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FINITE DIRECT SUMS CONTROLLED BY
FINITELY MANY PERMUTATIONS

NICOLA GIRARDI

ABSTRACT. The classes of uniserial modules, biuniform
modules, cyclically presented modules over a local ring, more
generally, couniformly presented modules, and kernels of mor-
phisms between indecomposable injective modules, are some
among the classes of modules which are characterized by a pair
of invariants. These invariants also completely describe when
finite direct sums of such modules are isomorphic. In this
paper, we are interested in modules characterized by finitely
many invariants and in their finite direct sums. We give a
general criterion to produce classes S of such modules, and
we completely describe how modules satisfying said criterion
can be grouped together to form isomorphic finite direct sums.
The connection between the regularity of finite direct sums of
modules in S and a certain associated hypergraph H(S) is
also investigated.

1. Introduction. Let us first introduce the behavior of finite direct
sums of modules studied in this paper.

Definition 1.1. Let R be a ring and S a class of right R-modules.
Let n ≥ 1 be an integer. We say that finite direct sums of modules
in the family S are controlled by n permutations if the following holds:
There exist equivalence relations ≡1, . . . ,≡n on S such that, given
modules X1, . . . , Xr, Y1, . . . , Ys ∈ S, the direct sum X1⊕ · · ·⊕Xr is
isomorphic to the direct sum Y1⊕ · · ·⊕Ys if and only if r = s, and there
are n permutations σ1, . . . , σn of {1, . . . , r} such that Xμ ≡i Yσi(μ) for
1 ≤ i ≤ n and 1 ≤ μ ≤ r.

In this paper, we find sufficient conditions (Setting 3.4) for the finite
direct sums of modules of a class S to be controlled by n permutations
(Theorem 3.16). Actually, we almost always work in a slightly less
demanding setting (Setting 3.2) and obtain a slightly more general,
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though less elegant, result (Theorem 3.14). It is crucial that these
conditions ensure that the modules in S be of finite type (Theorem 3.5),
i.e., their endomorphism rings have finitely many maximal right ideals,
all of which are two-sided. We take advantage of the techniques
introduced in [12] for the study of categories of modules of finite
type. In Section 4 we give examples of classes of modules S for which
Setting 3.2 or Setting 3.4 holds.

In Section 5 we give a necessary and sufficient condition for the finite
direct sums of modules in S to be controlled by n permutations, in
terms of a certain hypergraph associated to S (Proposition 5.3 and
Theorem 5.4).

Minor results include a slightly improved version of the classical Krull-
Schmidt theorem (Theorem 2.2).

Now let us take a glance at the bigger picture in which our results
fit.

The Krull-Schmidt-Remak-Azumaya theorem [8, Theorem 2.12] im-
plies that (even infinite) direct sums of modules with local endomor-
phism ring are controlled by one permutation, where the only equiva-
lence relation is given by isomorphism, X ≡1 Y if and only if X ∼= Y .

Recall that a module U is a uniserial module if its lattice of submod-
ules is linearly ordered. When R is a serial ring, i.e., both RR and

RR are direct sums of uniserial modules, finite direct sums of uniserial
modules arise naturally as direct-sum decompositions of finitely pre-
sented R-modules [16]. Although these direct-sum decompositions are
not unique, i.e., not controlled by only one permutation, it is true that
finite direct sums of uniserial modules (over any ring) are controlled
by two permutations [7]. More generally, finite direct sums of biuni-
form modules are controlled by two permutations [8, Theorem 9.13].
Other classes of modules whose finite direct sums are controlled by two
permutations have been studied: cyclically presented modules over a
local ring [2], kernels of morphisms between indecomposable injective
modules [9] and couniformly presented modules [10].

Let S be a class of modules X such that EndR(X)/J(EndR(X)) is
a product of two division rings. The question whether finite direct
sums of modules in S are controlled by two permutations has been
thoroughly investigated in [13], which is a major source of inspiration
for this paper.



FINITE DIRECT SUMS 907

Let Q = (Q0, Q1) be a finite quiver on n ≥ 1 vertices. Let T be
the class of representations M of Q by right R-modules (which are
modules over the path ring R[Q]) such that Mi has local endomorphism
ring for each i ∈ Q0. Finite direct sums of representations in T are
controlled by n permutations [14, Theorem 4.7]. For n = 2, via
additive functors induced by the kernel, the cokernel and the image
of a morphism, it is possible to view the aforementioned classes as
special cases [14, Section 5]. In this paper, we proceed a step further
in the generalization.

For any category C, we denote by |C| its class of objects. For each
pair of objects X,Y of C, we denote by C(X,Y ) the set of morphisms
X → Y , and we write CX for C (X,X). All of our rings R are
associative rings with identity 1 	= 0, U(R) denotes the group of units
of R and J(R) denotes the Jacobson radical of R. All of our R-modules
are unitary right R-modules unless otherwise stated.

2. Preliminaries. Recall that the Jacobson radical of a preadditive
category C is the two-sided ideal J of C defined by, for all X,Y ∈ |C|,

J(X,Y )

= {f :X → Y : 1X − gf has a left inverse for all g:Y → X}
= {f :X → Y : 1X − gf has a two-sided inverse for all g:Y → X} .

Thus, J(X,X) is the Jacobson radical of the endomorphism ring CX .
Compare with [15, page 21].

The following generalizes [14, Lemmas 3.1 and 3.2].

Lemma 2.1. Let C be a preadditive category. Then:

(i) Let A,B ∈ |C| be such that B 	= 0 and CA has only the trivial
idempotents. Then a morphism f ∈ C(A,B) is an isomorphism if and
only if it has a right inverse.

(ii) Let f = f1 · · · fn be a composition of morphisms in C between
non-zero objects whose endomorphism rings have only the trivial idem-
potents. Then f is an isomorphism if and only if f1, . . . , fn are all
isomorphisms.

(iii) If X,Y are objects of C such that CX is a local ring and
CY has only the trivial idempotents, then J(X,Y ) is the set of non-
isomorphisms.



908 NICOLA GIRARDI

Note that, if C is an additive category in which the idempotents split,
the condition that the endomorphism ring of a non-zero object X of C
has only the trivial idempotents amounts to the condition that X be
an indecomposable object. In general, for a non-zero object X of C, we
only have the implication that, if CX has only the trivial idempotents,
then X is indecomposable.

Proof. (i) Let g:B → A be a right inverse for f , so that fg = 1B.
Then gf is an idempotent endomorphism of A. Since gf = 0A implies
1B = fg = (fg)(fg) = 0B, which is false because B 	= 0, we must have
gf 	= 0A. Then A 	= 0 and, as CA has only the trivial idempotents,
gf = 1A, so that g is a two-sided inverse for f .

(ii) A composition of isomorphisms is an isomorphism, so that
if all f1, . . . , fn are isomorphisms, then f1 · · · fn is an isomorphism.
Conversely, suppose that f1 · · · fn is an isomorphism. To prove that
f1, . . . , fn are all isomorphisms, it suffices to prove the case n = 2
and use induction. From 1 = f1f2(f1f2)

−1, we obtain that f1 has
a right inverse, and hence is an isomorphism by (i). It follows that
f2 = f−1

1 (f1f2) is also an isomorphism.

(iii) If f :X → Y is an isomorphism, then 1X − f−1f = 0X is not
invertible in CX because X 	= 0; thus, f /∈ J. If f :X → Y is not in the
Jacobson radical, let g:Y → X be such that 1X − gf is not invertible.
Since CX is a local ring, gf is an automorphism of X . In particular,
g has a right inverse. As X 	= 0 and CY has only trivial idempotents,
(i) applies to show that g is an isomorphism. Then f = g−1(gf) is also
an isomorphism.

We will need the following version of the classical Krull-Schmidt
theorem, which generalizes [13, Theorem 3.3].

Theorem 2.2. Let X1, . . . , Xn and Y1, . . . , Ym be objects with
local endomorphism ring of an additive category A. Suppose that
g:X1⊕ · · ·⊕Xn → Y1⊕ · · ·⊕Ym is an isomorphism. Then n = m and
there exists a permutation σ of {1, . . . , n} such that each gσ(i),i:Xi →
Yσ(i) is an isomorphism.

Proof. Let J be the Jacobson radical of A and Q:A → A/J be the

canonical reduction functor. Let C:A/J → Â/J be the canonical

additive fully faithful functor into the idempotent completion Â/J
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of A/J [6]. For all morphisms α in A between objects with local
endomorphism ring, α is an isomorphism if and only if Q(α) 	= 0
(Lemma 2.1 (iii)) if and only if CQ(α) 	= 0.

Recall that the Krull-Schmidt theorem holds for additive categories
in which idempotents split [6, Theorem 2.2]; thus, n = m.

View g as an n×n matrix, where gji:Xi → Yj . For each j = 1, . . . , n
let Ij be the set of indices i = 1, . . . , n such that gij is an isomorphism.
Let S = {I1, . . . , In}. We need to pick an element σ(j) from Ij for each
j = 1, . . . , n in such a way that σ(j) 	= σ(k) if j 	= k. By Hall’s theorem,
this can be done if and only if |T | ≤ | ∪I∈T I| for all T ⊆ S. Assume
by contradiction there is a subset T of S such that |T | > | ∪I∈T I|.
Without loss of generality, we may assume that T = {I1, . . . , Ir} and
that {1, . . . , n} \ (I1∪ · · · ∪Ir) = {s + 1, . . . , n} with 0 ≤ s < r ≤ n.
Thus, we can write g in block matrix form as

g =

(
α ∗
α′ ∗

)
,

where α:X1⊕ · · ·⊕Xr → Y1⊕ · · ·⊕Ys and α′:X1⊕ · · ·⊕Xr → Ys+1⊕· · ·
⊕ Yn is such that CQ(α′) = 0, and similarly, we write

g−1 =

(
β β′

∗ ∗

)
,

where β:Y1⊕ · · ·⊕Ys → X1⊕ · · ·⊕Xr and β′:Ys+1⊕ · · ·⊕Yn → X1 ⊕
· · ·⊕Xr. Computing the top left entry of g−1g we have 1 = βα+β′α′,
from which 1 = CQ(βα). Hence, CQ(βα) is an automorphism of
CQ(X1)⊕ · · · ⊕CQ(Xr) which factors through CQ(Y1)⊕ · · ·⊕CQ(Ys).

Since idempotents split in Â/J, we conclude that CQ(X1) ⊕ · · · ⊕
CQ(Xr) is a direct summand of CQ(Y1)⊕ · · ·⊕CQ(Ys) [6, Lemma 2.1].
By [6, Theorem 2.2], it follows that r ≤ s, a contradiction.

Let n be a positive integer. A ring S is of type n if and only if S/J(S)
is the product of n division rings, if and only if S has n maximal right
ideals, all of which are two-sided. A module, or more generally, an
object in a preadditive category, is of type n if its endomorphism ring
is of type n [12]. For instance, a module with local endomorphism ring
is a module of type 1. It is convenient to let the zero module be the
unique module of type 0.
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Proposition 2.3. The class of modules of finite type is closed by
direct summands and the type is additive, i.e., if X ∼= A1 ⊕ A2 is of
finite type, then the type of X is the sum of the type of A1 and that of
A2.

Proof. Case X = 0 is trivially true; thus, assume the type of X is
n ≥ 1. Let {e1, e2} be the complete set of orthogonal idempotents
of S = EndRX corresponding to the given decomposition of X .
Then EndRAi

∼= eiSei. Recall that (eiSei)/J(eiSei) ∼= eiSei, where
ei = ei + J(S) and S = S/J(S).

Let s1, . . . , sn be the complete set of centrally primitive orthogonal
idempotents of S associated with the direct-product decomposition of
S into n division rings. Now, e1si is an idempotent of the division
ring siS (whose identity is si). Thus, either e1si = 0 or e1si = si. As
e1 = e1s1 + · · ·+ e1sn, there exists a subset I1 of {1, . . . , n} such that
e1 =

∑
i∈I1

si. Inasmuch as 1 = e1 + e2, we have that e2 =
∑

i∈I2
si,

where I2 is the complement of I1 in {1, . . . , n}. This shows that eiSei
is a direct product of |Ii| division rings, and |I1|+ |I2| = n.

Corollary 2.4. Let X 	= 0 be a module of finite type. Then X
has a decomposition X = X1⊕ · · · ⊕Xn with n ≥ 1, and X1, . . . , Xn

indecomposable modules of finite type.

Proof. By induction on the type of X .

3. A sufficient condition. Recall that a ring morphism f :R → S
is local if f(r) ∈ U(S) implies r ∈ U(R), for every r ∈ R.

Lemma 3.1. Let A and B be preadditive categories, and let F :A →
B be an additive functor. The following conditions are equivalent:

(i) If f :M → N and g:N → M are morphisms in A such that F (f)
and F (g) are isomorphisms, then f and g are isomorphisms.

(ii) For each M ∈ |A|, the ring morphism AM → BF (M) is a local
morphism.
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Proof. It is trivial that (i) implies (ii). Assume (ii) holds, and suppose
the hypotheses of (i) hold. Then F (fg) and F (gf) are automorphisms
of F (N) and F (M), respectively. Thus, fg and gf are automorphisms
of N and M , respectively. It follows that f and g are both right and
left invertible, hence isomorphisms.

Recall that an additive functor F is local if, when F (f) is an isomor-
phism, then so is f [6]. For instance, if A is a preadditive category
and J is its Jacobson radical, then A → A/J is a local functor. More
generally, we say that F is almost local if it satisfies the equivalent
conditions of Lemma 3.1.

If A is a full subcategory of an additive category C, by Sums (A) we
mean the full subcategory of C whose objects are all the objects of C
isomorphic to finite direct sums of objects of A.

From now on, we work in the following setting.

Setting 3.2. Let R be a ring, A a full subcategory of Mod-R without
a zero module, and n a positive integer. We assume that we have an
additive functor T : Sums (A) → A1× · · ·×An, where A1, . . . ,An are
additive categories, such that:

(S1) For each 1 ≤ i ≤ n and each X ∈ |A|, Ti(X) is an object of type
≤ 1 of Ai, where Ti = PiT and Pi:A1× · · ·×An → Ai is the canonical
projection functor;

(S2) The restriction of T to A yields an almost local functor.

We note that we may consider the inverse image of an ideal along an
additive functor, just as we consider the inverse image of an ideal along
a ring morphism. Namely, suppose G:A1 → A2 is an additive functor
and I is an ideal of A2. Then we define the inverse image ideal G−1I
of I as

(G−1I)(M,N) = {f ∈ A1(M,N) : G(f) ∈ I(G(M), G(N))},

for all pairs of objects M,N of A1. In short, f ∈ G−1(I) if and only if
G(f) ∈ I, for any morphism f in the category A1.

For each 1 ≤ i ≤ n, let Pi be the inverse image of the Jacobson
radical Ji of Ai along the additive functor Ti.
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Following [13], a completely prime ideal I of a preadditive category C
is a collection of subgroups I(X,Y ) of C(X,Y ) for all pairs of objects
X,Y of C, subject to the conditions

(C1) I(X,X) is properly contained in CX for each non-zero object
X of C and

(C2) for any two morphisms f :X → Y and g:Y → Z, gf ∈ I(X,Z)
if and only if either f ∈ I(X,Y ) or g ∈ I(Y, Z).

This definition extends that of a completely prime ideal I of a ring R,
which is a proper ideal I satisfying ab ∈ I if and only if a ∈ I or b ∈ I
for all a, b ∈ R.

The restriction of Pi to A fails to be a completely prime ideal because
it may happen for some object X of A that Ti(X) = 0, and in that
case Pi(X,X) is not a proper ideal of AX . Nevertheless, we have the
following:

Lemma 3.3. Condition (C2) holds for the restriction of Pi to A.

Proof. Let f ∈ A(X,Y ) and g ∈ A(Y, Z). If Ti(X), Ti(Y ), Ti(Z) are
all non-zero, by Lemma 2.1, we have gf ∈ Pi if and only if Ti(gf) ∈ Ji,
if and only if Ti(gf) is not an isomorphism, if and only if either Ti(g)
or Ti(f) is not an isomorphism, if and only if either Ti(g) ∈ Ji or
Ti(f) ∈ Ji, if and only if either g ∈ Pi or f ∈ Pi. The case in which
one of Ti(X), Ti(Y ), Ti(Z) is zero is trivial.

If we substitute requirement (S1) with:

(S1′) For each 1 ≤ i ≤ n and each X ∈ |A|, Ti(X) is an object of
type 1 of Ai,

we obtain that the restriction of Pi to A is a completely prime ideal,
for in that case 1A /∈ Pi for all objects A of A; hence, also condition
(C1) is satisfied.

Setting 3.4. This is the same as Setting 3.2, except for the fact that
we replace condition (S1) with condition (S1′).

As a side note, another way to see that the restriction of Pi to A is
completely prime under the conditions (S1′) and (S2) is the following.
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By Lemma 2.1, if a preadditive categoryB consists of objects of type 1,
then its Jacobson radical is a completely prime ideal. Then observe that
the inverse image of a completely prime ideal along an additive functor
is a completely prime ideal.

Theorem 3.5. Let M ∈ |A|, and let E = EndR(M). Then:

(i) For each 1 ≤ i ≤ n, either Pi(M,M) = E or Pi(M,M) is a
completely prime two-sided ideal of E.

(ii) There exist indices 1 ≤ i1, . . . , it ≤ n such that Pi1(M,M), . . . ,
Pit(M,M) are the maximal right ideals of E. Since they are all two-
sided ideals, E is a ring of type t ≤ n.

(iii) The canonical injective ring morphism p:E/J(E) →
∏t

�=1E/
Pi�(M,M) is an isomorphism.

Proof. (i) When Pi(M,M) is proper, it is completely prime by (C2).

(ii) By (S2) we have a local morphism E →
∏n

i=1 EndAi(Ti(M))
induced by T , from which we obtain the local morphism

E −→
∏

i|Ti(M) �=0

EndAi(Ti(M))/J(EndAi(Ti(M))),

whose codomain is a direct product of division rings. Note that the
product is non-empty, because M 	= 0. Then the set of non-units of E
is the union ∪i:Ti(M) �=0Pi(M,M). Insofar as every ideal of this union is
completely prime by (i), any proper right or left ideal of E is contained
in some Pi(M,M), cf. [4, Proposition 1.11 (i)]. This is in particular
true for the maximal right ideals; thus, (ii) follows.

(iii) By the Chinese remainder theorem, p is an isomorphism.

We now recall some results from [6] which are crucial for our proof
of Theorem 3.14.

In any preadditive category D, for any ideal I of DX , for any object
X of D, we construct the ideal I of D associated to I as follows. For
any morphism f ∈ D(M,N), we let f ∈ I(M,N) if and only if βfα ∈ I
for all α ∈ D(X,M) and all β ∈ D(N,X). This is the largest among
the ideals I′ such that I′(X,X) ⊆ I, and in fact, I(X,X) = I [12].
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Remark 3.6. Note that I(M,N) depends only on the objects M,N,X
and on the morphisms between them. Therefore, if we consider any full
subcategory E of D, the ideal of E associated to I is a restriction of
that of D associated to I. Thus, we may say that M is isomorphic to
N modulo I if M and N are isomorphic as objects of E/I, where E is
any full subcategory of D containing the objects M,N,X .

Notation 3.7. For each module M of finite type that is an object of
a full subcategory D of right R-modules, let V (D,M) be the collection
of ideals of D associated to maximal ideals of EndR(M). We will write
V (M) for V (D,M) if the category is understood. Moreover, we let
V (D) = ∪V (D,M), where the union is taken over all modules M of
finite type which are objects of D.

Remark 3.8. The construction of V (D) needs some special attention.
An ideal I of D is a proper class if D is large. Indeed, this follows from
the observation that we have an injective function |D| → I sending any
object X to the pair ((X,X), I(X,X)). When I is a proper class, it
cannot be a member of a collection V (D). The problem can be worked
around, as in [11]. Let S be the class of all pairs (M,P ) where M is
a module of finite type which is an object of D, and P is a maximal
ideal of DM . For each (M,P ) and (N,Q) in S, let (M,P ) ∼ (N,Q)
when the ideal of D associated to P coincides with that associated to
Q. Thus, we may identify V (D) with a class of representatives of S
modulo ∼. Consequently, we may identify V (D,M) with the subclass
of V (D) of those elements (N,Q) such that (N,Q) ∼ (M,P ) for some
maximal ideal P of DM . Thus V (D,M) is a finite set.

Theorem 3.9. Let B be a full subcategory of Mod-R whose objects
are modules of finite type. Let M and N be objects of Sums (B). The
following are equivalent:

(i) M and N are isomorphic.

(ii) M and N are isomorphic in Sums (B)/P for each P ∈ V
(Sums (B)).

(iii)M and N are isomorphic in Sums (B)/P for each P ∈ V (Sums (B),
X) for any X ∈ |B|.
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Proof. The equivalence of (i) and (ii) is a special case of [12,
Theorem 4.10], obtained by plugging inC = Sums (B). The cited result
actually deals with the larger category add (C), but we can restrict our
attention to Sums (B) and its factors in view of Remark 3.6.

It is trivial that (ii) implies (iii). To show that (iii) implies (ii), let
X ∈ Sums (B) be a module of finite type, and write X = B1⊕ · · ·⊕Bt

for some t ≥ 1 and B1, . . . , Bt ∈ |B|. It suffices to prove (by induction
on t) that

(3.10) V (Sums (B), X) = V (Sums (B), B1) ∪̇ · · · ∪̇V (Sums (B), Bt).

The case t = 1 is trivial; thus, let t ≥ 2. By Proposition 2.3,
B1⊕ · · ·⊕Bt−1 is of finite type. Therefore, by [12, Corollary 3.5], we
have

V (Sums (B), X) = V (Sums (B), B1⊕ · · ·⊕Bt−1) ∪̇V (Sums (B), Bt),

and (3.10) follows by the inductive hypothesis.

Lemma 3.11. Let B be a full subcategory of Mod-R whose objects
are modules of finite type. Fix X ∈ |B| and P ∈ V (B, X), and let
F :B → B/P be the canonical functor. Then B/P has only one non-
zero object up to isomorphism, and for any object N of B, the following
are equivalent:

(i) P ∈ V (B, N);

(ii) P(N,N) is maximal;

(iii) P(N,N) is proper.

(iv) F (X) ∼= F (N).

Proof. That B/P has only one non-zero object up to isomorphism
follows from [12, Lemma 4.5]. The implications (i) =⇒ (ii) =⇒ (iii)
=⇒ (iv) are thus all trivial. If (iv) holds, then EndR(X)/P(X,X) ∼=
EndR(N)/P(N,N), so that P(N,N) is maximal. By [12, Remarks
4.6 (2)], P is associated to P(N,N); hence, (i) holds.

For each 1 ≤ i ≤ n and each M ∈ |A|, let Qi,M be the ideal of
Sums (A) associated to Pi(M,M).
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Next we define the equivalence relations that will control finite direct
sums of modules in |A|. For each 1 ≤ i ≤ n, we define a preorder �i on
|A|. For each pair of objects M,N ∈ |A|, we let M �i N if there exists
an f :M → N such that Ti(f):Ti(M) → Ti(N) is an isomorphism. In
view of Lemma 2.1, this amounts to f /∈ Pi when Ti(M) and Ti(N)
are non-zero. We let ≡i be the equivalence relation on |A| defined by
M ≡i N if and only if M �i N and N �i M .

Let us seek the connection between these equivalence relations and
the ideals Qi,M .

Lemma 3.12. Let 1 ≤ i ≤ n and M,N ∈ |A|. Then M ≡i N if and
only if Qi,M = Qi,N . When this is the case, Pi(M,M) is maximal if
and only if Pi(N,N) is maximal.

Proof. Suppose M ≡i N . Then let f :M → N and g:N → M
be morphisms in A such that Ti(f) and Ti(g) are isomorphisms. If
Ti(M) = 0, then also Ti(N) = 0; hence, Pi(M,M) and Pi(N,N) are
both improper, and Qi,M = Qi,N is the improper ideal of Sums (A).
Thus, we can assume that Ti(M) and Ti(N) are non-zero. As a
consequence, by Lemma 2.1, f and g are not in Pi. Suppose b:B1 → B2

is a morphism in Sums (A) such that b ∈ Qi,M (B1, B2). To prove that
b ∈ Qi,N , we need to show that, for each α:N → B1 and each β:B2 →
N , we have βbα ∈ Pi(N,N). We have g(βbα)f ∈ Pi(M,M) because
b ∈ Qi,M . In view of (C2) and of the fact that f, g /∈ Pi, it follows that
βbα ∈ Pi(N,N), as required. This proves that Qi,M ⊆ Qi,N and the
reverse inclusion follows by symmetry.

Now assume that Q = Qi,M = Qi,N . If this is the improper ideal of
Sums (A), then Pi(M,M) and Pi(N,N) are improper. This implies
that Ti(M) = Ti(N) = 0, so that Ti(0:M → N) and Ti(0:N → M) are
isomorphisms, and M ≡i N . We can now suppose that Q is proper.
This implies that 1N /∈ Pi(N,N) = Qi,M (N,N); therefore, there exist
morphisms f :M → N and g:N → M in A such that gf /∈ Pi(M,M).
Thus, both g and f are not in Pi and, by Lemma 2.1, both Ti(f) and
Ti(g) are isomorphisms, so that M ≡i N .

Suppose that M ≡i N and that Pi(M,M) is maximal. We have that
Pi(N,N) = Qi,M (N,N), and we know that Qi,M (N,N) is improper
or maximal by [12, Lemma 4.4]. Since Pi(N,N) is proper, it is
maximal.
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Lemma 3.13. Let X be an object of A such that Pi(X,X) is
maximal, and let F be the reduction functor modulo Qi,X . Let N be
any object of A. If X ≡i N , then F (X) ∼= F (N), while if X 	≡i N ,
then F (N) = 0.

Proof. If X ≡i N , we have that Pi(N,N) = Qi,X(N,N) is maximal;
hence, F (X) ∼= F (N) by Lemma 3.11. Suppose now that X 	≡i N .
If Ti(N) = 0, then Pi(N,N) is improper and, since it is contained
in Qi,X(N,N), F (N) = 0. Thus, assume Ti(N) 	= 0. Note that
also Ti(X) 	= 0, so that we may apply Lemma 2.1 as follows: For
any pair of morphisms f :X → N and g:N → X , either Ti(f) or
Ti(g) is not an isomorphism, so that Ti(gf) is not an isomorphism, i.e.,
Ti(gf) ∈ Ji; hence, gf ∈ Pi(X,X). This shows that 1N ∈ Qi,X(N,N);
thus, F (N) = 0.

Theorem 3.14. Let X = X1⊕ · · ·⊕Xr and Y = Y1⊕ · · ·⊕Ys, where
X1, . . . , Xr and Y1, . . . , Ys are objects of A. For each 1 ≤ i ≤ n,
define Xi = {μ : Ti(Xμ) 	= 0} and Yi = {μ : Ti(Yμ) 	= 0}. Then
X ∼= Y if and only if there exist bijections {σi:Xi → Yi}i=1,... ,n such
that Xμ ≡i Yσi(μ) for each 1 ≤ i ≤ n and each μ ∈ Xi.

Proof. Assume that the bijections exist. To show X ∼= Y , by Theo-
rem 3.9, we must show that X and Y are isomorphic in Sums (A)/Q
for each Q ∈ V (Sum (A),M) for every M ∈ |A|. By Theorem 3.9,
we then have Q = Qi,M for some 1 ≤ i ≤ n such that Pi(M,M) is
maximal. The mapping σi induces a bijection

{μ ∈ Xi : Xμ ≡i M} −→ {μ ∈ Yi : Yμ ≡i M}.

Let k ≥ 0 be the common cardinality of the two sets. Note that, if
1 ≤ μ ≤ r is not in Xi, i.e., Ti(Xμ) = 0, then Pi(Xμ, Xμ) is the
improper ideal. Since Pi(Xμ, Xμ) ⊆ Qi,M (Xμ, Xμ), it follows that
F (Xμ) = 0. Therefore, F (X) ∼= ⊕μ∈XiF (Xμ) ∼= F (M)k, where the
last isomorphism holds by Lemma 3.13. Since the same holds for Y , it
follows that F (X) ∼= F (Y ).

For the converse implication, assume that f :X → Y and g:Y → X
are mutually inverse isomorphisms. Then Ti(f):Ti(X) → Ti(Y ) and
Ti(g):Ti(Y ) → Ti(X) are mutually inverse isomorphisms in Ai. By
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Theorem 2.2, we obtain a bijection σi:Xi → Yi such that Ti(fσi(μ),μ) =
(Ti(f))σi(μ),μ:Ti(Xμ) → Ti(Yσi(μ)) is an isomorphism for all μ ∈ Xi.
Therefore Xμ �i Yσi(μ) for all μ ∈ Xi.

Reasoning in the same way with g, we obtain a bijection τi:Yi → Xi

such that Yμ �i Xτi(μ) for all μ ∈ Yi.

Therefore, Xμ �i Yσi(μ) �i Xτiσi(μ). Continuing inductively, we have
Xμ �i Yσi(μ) �i X(τiσi)k(μ) for all integers k ≥ 1. Since there exist some

k ≥ 1 such that (τiσi)
k = 1 (the symmetric group of the finite set Xi is

finite, hence its elements have finite order), we have Xμ ≡i Yσi(μ) for
each μ ∈ Xi, as required.

Corollary 3.15. Let X,Y ∈ |A|. Then X ∼= Y if and only if X ≡i Y
for all 1 ≤ i ≤ n.

It is easy to see that the stronger condition in Setting 3.4 allows us
to conclude that finite direct sums of modules in |A| are controlled by
n permutations, namely:

Theorem 3.16. Suppose the conditions of Setting 3.4 hold. Let
X1, . . . , Xr and Y1, . . . , Ys be objects of A. Then X1⊕ · · ·⊕Xr

∼=
Y1⊕ · · · ⊕Ys if, and only if, r = s and there exist permutations
σ1, . . . , σn ∈ Sr such that Xμ ≡i Yσi(μ) for each 1 ≤ i ≤ n and each
1 ≤ μ ≤ r.

4. Examples.

4.1. DCP modules over rings of finite type. Let R be a ring. A
DCP module is a direct summand of a cyclically presented module, i.e.,
a direct summand of a module isomorphic to R/xR for some x ∈ R.
The DCP modules over rings R of finite type have been studied in [1].
Via a suitable duality, the kernels of morphisms between heterogeneous
injective modules of finite Goldie dimension, i.e., between finite direct
sums of pairwise non-isomorphic indecomposable injective modules,
were also studied in that paper.

The setting of [1] is a particular instance of our Setting 3.2. Namely,
let R be a ring of finite type, with maximal ideals M1, . . . ,Mn. We
denote R/Mi by Ki when we view it as a division ring, and by Si when
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we view it as a simple right (or simple left) R-module. Inasmuch as Si is
an R-Ki-bimodule, we have the additive functors T2i−1 := TorR1 (−, Si)
and T2i := −⊗Si, both Mod-R → Mod-Ki. Let T = T1× · · ·×T2n and
A be the full subcategory of Mod-R whose objects are the non-zero
DCP right R-modules. At the end of [1, Section 2], it is proved that
Ti(AR) is of type ≤ 1 for any DCP module AR; hence, (S1) is satisfied.
Moreover, (S2) is satisfied by the proof of [1, Theorem 3.2]. Thus, [1,
Theorem 5.3] follows from Theorem 3.14.

4.2. Artinian modules with heterogeneous socle. An Artinian
module whose socle is heterogeneous, i.e., is a finite direct sum of
pairwise non-isomorphic simple modules, is known to be a module of
finite type [12]. We show that finite direct sums of certain Artinian
modules are controlled by finitely many permutations.

Fix a ring R and a finite set {Si : i ∈ I} of pairwise non-isomorphic
simple right R-modules. Let i ∈ I. For each right R-module M ,
let Ti(M) be the trace of Si in M , i.e., the largest submodule of M
generated by Si [3, page 109]. For each morphism f :M → N in Mod-R,
let Ti(f):Ti(M) → Ti(N) be the restriction of f . Let A be the full
subcategory of Mod-R whose objects are the non-zero Artinian right R-
modules whose socle is isomorphic to a submodule of ⊕i∈ISi. Consider
the product functor

T : Sums (A) −→
∏
i∈I

Mod-R.

Let i ∈ I and A ∈ |A|, and assume Ti(A) 	= 0. Inasmuch as

Ti(A) is generated by Si, it is isomorphic to S
(r)
i for some r ≥ 1.

From Ti(A) ≤ SocA ≤ ⊕i∈ISi, we obtain that Ti(A) is heterogeneous.
Therefore, Ti(A) ∼= Si is a simple module, in particular, it is of type 1.
Thus, (S1) holds.

Suppose now that f is an endomorphism of A ∈ |A| and that Ti(f)
is an automorphism for each i ∈ I. Let K = ker f ∩ SocA. Then K
is isomorphic to a submodule of ⊕i∈ISi, say K ∼= ⊕i∈FSi for some
F ⊆ I. Let i ∈ F . Then TrK(Si) 	= 0, and this is a submodule of
TrA(Si) = Ti(A). As this is either zero or simple, we have Ti(A) 	= 0
and TrK(Si) = Ti(A). This implies that f(Ti(A)) = 0, which is
impossible, because Ti(f) is an isomorphism and Ti(A) 	= 0. This
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shows that F is empty; thus, K = 0. Since A is an Artinian module,
SocA ≤e A; thus, ker f = 0. An injective endomorphism of an Artinian
module is an automorphism; therefore, f is an automorphism. This
proves that our functor T satisfies also (S2); hence, Theorem 3.14 holds
for A.

4.3. Noetherian modules with heterogeneous top. This class
of modules is dual to the previous one. Let {Si : i ∈ I} be a finite
set of pairwise non-isomorphic simple right R-modules. Let N be the
full subcategory of Mod-R whose objects are the non-zero Noetherian
modules N such that N/Rad (N) is isomorphic to a submodule of
⊕i∈ISi.

For each i ∈ I, define Ti:Mod-R → Mod-R as follows. Recall that,
if U is a family of right R-modules, for each right R-module X , the
reject of U in X is the smallest submodule X ′ of X such that X/X ′

is cogenerated by U , and it is denoted by RejX(U) [3, page 109]. Any
morphism f :X → Y preserves the reject, i.e., f(RejX(U)) ⊆ RejY (U).
Now let Ti(X) = X/RejX(Si), and for each morphism f :X → Y , let
Ti(f) be the induced morphism X/RejX(Si) → Y/RejY (Si). Then we
consider the product functor

T : Sums (N) −→
∏
i∈I

Mod-R.

Fix i ∈ I and N ∈ |N|. Let us show that either RejN (Si) = N
or RejN (Si) is a maximal submodule of N , so that (S1) is satisfied.
Suppose RejN (Si) is a proper submodule of N . On the one hand,
N/RejN (Si) is a quotient of the heterogeneous semisimple module
N/Rad (N), which is isomorphic to a submodule of ⊕�∈IS�; hence,
N/RejN (Si) is isomorphic to ⊕�∈FS�, for some non-empty F ⊆ I. On
the other hand, N/RejN (Si) is cogenerated by Si; thus, F can only
be the singleton of i. Therefore, N/RejN (Si) ∼= Si and RejN(Si) is a
maximal submodule of N .

Note also that, if M is a maximal submodule of N , it is necessarily
equal to RejN (Si) for some i ∈ I. Indeed, N/M is a simple quotient
of ⊕i∈ISi; hence, N/M ∼= Si for some i ∈ I. In particular, N/M
is cogenerated by Si; hence, RejN (Si) ⊆ M . We already know that
RejN (Si) is maximal when it is proper; therefore, equality holds.

Suppose now that f is an endomorphism of N and that Ti(f) is an
isomorphism for each i ∈ I. In particular, f(N) + RejN (Si) = N for
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each i ∈ I. Thus, f(N) = N for, if f(N) were proper, then it would
be contained in some maximal submodule RejN (Si) of N . In view
of the fact that a surjective endomorphism of a Noetherian module is
an automorphism, we conclude that f is an automorphism. We have
therefore proved that the product functor T also satisfies condition
(S2). Therefore, Theorem 3.14 applies to the category N.

4.4. Representations of type 1 pointwise. Let R be a ring, and
let Q = (Q0, Q1) be a finite quiver. Then let RepR(Q) be the category
of representations of Q by right R-modules and R-homomorphisms.
Let P be the full subcategory of RepR(Q) whose objects are the quiver
representations X 	= 0 such that Xi is a module of type ≤ 1 for each
i ∈ Q0. For each i ∈ Q0, we consider the functor Ti: RepR(Q) →
Mod-R defined by Ti(X) = Xi and Ti(f) = fi, where X is an object
and f is a morphism of RepR(Q). Let T : RepR(Q) →

∏
i∈Q0

Mod-R
be the product of these functors. It is easy to see that the conditions
of Setting 3.2 are satisfied, except for the fact that P is not a category
of modules. This can be worked around by the canonical category
equivalence of RepR(Q) with Mod-R[Q], where R[Q] is the path ring
of Q. Hence, Theorem 3.14 applies to P, cf. [14].

5. The associated hypergraph. The aim of this section is to
establish when finite direct sums of modules that belong to a fixed
class of modules A are controlled by finitely many permutations, in
terms of a hypergraph associated to A. The results of this section are
thus a generalization of some results of [13].

By a hypergraph we mean a class of vertices V together with a class E
of non-empty finite subsets of V , which are the edges of the hypergraph
such that the union of the class E is V . The original definition of
hypergraph as given in [5] is way too restrictive for our purposes, in
that it allows only finite sets of vertices and edges, although it allows
edges to be repeated.

We denote by H = (V,E) a hypergraph whose class of vertices is V
and whose class of edges is E. We say that H is n-uniform if all its
edges have n elements, and it is called simple if there are no inclusion
relations between its edges. Also recall that a partial hypergraph is
obtained from H by selecting a subclass F of the class of edges E and
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is denoted H [F ]. The class of vertices of H [F ] is necessarily the union
of the class F .

Let H = (V,E) be a hypergraph. Let N(V ) be the free commutative
monoid with free basis V . Thus, the element v of V , when seen as
an element of N(V ), is the function V → N which maps v to 1 and
everything else to 0. If e ∈ E, denote by χ(e) the characteristic function
of e, i.e., χ(e) =

∑
v∈e v. To the hypergraph H , we associate the

submonoid M(H) of N(V ) generated by the characteristic functions of
edges.

Remark 5.1. When V is a proper class, the construction of (the
underlying class of) N(V ) needs to be handled with care. It is certainly
possible to consider functions V → N, but even the zero element of
N(V ) is a proper class, thus it cannot be a member. Indeed, the zero
element of N(V ) is {(v, 0) : v ∈ V }, which is a proper class. To work
around the issue, consider the class S of functions from finite subsets
of V to N \ {0}. We are going to identify (that which should be) an
element of N(V ) with its restriction to its support. If f1, f2 ∈ S, say
fi:Si → N \ {0}, we define f1 + f2:S1 ∪ S2 → N \ {0} by letting
(f1 + f2)(s) = f1(s) + f2(s) for s ∈ S1 ∩ S2, and (f1 + f2)(s) = fi(s)
when s belongs only to Si. Note in particular that the zero element is
the empty set.

Definition 5.2. Let H = (V,E) be a hypergraph and n a positive
integer. We say that the relations of M(H) are controlled by n
permutations if there exist n equivalence relations ∼1, . . . ,∼n on the
class of edges E such that, given e1, . . . , er, f1, . . . , fs ∈ E, the equality

χ(e1) + · · ·+ χ(er) = χ(f1) + · · ·+ χ(fs)

holds in M(H) if, and only if, r = s and there exist n permutations
σ1, . . . , σn ∈ Sr such that eμ ∼i fσi(μ) for all 1 ≤ i ≤ n and 1 ≤ μ ≤ r.

IfC is a full subcategory of Mod-R whose objects are modules of finite
type, the hypergraph H(C) associated to C is the hypergraph which
has V (C) as its class of vertices and whose edges are the finite sets
V (X) = V (C, X) where X is an object of C. The following dictionary
between C and its hypergraph H(C) justifies turning our attention to
hypergraphs and to the relations in their associated monoids.
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Proposition 5.3. Let C be a full subcategory of modules of finite
type, and let n be a positive integer. The finite direct sums of modules
in C are controlled by n permutations if and only if the relations of
M(H(C)) are controlled by n permutations.

Proof. Let X1, . . . , Xr and Y1, . . . , Ys be objects of C. We claim that

χ(V (X1)) + · · ·+ χ(V (Xr)) = χ(V (Y1)) + · · ·+ χ(V (Ys))

holds in M(H(C)) if and only if

X1⊕ · · ·⊕Xr
∼= Y1⊕ · · · ⊕Ys.

Indeed, the former equation holds if and only if, for each P ∈ V (C), the
number of indices i such that P ∈ V (Xi) is equal to the corresponding
number of indices j such that P ∈ V (Yj). By an application of
Lemma 3.11, this is equivalent to X1⊕ · · ·⊕Xr and Y1⊕ · · ·⊕Ys being
isomorphic in Sums (C)/P, for all P ∈ V (Sums (C),M) and for all
M ∈ |C|, which is equivalent to the latter equation by Theorem 3.9.
This proves the claim.

Suppose that the finite direct sums of modules in C are controlled by
the equivalence relations ≡1, . . . ,≡n on the class of objects of C. Let
V (X) and V (Y ) be edges of H(C), where X and Y are objects of C.
Let V (X) ∼i V (Y ) if and only if X ≡i Y . The definition of ∼i does
not depend on the choice of X and Y , because X ∼= Y if and only if
V (X) = V (Y ) [11, Theorem 4.2]. It is easy to see that the relations
of M(H(C)) are controlled by the equivalence relations ∼1, . . . ,∼n. A
similar argument shows the converse.

From now on, let n ≥ 2 be a fixed integer, and let C be a fixed
full subcategory of Mod-R whose objects are indecomposable right R-
modules of finite type i, with i ≤ n. As a consequence, the hypergraph
H(C) is simple, cf. [12, end of Section 4].

For each n-tuple of pairwise disjoint classes X1, . . . , Xn, we define the
n-partite complete hypergraph on X1 ∪̇ · · · ∪̇Xn to be the hypergraph
P (X1, . . . , Xn) with class of vertices X1 ∪̇ · · · ∪̇Xn and whose class
of edges E(X1, . . . , Xn) consists of all n-element subsets of vertices
which have exactly one vertex from each Xi [5, page 19]. Thus,
P (X1, . . . , Xn) is simple and n-uniform.
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A hypergraph H = (V,E) is n-partite if V is a disjoint union
V = U1 ∪̇ · · · ∪̇Un with each Ui not empty and such that, for each
e ∈ E, e ∩ Ui has at most one element. Clearly, a partial hypergraph
of an n-partite complete hypergraph is n-partite.

Recall that, in a commutative monoid M , an element x is an atom if
it is non-zero and, for all a, b ∈ M , the equality x = a+ b implies a = 0
or b = 0. The following generalizes [13, Proposition 3.5].

Theorem 5.4. Let H = (V,E) be a simple hypergraph. The following
are equivalent:

(i) The relations of M(H) are controlled by n permutations.

(ii) There exists an injective morphism φ:M(H)→M(P (X1, . . ., Xn))
of monoids which sends atoms to atoms, where X1, . . . , Xn are suitable
pairwise disjoint classes.

(iii) There exists an injective mapping η:E → E(X1, . . . , Xn) such
that

(5.5) χ(e1) + · · ·+ χ(er) = χ(f1) + · · ·+ χ(fs)

in M(H) if and only if

(5.6) χ(η(e1)) + · · ·+ χ(η(er)) = χ(η(f1)) + · · ·+ χ(η(fs))

in M(P (X1, . . . , Xn)), where X1, . . . , Xn are suitable pairwise disjoint
classes.

Proof. Suppose (i) holds, for a suitable choice of equivalence relations
∼1, . . . ,∼n on the class of edges E. Let πi:E → E/∼i be the canonical
projection. Technically, it may not be possible to form the quotient
E/∼i, because the equivalence classes of ∼i may be proper classes; in
that case we tacitly replace the quotient with a class of representatives.

Let Xi = (E/∼i) × {i}, and let pi:E → Xi be defined by pi(e) =
(πi(e), i). This makes X1, . . . , Xn pairwise disjoint classes. The
mapping pi induces a monoid homomorphism p̃i:M(H) → N(Xi) as
follows: If χ(e1) + · · ·+ χ(er) is an arbitrary element of M(H), let

p̃i(χ(e1) + · · ·+ χ(er)) = pi(e1) + · · ·+ pi(er).
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To show that it is well-defined, suppose (5.5) holds in M(H). Then
r = s, and there exists a permutation σ ∈ Sr such that eμ ∼i fσ(μ) for
all 1 ≤ μ ≤ r. Therefore,

pi(e1) + · · ·+ pi(er) = pi(fσ(1)) + · · ·+ pi(fσ(r))

= pi(f1) + · · ·+ pi(fr),

and p̃i is well-defined. Furthermore, we have an injective monoid
homomorphism

p = p̃1× · · ·×p̃n:M(H) −→ N(X1)× · · ·×N(Xn).

To show injectivity, suppose that

pi(e1) + · · ·+ pi(er) = pi(f1) + · · ·+ pi(fs)

holds in N(Xi) for each 1 ≤ i ≤ n. Then r = s, and there exists
a permutation σi ∈ Sr such that pi(eμ) = pi(fσi(μ)), i.e., such that
eμ ∼i fσi(μ) for each 1 ≤ μ ≤ r. This implies (5.5), hence p is injective.

In the following diagram, α is the isomorphism defined by α(g1, . . ., gn)
= g1 + · · ·+ gn, while the bottom morphism is set inclusion.

M(H)

�

φ

�

p
N(X1)× · · ·×N(Xn)

�

α

M(P (X1, . . ., Xn)) � N(X1 ∪̇···∪̇Xn)

For each e ∈ E, we have αp(χ(e)) = p1(e) + · · · + pn(e). Thus, ε =
{p1(e), . . . , pn(e)} is an edge in E(X1, . . . , Xn), and χ(ε) = αp(χ(e)) ∈
M(P (X1, . . . , Xn)). Inasmuch asM(H) is generated by {χ(e) : e ∈ E},
we conclude that the image of αp is contained in M(P (X1, . . . , Xn));
thus, we can complete the diagram to a commutative square by adding
φ, necessarily injective. Since the atoms ofM(H ′) are the characteristic
functions of edges for any simple hypergraphH ′, the equality φ(χ(e)) =
χ(ε) also implies that φ sends atoms to atoms. We have thus proved
that (ii) holds.

Now assume (ii). For each e ∈ E, χ(e) is an atom of M(H); thus,
φ(χ(e)) is an atom of M(P (X1, . . . , Xn)). Hence, it is equal to χ(η(e))
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for some η(e) ∈ E(X1, . . . , Xn). Since η(e) is uniquely determined,
we have a mapping η:E → E(X1, . . . , Xn). If (5.5) holds, applying
φ to it we obtain that (5.6) holds. If the latter holds, the former
holds by injectivity of φ. In particular, η(e) = η(f) implies that
χ(η(e)) = χ(η(f)), which is equivalent to χ(e) = χ(f), which implies
e = f . Hence, η is injective, and this completes the proof that (ii)
implies (iii).

Eventually, assume (iii). For each 1 ≤ i ≤ n and each pair e, f ∈ E,
define e ∼i f if η(e)∩Xi = η(f)∩Xi. This is an equivalence relation on
E. Assume (5.5) holds, so that (5.6) holds. Inasmuch as P (X1, . . . , Xn)
is n-uniform, we must have r = s.

Write χ(η(eμ)) = eμ,1 + · · ·+ eμ,n, where eμ,i ∈ Xi for all 1 ≤ i ≤ n,
and write χ(η(fμ)) accordingly. Thus,

r∑
μ=1

n∑
i=1

eμ,i =

r∑
μ=1

n∑
i=1

fμ,i,

and, in view of the fact that the classes X1, . . . , Xn are pairwise
disjoint, it follows that

r∑
μ=1

eμ,i =

r∑
μ=1

fμ,i

for each 1 ≤ i ≤ n. Thus, there exist σ1, . . . , σn ∈ Sr such that
eμ,i = fσi(μ),i, i.e., η(eμ)∩Xi = η(fσi(μ))∩Xi. Hence, eμ ∼i fσi(μ), for
1 ≤ i ≤ n and 1 ≤ μ ≤ r. Conversely, if r = s and such permutations
exist, then (5.6) holds; hence, (5.5) also holds. This proves that (i)
holds with respect to the equivalence relations ∼1, . . . ,∼n.

Corollary 5.7. If the relations of the monoid of a simple hypergraph
H = (V,E) are controlled by n permutations, then the same goes for
any partial hypergraph of H.

Proof. Let F be a subclass of E, and consider the partial hyper-
graph H [F ]. There is a canonical injective monoid homomorphism
ι:M(H [F ]) → M(H) which sends atoms to atoms. Thus, if φ is as
in Theorem 5.4 (ii), then φι shows that the relations of M(H [F ]) are
controlled by n permutations.
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Consider the intersection graph G of the edges E ofH , i.e., the simple
graph having E as its class of vertices, and such that two elements of E
are adjacent in G whenever their intersection is non-empty. Partition E
as the disjoint union E = ∪i∈IEi of the maximal connected subclasses
of vertices of G. For each i ∈ I, let Hi = H [Ei], i.e., let Hi be the
partial hypergraph of H on the subclass of edges Ei, and denote by Vi

its class of vertices. Note that V is the disjoint union V = ∪i∈IVi. We
refer to the hypergraphs Hi as the connected components of H .

Corollary 5.8. The relations of the monoid of a simple hypergraph
H = (V,E) are controlled by n permutations if and only the same goes
for each connected component of H.

Proof. There is a canonical isomorphism of monoids ⊕i∈IN
(Vi) →

N(V ), namely, the one which sends (gi:Vi → N)i∈I to the function
g:V → N obtained by g(x) = gi(x) for x ∈ Vi. It is easy to see that it
induces an isomorphism q:⊕i∈IM(Hi) → M(H).

For the implication not already known by the previous corollary, as-
sume that the relations of each M(Hi) are controlled by n permuta-
tions, so that there is an injective monoid homomorphism φi:M(Hi) →
M(P (Xi,1, . . . , Xi,n)) which sends atoms to atoms, for each i ∈ I.
Without loss of generality, suppose that the classes Xi,j are pair-
wise disjoint. Therefore, once we define Xj = ∪i∈IXi,j , we ob-
tain that X1, . . . , Xn are pairwise disjoint. For each i ∈ I, let
ιi:M(P (Xi,1, . . . , Xi,n)) → M(P (X1, . . . , Xn)) be the canonical em-
bedding of monoids. Define φ:⊕i∈IM(Hi) → M(P (X1, . . . , Xn)) by
φ((gi)i∈I) =

∑
i∈I ιiφi(gi). It is easy to check that φ is injective and

sends atoms to atoms, as is required.

For integers r and n such that 1 ≤ r ≤ n, let Kr
n denote the r-uniform

complete hypergraph of order n, i.e., the hypergraph whose vertices are
the elements of a set X of cardinality n and whose edges are all the
r-element subsets of X [5, page 5]. Thus, the number of edges of Kr

n

is
(
n
r

)
. Recall that, in a hypergraph, the degree of a vertex v, denoted

by d(v), is the number of edges e such that v ∈ e.

The following extends [13, Proposition 3.9].
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Corollary 5.9. Let n ≥ 2 be an integer. If a simple hypergraph
H = (V,E) admits Kn

2n as a partial hypergraph, then the relations of
M(H) are not controlled by n permutations.

Proof. In view of Corollary 5.7, we may assume H = Kn
2n. Assume,

by contradiction, that the relations of M(Kn
2n) are controlled by n

permutations, and let φ, η, X1, . . . , Xn be as in Theorem 5.4. We will
show that the partial hypergraph C = P (X1, . . . , Xn)[η(E)] is a copy
of Kn

2n, and that the latter is not n-partite, which contradicts C being
a partial hypergraph of an n-partite hypergraph.

By a construction by induction, it is possible to write E as a disjoint
union

E = {e1, . . . , em} ∪̇ {V \ e1, . . . , V \ em}.

Necessarily, m = |E|/2. The element s =
∑

v∈V v of M(Kn
2n) can be

written as s = χ(ei) + χ(V \ ei) for any i = 1, . . . ,m.

Let u be a vertex of C. Then u ∈ η(ei) or u ∈ η(V \ ei) for some i.
Since φ(s) = χ(η(ei)) +χ(η(V \ ei)), it follows that the coefficient of u
in φ(s) is strictly positive. This implies that u ∈ η(ei) or u ∈ η(V \ ei),
now for all indices i = 1, . . . ,m. Since η is injective, it follows that the
degree dC(u) of u in C is at least m. Let U be the set of vertices of C.
Then

m|U | ≤
∑
u∈U

dC(u) = n|η(E)| = n|E| = 2mn,

from which |U | ≤ 2n. Since C is n-uniform on |U | vertices, we must

have |η(E)| ≤
(|U|

n

)
. But η is injective; hence, |η(E)| = |E| =

(
2n
n

)
, so

that |U | ≥ 2n. Thus, |U | = 2n, and it follows that C is the complete
n-uniform hypergraph on 2n vertices.

To reach the required contradiction, let us finally show that C is not
n-partite. Suppose it is n-partite. Then write U as a disjoint union
U = U1 ∪̇ · · · ∪̇Un in such a way that, for each ε ∈ η(E), the set ε ∩ Ui

has at most one element. Insofar as 2n = |U1|+ · · ·+ |Un|, there exists
i = 1, . . . , n such that Ui has at least two elements. Pick an n-element
subset ε of U with two elements from Ui. Then this is an edge of C by
completeness, contradiction.
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