊂ Q. We
will have that F has Lebesgue measure zero, but μ̃(F ) > μ(F +k) > 0,
which contradicts the fact that μ̃ is Lebesgue measure on Q.

Thus, μ is absolutely continuous with respect to Lebesgue measure λ
on Rd. Let ϕ be the Radon-Nikodym derivative dμ/dx. We have

λ(E) = μ̃(E) =
∑
k∈Zd

μ(E + k)

=
∑
k∈Zd

∫
Q+k

ϕ(x)χE(x − k) dx

=
∑
k∈Zd

∫
Q

ϕ(x + k)χE(x) dμ(x)

=

∫
Q

χE(x)

( ∑
k∈Zd

ϕ(x + k)

)
dx.

This implies (2.1) and (ii).

Remark 2.2. There are simple examples of measures for which Z
yields an orthogonal set of exponentials but which are not complete.
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Consider the measure μ = (1/2)λ|[0,2). Note that ϕ := (1/2)χ[0,2)

satisfies (ii) in Theorem 2.1. So {en : n ∈ Z} is orthonormal in L2(μ).
Actually, more is true, and this can be seen by a simple rescale by 2:
the measure μ has spectrum (1/2)Z, so in particular {en : n ∈ Z} is an
orthonormal set in L2(μ), but incomplete. The function ϕ in this case
is ϕ = (1/2)χ[0,2). The question is: what extra conditions have to be
imposed on ϕ so that {en : n ∈ Z} is complete?

Definition 2.3. We say that a Borel subset E of Rd is translation
congruent to Q = [0, 1)d if there exists a measurable partition {Ek :
k ∈ Zd} of Q such that

E =
⋃

k∈Zd

(Ek + k).

Our theme is this: fix a set Γ arising as a spectrum. We ask for the
variety of measures μ that have Γ as their spectrum. The result below
answers the question for the special case when Γ = Zd. The relevance
of this setting is illustrated by the problems in papers [23, 25]. The
question in [23], inspired in part by [25], deals with the possibility of
spectral pairs when one term in the pair is the d-cube Q in Rd. The
classification of the spectra was found for small d. The authors of [23]
further suggested that spectra have the additional property that they
are translation sets for additive tilings. Our result (Theorem 2.4) about
translation congruence offers a possible answer to this.

Theorem 2.4. Let μ be a Borel probability measure on Rd. Then μ
has spectrum Zd if and only if μ is the Lebesgue measure restricted to
a set E which is translation congruent to Q.

Proof. Suppose μ is Lebesgue measure restricted to a set E which is
translation congruent to Q, and let Ek be as in Definition 2.3. Define
the measurable map ψ : Q→ E, ψ(x) = x+k for all x ∈ Ek and k ∈ Zd.
It is easy to see that the operator Ψ : L2(E) → L2(Q), Ψf = f ◦ ψ is
an isometric isomorphism and Ψ(en|E) = en|Q. So Zd is a spectrum
for μ.
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Conversely, suppose Zd is a spectrum for μ. Let ϕ be as in Theorem
2.1 (ii).

Define

(2.3) Fϕ(t, x) :=
∑
k∈Zd

ek(t)ϕ(k + x) (t, x ∈ Rd).

The sum is absolutely convergent, from (2.1).

Note that, for n ∈ Zd,

Fϕ(t, x+ n) =
∑
k

ek(t)ϕ(k + n+ x)

=
∑
m

em−n(t)ϕ(m+ x)

= e−n(t)Fϕ(t, x).

We have

cϕ(t) :=
∑
n∈Zd

|ϕ̂(t+ n)|2 =
∑
n∈Zd

̂ϕ∗ ∗ ϕ(t+ n)

=
∑
k∈Zd

ek(t)(ϕ
∗ ∗ ϕ)(k)

(by Poisson’s summation formula, since ϕ ∈ L1(Rd))

=
∑
k∈Zd

ek(t)

∫
Rd

ϕ(y)ϕ(y + k) dy

=

∫
Rd

ϕ(y)Fϕ(t, y) dy

=
∑
n∈Zd

∫
Q

ϕ(x + n)Fϕ(t, x+ n) dx

=
∑
n∈Zd

∫
Q

ϕ(x + n)e−n(t)Fϕ(t, x) dx

=

∫
Q

Fϕ(t, x)Fϕ(t, x) dx

=

∫
Q

|Fϕ(t, x)|2 dx.
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To see that the interchange of the sum and the integral is justified,
note that, by (2.1), we have |Fϕ| ≤ 1 and the sum that defines it is
absolutely convergent. Also

∫
Rd |ϕ(y)| dy = 1 (since ϕ ≥ 0 and from

(2.1)).

Note that, by definition (2.3), we get the following formula

(2.4) |Fϕ(t, x)| =
∣∣∣∣∑

k

ek(t)ϕ(x + k)

∣∣∣∣ ≤ ∑
k∈Zd

ϕ(x+ k) = 1.

So

cϕ(t) ≤
∫
Q

|Fϕ(t, x)|2 dx ≤ 1.

We know (see [11, 22]), that Zd is a spectrum for μ if and only if
cϕ(t) = 1 for all t ∈ Rd. But this implies that, for all t ∈ Rd,
|Fϕ(t, x)| = 1 for Lebesgue almost every x.

Take t ∈ Rd. Take x ∈ Rd. Since
∑

l ϕ(x + k) = 1, there exists
k0 such that ϕ(x + k0) �= 0. Since we must have equality in the
triangle inequality in (2.4), all terms in the sum must differ by a real
multiplicative constant, i.e., for all k such that ϕ(x + k) �= 0, we must
have ek(t)ϕ(x+ k) = αkek0(t)ϕ(x+ k0) for some real αk. This implies
that ek(t) = ek0(t). So (k − k0) · t ∈ Z and, picking several t’s with
irrational components, it follows that k must be equal to k0.

Thus, for almost every x, there is a unique k0 depending on x, such
that ϕ(x+k0) �= 0. Since

∑
k ϕ(x+k) = 1, it follows that ϕ(x+k0) = 1.

This implies the desired conclusion.

Example 2.5 (d = 1). Let

ϕ =
2

3
χ[0,1) +

1

3
χ[1,2).

Let dμ = ϕdx. By Theorem 2.1, the set {en : n ∈ Z} is orthogonal in
L2(μ). We have

μ̂(t) =
1

6πit

(
e2πi2t + e2πit − 2

)
(t ∈ R).

This shows that μ̂(t) = 0 if and only if t ∈ Z. From this, we see that
there is no t ∈ R\Z such that et is orthogonal to en for n ∈ Z, because
〈et, en〉L2(μ) = μ̂(t− n).
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Therefore, Z yields a maximal set of orthogonal exponentials, which
is incomplete (by Theorem 2.4).

Next, we consider a different case; we characterize the measures that
have spectrum {0, . . . , N − 1} for some finite integer N . The simplest

example is, of course, (1/N)
∑N−1

k=0 δ1/k, where δx is the Dirac measure
at x.

Theorem 2.6. Let N ≥ 2 be an integer. Let A be a set in
R such that the atomic measure δA = (1/N)

∑
a∈A δa has spectrum

{0, 1, . . . , N − 1}. The A is of the form A = (1/N)A′ where A′ is a
compete set of representatives for Z/NZ.

Proof. It is easy to see, by writing the orthogonality of the exponential
functions, that A has spectrum {0, . . . , N−1} if and only if the matrix

1√
N

(
e2πiak

)
a∈A,k∈{0,... ,N−1}

is unitary.

If A has the form given in the statement of the theorem, then this
matrix is unitary; it is the matrix of the Fourier transform on the group
Z/NZ.

For the converse, assume the matrix is unitary. Then, for any pair of
distinct points a, a′ in A, we must have

N−1∑
k=0

e2πi(a−a′)k = 0

so e2πi(a−a′) is a root of the polynomial
∑N−1

k=0 zk. Then a− a′ = l/N
for some l ∈ Z, not a multiple of N . Since there are N elements
in A, the pigeon hole principle implies that NA is a complete set of
representatives for Z/NZ.

Definition 2.7. Given a Borel measure μ on Rd, a family of Borel
subsets (Ei)i∈I is called a partition of μ if μ(Rd \ ∪iEi) = 0 and
μ(Ei ∩ Ej) = 0 for all i �= j. We say that two Borel measures μ
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and μ′ are translation equivalent if there exists a partition (Ei)i∈I and
some integers (ki)i∈I of μ such that (Ei + ki)i∈I is a partition of μ′,
and the functions Ei � x �→ x + ki ∈ Ei + ki map the measure μ into
the measure μ′.

Proposition 2.8. Let μ and μ′ be two translation equivalent Borel
probability measures on Rd. If μ has a spectrum Γ contained in Zd,
then μ′ is also a spectral measure with spectrum Γ.

Proof. Let (Ei)k∈Zd be a partition of μ and (ki)i∈I as in Definition 2.7.
Define the map ψ : Rd → Rd, ψ(x) = x+ki for x ∈ Ei. Then it is easy
to check that the map Ψ : L2(μ′) → L2(μ), Ψ(f) = f ◦ψ, is an isometric
isomorphism with the property that Ψ(eλ) = eλ for all λ ∈ Zd. Since
Γ is contained in Zd, it follows that it is also a spectrum for μ′.

Remark 2.9. Theorems 2.4 and 2.6 might lead one to think that if
two measures μ and μ′ have a common spectrum Γ contained in Z,
then they must be translation equivalent. However, this is not true, as
the following example shows.

Consider the atomic measures δA and δA′ , whereA = {0, 1/8, 4/8, 5/8}
and A′ = {0, 3/8, 4/8, 7/8}. They have the common spectrum
Γ = {0, 1, 4, 5}. This can be seen by computing the matrices,
1/

√
4(e2πiaλ)a∈A,λ∈Γ and similarly for A′, with ρ = e2πi/8:

1√
4

⎛
⎜⎝

1 1 1 1
1 ρ −1 −ρ
1 −1 1 −1
1 −ρ −1 ρ

⎞
⎟⎠ ,

1√
4

⎛
⎜⎝

1 1 1 1
1 ρ3 −1 −ρ3
1 −1 1 −1
1 −ρ3 −1 ρ3

⎞
⎟⎠ ,

which are unitary. However, the measures δA and δA′ are not transla-
tion equivalent.

Example 2.10. Let μ be the invariant measure associated to the
affine iterated function system τ0(x) = x/4, τ2(x) = (x + 2)/4. See [9,
22] for definition and details. It is proved in [22] that this measure has
spectrum

Γ =

{ n∑
k=0

4kak : ak ∈ {0, 1}, n ∈ N

}
.
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Consider also the invariant measure μ′ for the affine iterated function
system τ0(x) = x/4, τ10(x) = (x + 10)/4. With the notations in [9],
R = 4 and B = {0, 10}. Then, with L := {0, 1}, we have a Hadamard
pair (B,L). We want to show that μ′ has the same spectrum Γ. For
this, we use [9, Theorem 8.4] and check that there are no extreme cycles
(or mB-cycles as they are called in [9]) for this system. These are finite
sets of points {x0, x1, . . . , xp−1} such that |mB(xi)| = 1 for all i, where

mB(x) =
1

2
(1 + e2πi10x),

and for all i there exist li ∈ L such that (1/4)(xi + li) = xi+1, where
xp := x0.

Such a cycle will be contained in the attractor X(L) of the affine
iterated function system σ0(x) = x/4, σ1(x) = (x + 1)/4, so it will be
contained in the interval [0, 1/3]. Also, since |mB(xi)| = 1, we have that
xi = k/10 for some k ∈ Z. Therefore, the only non-zero candidates are
1/10, 2/10, 3/10. It can be checked that none of them is an mB-cycle.
Then [9, Theorem 8.4] implies that Γ is a spectrum for μ′.

We show that μ′ is not translation congruent to μ.

Note that μ′ is supported inside [0,
∑∞

k=1 10/4
k] = [0, 10/3]. Also

10/3 is a fixed point for τ10, so there is a small interval around 10/3, for
example τn10[0, 10/3], that has positive μ

′ measure. 10/3 is congruent to
1/3 modulo Z. However, the measure μ is supported inside the interval
[0, 2/3] and, after one iteration, we can see that it is also supported
inside [0, 2/12]∪ [6/12, 8/12]. But 1/3 = 4/12 is at a positive distance
from this union, and therefore no piece in the support of μ can cover
the piece of μ′ around 10/3.

Proposition 2.11. Let μ be a Borel probability measure with
spectrum Γ contained in Zd. Then μ is translation equivalent with
a measure supported on Q := [0, 1)d.

Proof. First, we prove that we cannot have a Borel set O such that
O and O+ k are contained in the support of μ, for some k ∈ Zd, k �= 0
and μ(O) > 0. Assume, by contradiction, that this is the case. Then
all the hypotheses in [7, Proposition 2.2] are satisfied, so μ is locally
translation invariant, and therefore we have μ(O+ k) = μ(O) > 0 and,
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for all λ ∈ Z,∫
eλχO dμ =

∫
eλ(x− k)χO(x− k) dμ(x) =

∫
eλχO+k dμ.

This implies that eλ ⊥ (χO − χO+k). But, since Γ is a spectrum, this
yields a contradiction.

Thus, if O is contained in the support of μ and has positive measure,
then O + k must have measure zero, if k ∈ Zd, k �= 0.

We can then partition the measure μ into Ek = supp (μ) ∩ (Q + k),
and define the measure μ̃ as in (2.2). The property above implies that
μ̃ is translation equivalent to μ and of course it is supported on Q.

Definition 2.12 [23]. Let μ be a spectral probability measure on
Rn, with spectrum Γ a subset of Rn.

Define the Fourier transform F : L2(μ) → l2(Γ) by

(Ff)(λ) = 〈f, eλ〉 (f ∈ L2(μ), λ ∈ Γ).

Then F is unitary and

F−1(cλ)λ =
∑
λ∈Γ

cλeλ.

Define the group of transformations (U(t))t∈Rn on L2(μ) by

U(t)f = F−1((et(λ)Ff(λ))λ) =
∑
λ

[e2πit·λ〈f, eλ〉]eλ.

The convergence of the sum is in L2(μ). This means that, in the

“Fourier domain,” Û(t) := FU(t)F−1 is just multiplication by the
sequence (e2πit·λ)λ. We call (U(t))t∈Rn the group of local translations.

Note also that

U(t)eλ = eλ(t)eλ, (t ∈ Rn, λ ∈ Γ).

Note that U(t) depends on the spectrum Γ.
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The next proposition shows that, for two iso-spectral measures, the
natural map that interchanges the exponential bases will also intertwine
the groups of local translations.

Proposition 2.13. Let μ and μ′ be two spectral measures having the
same spectrum Γ. Define the map Ψ : L2(μ) → L2(μ′), Ψ(eλ) = eλ, for
all λ ∈ Γ. (Note that, in general, Ψ is not the identity map, it just maps
the restriction of the exponential function eλ to the support of μ to the
restriction of eλ to the support of μ′). Let Fμ and Fμ′ be the Fourier
transforms, and let (Uμ(t))t∈Rd and (Uμ′(t))t∈Rd be the corresponding
groups of local translations.

Then Ψ is an isometric isomorphism, Ψ = F−1
μ′ Fμ and Ψ intertwines

Uμ and Uμ′ , i.e.,

ΨUμ(t) = Uμ′(t)Ψ (t ∈ Rd).

Proof. We have Fμeλ = δλ = Fμ′eλ. Since {eλ : λ ∈ Γ} is an ONB, it
follows that Ψ = F−1

μ′ Fμ. The rest follows by a simple computation.

Conclusion. Our main result (Theorem 2.4) is a characterization of
probability measures μ supported in Rd which allow L2(μ)-orthogonal
Fourier series indexed by Zd. We argue how our result fits into a
wider context of making links between geometric shapes, on one side,
and spectral data on the other. Here we are concerned with Fourier
frequencies on one side of the divide, and geometric measure theory on
the other.
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