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BOUNDED REPRESENTATION AND
RADIAL PROJECTIONS OF BISECTORS
IN NORMED SPACES

A.G. HORVATH AND H. MARTINI

ABSTRACT. It is well known that the description of topo-
logical and geometric properties of bisectors in normed spaces
is a non-trivial subject. In this paper we introduce the concept
of bounded representation of bisectors in finite-dimensional
real Banach spaces. This useful notion combines the con-
cepts of bisector and shadow boundary of the unit ball, both
corresponding with the same spatial direction. The bounded
representation visualizes the connection between the topology
of bisectors and shadow boundaries (Proposition 2) and gives
the possibility to simplify and to extend some known results
on radial projections of bisectors. Our main result (Theorem
1) says that, in the manifold case, the topology of the closed
bisector and the topology of its bounded representation are
the same; they are closed, (n — 1)-dimensional balls embed-
ded in Euclidean n-space in the standard way.

1. Introduction and some preliminary results. In recent
times, Minkowski geometry (i.e., the geometry of finite dimensional,
real Banach spaces, see [13]) became again an important research
field. Strongly related to Banach space theory, Finsler geometry, and
classical convexity, it is permanently enriched by new results in applied
disciplines. The most examined concepts of it naturally connect to
physics, functional analysis, and non-Euclidean geometries. We will not
introduce basic notions and terminology of this field going beyond our
purpose; for its fundamentals the reader is referred to the monograph
[13] and to the surveys [10, 11]. The present paper refers to bisectors
in (finite dimensional normed or) Minkowski spaces, i.e., to collections
of points which have, in each case, the same distance (with respect to
the corresponding norm) to two given points x, y of these spaces. Note
that bisectors in Minkowski spaces play an essential role in discrete and
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computational geometry, mainly in view of constructing (generalized)
Voronoi diagrams, see, e.g., the surveys [2, 10].

In some previous papers on this topic (see [4, 5, 6]), A.G. Horvéth
proved that if the unit ball of a Minkowski space is strictly convex, then
every bisector is a topological hyperplane (see Theorem 2 in [4, 10]).
On the other hand, Example 3 in [4] shows that strict convexity does
not follow from the fact that all bisectors are topological hyperplanes.

In these papers, the connections between shadow boundaries of the
unit ball and bisectors (regarding the direction x — y or the points x
and y, respectively) in Minkowski spaces are investigated. The author
was sure that the following statement is true: A bisector is a topological
hyperplane if and only if the corresponding shadow boundary is a topo-
logical (n — 2)-dimensional sphere. This conjecture was proved only in
the three-dimensional case (Theorems 2 and 4 in [5]). In [6], some fur-
ther topological observations on shadow boundaries are discussed, e.g.,
that they are compact metric spaces containing (n — 2)-dimensional
closed, connected subsets separating the boundary of K. Horvath also
investigated the manifold case, and he proved (using an approximation
theorem for cell-like mappings) that the shadow boundary is homeo-
morphic to an (n — 2)-dimensional sphere. Consequently, this result (if
the bisector is a homeomorphic copy of R™~!, then the shadow bound-
ary is a topological (n — 2)-sphere) confirms the first direction of the
above mentioned conjecture.

Independently, Martini and Wu [12] introduced and investigated the
concept of radial projection of bisectors. Strongly using the central
symmetry of Minkowskian balls, they proved some interesting results
on radial projections of bisectors.

Theorem 2.6 in [12] says that the shadow boundary is a subset of
the closure of such a radial projection, and Theorem 2.9 there refers to
the converse statement. If, for a point x from the boundary of the unit
ball, there exists a point z, unique except for the sign, such that x is
orthogonal to z in the sense of Birkhoff (see below), then z is a point
of the radial projection of the bisector corresponding to x and —x.

In the present paper we introduce the concept of bounded represen-
tation of bisectors, which yields a useful combination of the notions of
bisector, shadow boundary and radial projection. We prove that the
topological properties of the radial projection (in higher dimensions) do
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not determine the topological properties of the bisector. More precisely,
the manifold property of the bisector does not imply the manifold prop-
erty of the radial projection (see our Example below). The situation
is different with respect to the bounded representation of the bisector.
Namely, if one of them is a manifold, then the other is also. More pre-
cisely, if the bisector is a manifold of dimension n — 1, then its bounded
representation is homeomorphic to a closed (n — 1)-dimensional ball
B"! (ie., it is a cell of dimension n — 1). And, conversely, if the
bounded representation is a cell, then the closed bisector is also (The-
orem 1).

We will also present new approaches to higher dimensional analogues
of several theorems given in [12]. By our new terminology, we will
rewrite and reprove Theorems 2.6, 2.9, and 2.10 from that paper.

2. Basic notions and radial projections of bisectors. Let K be
a compact, convex set with nonempty interior (i.e., a convex body) in
the n-dimensional Euclidean space E™ which, in addition, is centered
at the origin O. Then the (n — 1)-dimensional boundary bd K of K, in
the following also denoted by S, can be interpreted as the unit sphere
of an n-dimensional (real Banach or) Minkowski space M™ with norm
-1, e,

S:={xeM":|x| =1}

It is well known that there are different types of orthogonality in
Minkowski spaces. In particular, for x,y € M™ we say that x is Birkhoff
orthogonal to y if ||x +ty|| > ||x|| for all ¢t € R, denoted by x L gy (see
[3]); and x is isosceles orthogonal to y if ||x + y|| = ||x — y]||, denoted
by xLry (cf. [7]). The shadow boundary S(K,x) of K with respect to
the direction x is the intersection of S and all supporting lines of K
having direction x. Evidently, S(K,x) = {y € S : yLpx}.

Given a point x € S, the bisector of —x and x, denoted by B(—x,x),
consists of all those vectors y which are isosceles orthogonal to x with
respect to the Minkowski norm generated by K. The radial projection
P(x) of this bisector consists of those points y of S for which there is
a positive real value t such that ty € B(—x, x).

We remark that, in the relative topology of S, P(x) can either be
closed or open; this can easily be seen in the cases of the Euclidean and
of the maximum norm. Thus, for topological investigations in higher
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dimensions we suggest the extension of the definition of B(—x,x) to
ideal points by a limit property.

Definition 1. Consider the compactification of E™ to a closed ball
B™ by the set of the common ideal points Xo, (—Xoo 7# Xoo) Of the
parallel half-lines. We say that y := ooy € B(—x,x) if there is a
non-constant sequence (t;y;) € B(—x,x) for which lim; ., y; = y.
We call the points of the original bisector ordinary points and the new
points ideal points, respectively.

With this extended definition of B(—x,x), P(x) is closed as we show
in Proposition 1. Let P(x)' be the collection of those points y of S for
which

Ity + x| < [ty — x|

holds, for all real ¢ > 0. Let P(x)" denote the image of P(x)! under
reflection at the origin.

Proposition 1. In the described way, S is decomposed into three
disjoint sets: P(x), P(x)!, and P(x)". P(x) is an at least (n — 2)-
dimensional closed (and therefore compact) set in S which is connected
forn >3, the sets P(x)! and P(x)" are arc-wise connected components
of their union.

Proof. By Theorem 5.1 of [12], P(x) is connected for n > 3. We
prove that it is also closed with respect to the relative topology of the
boundary of the unit ball. To see this, consider a convergent sequence
(yi) in P(x) having the limit y. For any ¢ there is a new sequence
of points (y’') such that for every pair {i,j} there are t; € R" and
x] € B(—x;x) such that (t/y’') = x!. (For an ordinary point the
mentioned sequence can be regarded as a constant one.) It is clear that
for the diagonal sequence (y*') we have

lim y; =y,

17— 00
implying that y is also in P(x).

The continuity property of the norm function implies that all points
of S belong to precisely one of the three mentioned sets. Thus the
first statement is clear, and the union of P(x)! and P(x)" is open with
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(1-t)(y-x) (1-t)y z¢2tx  z

FIGURE 1. Vectors used in the proof of Proposition 1.

respect to the topology of S. Observe once more that P(x)! and P(x)"
are images of each other regarding reflection at the origin. Furthermore,
they are arc-wise connected sets. To prove this, consider the following
inequality for an element y of P(x)":

Iy —tly =x) = x| = (L = D)lly —=x[| < (1 = )]y + x|
= l(y =ty —x)) +x = 2tx]|,

where 0 < ¢t < 1 is an arbitrary parameter. The point z; =
(y —tly—x)+x = (1 -2ty + (1+t)x is on the right half-line,
starting with the point (1 — t)(y + x) = z; — 2tx and being parallel
to the vector x, meaning that its norm is larger than the norm of the
point z; — 2tx (see Figure 1). Thus,

12| = [z — 2t

and so
[(y —tly —x)) = x| < [[(y — t(y —x)) +x]|.

A consequence of this inequality is that the arc of S connecting the
respective endpoints of the vectors y and x belongs to the set P(x)".
Thus, every two points of P(x)” can be connected by an arc, as we
stated. Now, with respect to the topology of their union, they are
connected components. This means that both of them are also open
with respect to the topology of S. Thus P(x) separates S. By a
theorem of Aleksandrov (Theorem 5.12 in [1, vol. I]) we get that the
topological dimension of P(x) is at least n — 2. o
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Remark. If we identify the opposite points of S, then we get an
(n — 1)-dimensional projective space P dissected into two parts, one
of them open and the other one closed, respectively. The open part
contains the points of the identified sets P(x)" and P(x)!, while the
closed one contains the identified point-pairs of P(x).

3. Bounded representation of the bisector. We now define an
important mapping of the bisector.

Definition 2. Let z be a point of B(—x,x). If it is an ordinary
point, then there is a unique value 1 < ¢, < oo for which z €
(tzS + ) N (tzS — z). Let ® : B(—x,x) — K denote the mapping
which sends z into ®(z) = (1/t,)z. We extend ® to the ideal points by
the following rule: The image of an ideal point is its radial projection.
Denote the image set of ® (with respect to this extended mapping) by
O(B(—x,x)). We will call this set the bounded representation of the
bisector.

Observe that, for ordinary points, the mapping ® of the bisector is
continuous.

We now have a connection between the concept of bisector and
metrical properties of K.

Proposition 2. The bounded representation of the bisector is the
union of the shadow boundary of K and the locus of the midpoints of
the chords of K parallel to x.

Proof. For an ordinary point z of the bisector we have 1 < ¢, < oo,
and thus the norm of

1, %(l(z—x)—i—l(z"‘x))

ty ty

is less than or equal to 1.

If it is equal to 1, then the point (1/t,)z is a point of a horizontal
segment (parallel to x) of the boundary and thus a point of the shadow
boundary, and the set of all points corresponding to the value ¢, yields
a horizontal segment of S. If now ¢t > t,, the points of the bounded
representation corresponding to this value ¢ form another segment
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t, =175 lIylI=1 t=[lz][~1,2

FIGURE 2. Connection between the parameters ¢t and ¢.

containing the segment of t,. Thus, the directions determined by the
points of the segment of ¢, are ideal points of the bisector, proving that
the points of the shadow boundary are images of certain ideal points.

In the other case the obtained point is the midpoint of that chord
whose endpoints are (1/t;)(z — x) € S and (1/t,)(z + x) € S,
respectively.

Now, by the definition of ideal points, the continuity of the mapping
is clear. In fact, we have to check that the image of a point of the
bisector with large norm is close to the boundary S of K. Since, by
definition, ¢, is equal to ||z — x||, we have the two inequalities

1> 1 ” =]l 1 < 1
Z |77zl = = = )
ta lz—x[l  [lz/llzll —=/lz[[ll = 1+ (lx[|/l[z])

showing that, for z with large norm, its bounded representation is close
to S. To visualize the proof, we show in Figure 2 the bisector and its
bounded representation in a two-dimensional space. ]

James proved in [8] that a Minkowski space is Euclidean if and only if
all occurring bisectors are contained in an (n—1)-dimensional subspace.
Together with Proposition 2 this implies immediately the following:

Corollary. The bounded representation of the bisector B(x, —x) with
respect to any point x from the unit sphere of a Minkowski space is
contained in an (n — 1)-subspace if and only if the Minkowski space is
Euclidean.
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By the concept of shadow boundary, some results from [12] on
Birkhoff orthogonality in the plane can be simplified or extended to
higher dimensions. Such statements are, for example, Theorems 2.6
and 2.9 from [12].

Theorem 2.6 in [12] says that the shadow boundary is a subset of
the closure of the radial projection. A consequence of the concept of
bounded representation of the bisector is the fact that such theorems
can be extended to higher dimensions. To prove this, we observe that
the radial projection is exactly the radial projection of the bounded
representation of the bisector, implied by Lemma 1. So it contains the
shadow boundary, extending Theorem 2.6 of [12].

Theorem 2.9 in [12] refers to the converse statement. If, for a point
x of S, there exists a unique point z (except for the sign) such that
x is orthogonal to z in the sense of Birkhoff, then z is a point of the
radial projection of the bisector corresponding to x. We can say that
those points of K which are unique in their carrying supporting line
of K parallel to x (called the sharp points of the shadow boundary
corresponding to x) belong to the radial projection of the bisector of x.
This is also a consequence of our present definitions and Proposition 2.

The main aim of this paper is to prove the following theorem on the
topology of the bounded representation of the bisector.

Theorem 1. If the bisector is a manifold of dimension n — 1
with boundary, then its bounded representation is homeomorphic to
the (n — 1)-dimensional closed ball B"~'. Conversely, if the bounded
representation is a topological ball of dimension n—1, then the bisector
is of the same type. Furthermore, its relative interior (which is the set
of its ordinary points) is a topological hyperplane of dimension n — 1.

Proof. Assume that the bisector is a manifold of dimension n — 1
with boundary. Then an ordinary point has a relatively open (n — 1)-
dimensional neighborhood in the bisector, and thus there are interior
points. On the other hand, there is no ideal point which could be in
the relative interior of the bisector, implying that the set of ordinary
points of the bisector is a manifold of dimension n — 1. Hence, our
assumption implies that the shadow boundary S(K,x) is a manifold of
dimension n — 2. In fact, from Theorems 4 and 5 in [6], we get that
the shadow boundary is also a topological manifold of dimension n — 2.
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[2,58-%

FIGURE 3. Bounded representation of the bisector.

Theorem 2 says that it is homeomorphic to S"~2. On the other hand,
the set C' of midpoints of correspondingly directed chords containing
interior points of K is always homeomorphic to the positive part S+ of
the boundary S of K, determined by the shadow boundary. Thus, it is
homeomorphic to R®~!. Finally we observe that the boundary of the
latter set C' is the shadow boundary itself, showing that the bounded
representation of the bisector is homeomorphic to B!, as we stated.

We remark that the converse statement is true if and only if the
manifold property of the bounded representation can be extended to
the bisector. This is clear for the points mapping to the interior of
K, but it is not evident for other points of the bisector. The problem
is that the pre-images of a point of the shadow boundary could form
a point or a half-line, respectively. Thus, ® is not an injective (but
a surjective) continuous mapping. Clearly, both of the two sets (the
bisector and its bounded representation) are continua, i.e., compact,
connected Hausdorff (73) spaces. Moreover, the points and half-lines
are cell-like sets; thus, @ is a cell-like mapping. Restricting ¢ to the
ideal points of the bisector, we get a bijective mapping onto the shadow
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boundary. We prove that the set of ideal points is compact in the
bisector. It is a proper part I of S"~! bounding the topological ball
B™. Hence this point set can be regarded as a subset of an (n — 1)-
dimensional Euclidean space R"~1. (We can consider x, as the center
of a stereographic projection.) It is clear that I is bounded. It is
also closed by its definition, and so it is compact by the Heine-Borel
theorem on compact sets in R"~!. On the other hand, the shadow
boundary can also be regarded as an (n — 2)-sphere embedded into a
Euclidean (n — 1)-space, because x is not a point of it. A continuous
and bijective mapping from a compact set of R*~! into R ! is a
homeomorphism (see [9]). Thus, the ideal points of the bisector give a
topological (n — 2)-dimensional sphere.

Now we prove that the ordinary points of the bisector are, with
respect to its relative topology, interior points of it. We remark that
it is trivial for a point z € B(—x,x) if ®(z) is an interior point of
K, because ® (by its definition) is a homeomorphism on the collection
of such points onto the interior of the bounded representation of the
bisector. Thus, it is also relatively open with respect to the bisector,
and this part of the bisector is a topological manifold, homeomorphic
to R*1.

Now let ®(z) belong to the shadow boundary. Since it is a topological
sphere of dimension n — 2, there is a cell of dimension n — 2 (a
homeomorphic copy of a closed ball of dimension n — 2), namely Z,
containing ®(z) in its interior. The pre-image ®~*(int B) of the interior
int B of B is (by the continuity of ®) open with respect to the topology
of the bisector and contains z. Thus, it also has an interior point with
respect to the topology of the bisector.

Finally, we observe that, from the compactness of B, the existence of
an ¢ follows for which the set

{vilzl —e < vl <zl —e,ve @ (B)}

is a closed cone (truncated by two parallel surfaces) containing z in its
interior. Since the interior of this body is homeomorphic to R™~!, we
get that the set of ordinary points is a manifold of dimension n — 1. In
the proof of Theorem 5 from [6] it is shown that if the ordinary points of
the bisector yield an (n—1)-manifold, then it is homeomorphic to R*~1,
and Theorem 6 there establishes that it is a topological hyperplane.
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the radial projection

FIGURE 4. The radial projection is not a manifold.

Thus, we proved that the closed bisector is a cell of dimension n — 1
whose interior can be embedded in the n-dimensional Euclidean space
in a standard (unknotted) way, as we stated. O

Extending the bisector by the addition of ideal points simplifies
its topology. However, whereas this simplification is reflected in the
bounded representation (as shown by Theorem 1), in higher dimension
it is not, in general, reflected in the radial projection. To verify this
we give an example showing that it is possible that the bisector is a
manifold with boundary of dimension n— 1, but P(x) is not a manifold.

Example. Take a Cartesian coordinate system in the Euclidean
space, with the respective coordinate-axes z,y and z, and vectors x
and z having coordinates (1,0,0) and (0,0, 1), respectively. Consider
the example from [4] in which the body K is the convex hull of two
half-circles with parallel diameters and in symmetric position with
respect to the origin, such that their affine hulls are parallel to the
plane x = 0 (see Figure 4). Besides the two half circles, the ruled
part of the boundary of their convex hull contains four conic surface
parts and two opposite triangles. The bounded representation of the
bisector corresponding to the direction orthogonal to the planes of the
half-circles is homeomorphic to a plane. It can be obtained in the
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following way: Cut the surface of K by the segments parallel to x into
two parts. The described half-disks do no longer belong to the surface.
Apply an affinity to these two parts, by the ratio 1/2, with direction
orthogonal to the end planes. Finally glue these parts together at their
common vertical segment [—z, z]. It is clear that the central projection
of this ruled surface from the midpoint of [—z,z] is the union of those
curves which are the intersections of the planes through [—z,z] and
the respective points of S. The four parts obtained are conic surfaces
separated by —z, z and the two opposite points of the half-circles lying
on the horizontal plane z = 0. Of course, in this case the radial
projection is not a topological manifold.
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