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ON THE SIGNATURE OF
A CLASS OF CONGRUENCE SUBGROUPS

C.J. CUMMINS AND N.S. HAGHIGHI

ABSTRACT. We find explicit formulas for the signatures
of a large family of congruence subgroups of SL(2,Z). The
family depends upon five parameters and includes a family
of groups first introduced by Larcher. Larcher showed that
every (regular) congruence subgroup G contains at least one
subgroup H from this family, such that G and H have the
same parabolic elements. Thus, every congruence subgroup
contains a “large” Larcher subgroup. These facts were used
by Sebbar to classify the torsion-free, genus-zero congruence
subgroups of PSL(2,R). The results of this paper have been
used by one of the authors to classify the torsion-free, genus-
one congruence subgroups of PSL(2,R).

1. Introduction. Let Γ := SL(2,Z), and define a subgroup H
of Γ to be a congruence subgroup if it contains one of the principal
congruence subgroups:

Γ(N) =

{(
a b
c d

)
∈ Γ | (a− 1) ≡ (d− 1) ≡ b ≡ c ≡ 0 (mod N)

}
.

The smallest N such that Γ(N) is contained in H is called the level of
H .

Let H be the complex upper half-plane and H∗ = H ∪ Q∗ where
Q∗ = Q∪{∞}. IfH is a subgroup of Γ, then H acts on both Q∗ and H∗

by fractional linear transformations. IfH is a finite index subgroup of Γ,
then the number of orbits of H acting on Q∗ is called the cusp number
of H . For each α ∈ Q∗, let Hα be the stabilizer of α in H . The set of
cusp widths of H is defined to be C(H) = {Index (Γα : Hα) | α ∈ Q∗}
where Γα and Hα are the images of Γα and Hα in Γ := PSL (2,Z),
respectively.

It is a surprising fact that, for any congruence subgroup H , the set of
cusp widths C(H) is closed under taking greatest common divisors and
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least common multiples. To establish this result, Larcher in [3] defined
the following congruence subgroups of level m:

Γτ (m;m/d, ε, χ)

=

{
A ∈ Γ | A=±

(
1 + k1(m/εχ) k2d
k3(m/χ) 1 + k4(m/εχ)

)
, k3≡τk1 (mod χ)

}
,

where d divides m, m/d = h2n, with n square-free, ε divides h and χ

divides gcd (dε,m/dε2).

Larcher showed that the set of cusp widths of this class of congruence
subgroups is closed under taking greatest common divisors and least
common multiples. He then proved, for any congruence subgroup H
of level m, that the set of its cusp widths, C(H), coincides with the
set of cusp widths C(Γτ (m;m/d, ε, χ)) for suitable d, ε, χ and τ , and
hence every congruence subgroup has the required property. In fact,
his result is somewhat stronger, since he shows that every (regular)
congruence subgroup H contains at least one Larcher subgroup L with
the property that, if h is an element of H which stabilizes some α in
Q∗, then h is also an element of L, so that L is a “large” subgroup of
H .

Sebbar [6] made use of Larcher’s results to classify the torsion-free,
genus-zero congruence subgroups of PSL(2,R). The results of this
paper have also been used by one of us [2] to classify the torsion-free,
genus-one congruence subgroups of PSL(2,R). Recently, Mason and
Schweizer have extended Larcher’s results to congruence subgroups of
SL(2, D), where D is any Dedekind ring [4].

Although these results indicate the importance of Larcher’s family of
subgroups, some of their basic properties have not been studied. In
this paper we consider a somewhat larger set of congruence subgroups:

H(p, q, r;χ, τ)

=

{(
1 + ap bq
cr 1 + dp

)
∈ Γ | a, b, c, d ∈ Z, c ≡ τa (mod χ)

}
,

where p divides qr and χ divides gcd (p, qr/p). These groups include
Γ(N) = H(N,N,N, 1, 1), Γ0(N) = H(1, 1, N, 1, 1) and Γ1(N) =
H(N, 1, N, 1, 1). The main result of this paper will be simple formulas
for the signatures of this family of groups. We find it remarkable that
an explicit result of this type exists for such a large family.
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To state our results we first give some notation.

We will call a subgroup of Γ a regular subgroup if it contains −12
where 12 is the identity in Γ. If a subgroup is not regular, we will call
it irregular. In general, the group H(p, q, r;χ, τ) is irregular, and so
we will also consider the associated regular subgroup ±H(p, q, r;χ, τ).
Larcher’s subgroups are special cases of this set of subgroups since
Γτ (m;m/d, ε, χ) = ±H(m/εχ, d,m/χ;χ, τ) (see Lemma 2.8).

Let H be one of the groups H(p, q, r;χ, τ) or ±H(p, q, r;χ, τ). We
compute the signature (μ, ν2, ν3, ν∞, ν′∞) of H where μ is the index of
H in Γ, ν2 and ν3 are the number of inequivalent elliptic fixed points
of order 2 and 3, respectively, ν∞ is the number of inequivalent regular
cusps and ν′∞ is the number of inequivalent irregular cusps of H . See
Section 4 for the definitions. Note that these data determine the genus
of H . See, for example, [8, Proposition 1.40].

For integers a and b, we say that a exactly divides b if a divides b and
gcd (a, b/a) = 1. In this case we write a||b.
For a positive integer N , define ν2(N) and ν3(N) to be the number

of inequivalent elliptic fixed points of order 2 and 3, respectively, of
Γ0(N). Explicitly, these are given by the following expressions (see, for
example, [8, Proposition 1.43]):

ν2(N) =

{
0 if N is divisible by 4,∏
p|N

(
1 +

(
−1
p

))
otherwise,

ν3(N) =

{
0 if N is divisible by 9,∏
p|N

(
1 +

(
−3
p

))
otherwise,

where
(
p

)
is the extended quadratic residue symbol:

(−1

p

)
=

⎧⎪⎨
⎪⎩

0 if p = 2,

1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4),

(−3

p

)
=

⎧⎪⎨
⎪⎩

0 if p = 3,

1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).
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We will also require the following definitions and lemma. Let
H(p,N ;χ) = H(p,N, 1;χ, 1), for integers p, N and χ such that p|N
and χ|gcd (p,N/p).

Lemma 1.1. Suppose p, q, r, χ and τ are positive integers such
that p|qr and χ|gcd (p, qr/p). Let g = gcd (χ, τ). Then the groups
H(p, q, r;χ, τ) and H(p, gqr;χ/g) have the same signature.

Let k = lcm [gcd (p2, N)χ,N ], and define c(p,N ;χ) as follows:

c(p,N ;χ) =
χNφ(p)

φ(N)

∑
d|k/χ

φ(d)φ(d′)
lcm [d, d′, pk/N ]

,

where d d′ = k/χ and φ is Euler’s function. In Section 7, we will show
that c(p,N ;χ) is the number of orbits of H(p,N ;χ) acting on a set
related to the cusps of Γ(N).

Our main results are as follows:

Theorem 1.2. Suppose p,N and χ are positive integers such
that p | N and χ | gcd (p,N/p). Let c = c(p,N ;χ) and ψ(N) =
N
∏
p|N,p prime(1 +

1
p ). The signature (μ, ν2, ν3, ν∞, ν′∞) of H(p,N ;χ)

is:

μ =

⎧⎪⎨
⎪⎩
χφ(p)ψ(N), if p = 2 and χ = 1,

or p = 1,

1
2
χφ(p)ψ(N), otherwise.

ν2 =

⎧⎪⎨
⎪⎩
ν2(N) if p = 1,

or p = 2 and 2||N ,

0 otherwise.

ν3 =

⎧⎪⎨
⎪⎩
ν3(N) if p = 1,

or p = 3 and 3||N ,

0 otherwise.
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(ν∞, ν′∞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c, 0) if p = 2 and χ = 1,

or p = 1,(
2
5c,

1
5c
)

if p = 2, χ = 2, 2|| (N/p),(
1
4c,

1
2c
)

if p = 2, χ = 2, 2k|| (N/p), k odd, k > 1,(
1
3c,

1
3c
)

if p = 2, χ = 2, 2k|| (N/p), k even,(
2
5c,

1
5c
)

if p = 4, 2 � (N/p), (so χ = 1),(
1
2c, 0

)
otherwise.

The signature of ±H is (μ, ν2, ν3, ν∞ + ν′∞, 0).

In Section 2 the index formula will be derived. The number of
inequivalent elliptic fixed points is found in Section 3. To compute
the cusp number, we first find the number of orbits of (a conjugate of)
H(p, q, r;χ, τ) acting on the subset of (Z/NZ)2 consisting of elements
of additive order N where N = qrg and g = gcd (χ, τ). This is the
expression c(p,N ;χ) above. The virtue of working with this expression
is that it is “multiplicative” in the generalized sense of Selberg [7], as
shown in Section 6. This reduces the calculation to the case that the
level is a prime power. The number of orbits is given by the Cauchy-
Frobenius formula. This initial expression is quite complex, and we do
not have an explanation as to why the final expression for c(p,N ;χ)
is so simple. Having found the expression for c(p,N ;χ), the task of
computing the cusp numbers involves a detailed analysis of the action
of −12, which is done in Section 7 using results from Section 6.

2. The index formulas. In this section we compute the indices
of H(p, q, r;χ, τ) and ±H(p, q, r;χ, τ) in Γ and also the indices of their
images in Γ.

We first recall the following easy proposition. For positive integers
p,q and r such that p|qr, it is straightforward to verify that

H(p, q, r) =

{(
α β
γ δ

)
∈ Γ | α− 1 ≡ δ − 1 ≡ 0 (mod p),

β ≡ 0 (mod q), γ ≡ 0 (mod r)} ,
is a subgroup of Γ, and we have
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Proposition 2.1.

Index (Γ : H(p, q, r)) = pqr
∏
�|qr

� prime

(
1 +

1

�

) ∏
�|p

� prime

(
1− 1

�

)

= φ(p)ψ(qr).

Now define ρ : H(p, q, r) → Z/gZ × Z/pZ × Z/pZ by ρ
(
α β

γ δ

)
=

((α − 1)/p, β/q, γ/r), where g = gcd (p, qr/p). It is not difficult to
verify that ρ is a group homomorphism.

Lemma 2.2. The homomorphism ρ is surjective.

Proof. First note that ρ(
(

1 q

0 1

)
) = (0, 1, 0), and ρ(

(
1 0

r 1

)
) = (0, 0, 1),

so to show that ρ is surjective, it is sufficient to findm =
(

1+ap bq

cr 1+dp

)
∈

H(p, q, r) such that a is coprime to g. Set s = qr/p, and choose a =
1+wp where w is a positive integer chosen such that 1+ap = 1+p+wp2

is a prime number coprime to s. This is possible since 1+ p and p2 are
coprime, so by Dirichlet’s theorem there are infinitely many primes in
the sequence 1 + p + wp2, w = 1, 2, 3, . . . . Note that this choice of a
implies a is coprime to p and hence also coprime to g. We must now
show that we can choose b, c and d such that m is in H(p, q, r). First,
set c = 1, and then choose b to be any solution to the congruence sb ≡ a
(mod 1+ap). This is possible since s is coprime to 1+ap. This implies
that bcs− a is divisible by 1+ ap, and so we set d = (bcs− a)/(1+ ap).
With this choice of a, b, c and d we can check that m has determinant
1 and so is in H(p, q, r), as required.

Proposition 2.3. The kernel of ρ is H(gp, pq, pr).

Proof. First note that gp divides p2qr so that the group H(gp, pq, pr)

exists. Then m =
(

1+ap bq

cr 1+dp

)
∈ H(p, q, r) is in ker (ρ) if and only

if a ≡ 0 (mod g), b ≡ 0 (mod p), c ≡ 0 (mod p) if and only if
m ∈ H(gp, pq, pr). For the last step, we have used the fact that
det (m) = 1 implies that d ≡ −a (mod g).
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Definition 2.4. Let S be a subgroup of Z/gZ×Z/pZ×Z/pZ. Then
we define H(p, q, r;S) to be the preimage of S under ρ.

Proposition 2.5.

Index (Γ : H(p, q, r;S))

= |S|−1gp3qr
∏
�|qr

� prime

(
1 +

1

�

) ∏
�|p

� prime

(
1− 1

�

)

= |S|−1gp2φ(p)ψ(qr).

Proof. From Proposition 2.3, we have Index (Γ : H(p, q, r;S)) =
Index (Γ : Γ(gp, pq, pr))/|S|. The formula now follows from Proposi-
tion 2.1 by noting that a prime divides gp if and only if it divides p,
since g divides p and similarly a prime divides p2qr if and only if it
divides qr.

Let χ be a divisor of g and τ any integer. Let T be the sub-
group of (Z/χZ)2 generated by (1, τ), so |T | = χ. Define μ :
Z/gZ × Z/pZ × Z/pZ → (Z/χZ)2 by μ(a, b, c) = (a, c). Define
H(p, q, r;χ, τ) = H(p, q, r;μ−1(T )). Since |μ−1(T )| = gp2/χ, we have
from Proposition 2.5:

Proposition 2.6.

Index (Γ : H(p, q, r;χ, τ)) = χφ(p)ψ(qr).

Proposition 2.7.

H(p, q, r;χ, τ)

=

{(
1 + ap qb
rc 1 + dp

)
∈ Γ | a, b, c, d ∈ Z, c ≡ τa (mod χ)

}
.

Proof. If m =
(

1+ap qb

rc 1+dp

)
∈ Γ with a, b, c, d ∈ Z, then m ∈

H(p, q, r). Moreover, we have μ(ρ(m)) = (a, c) = (a, τa) since c ≡ τa
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(mod χ), so m ∈ H(p, q, r;χ, τ). Conversely, if m ∈ H(p, q, r), then

m =
(

1+ap qb

rc 1+dp

)
, with a, b, c, d ∈ Z. If also m ∈ H(p, q, r;χ, τ), then

since μ(ρ(m)) = (a, c) ∈ T , we must have c ≡ τa (mod χ).

Lemma 2.8. Larcher’s congruence subgroups satisfy:

Γτ (m;m/d, ε, χ) = ±H(m/εχ, d,m/χ;χ, τ).

Proof. The only part which is not straightforward to verify is
χ|gcd (dε,m/dε2) implies χ|g, where g = gcd (m/εχ, d(m/χ)(εχ/m)) =
gcd (m/εχ, dε). However, if χ|gcd (dε,m/dε2), then dε = kχ for
some integer k. So gcd (dε,m/dε2) = gcd (dε,m/kεχ) which divides
gcd (m/εχ, dε), so χ|g as required.

To compute the index of the image of H(p, q, r;χ, τ) in Γ, we need to
know when −12 is in H(p, q, r;χ, τ). This information is provided by
the following proposition:

Proposition 2.9. The cases when H(p, q, r;χ, τ) contains −12 are:

(1) p = 2, χ = 2, τ even.

(2) p = 2, χ = 1.

(3) p = 1.

Proof. By Proposition 2.7, an element ofH(p, q, r;χ, τ) must have the

form
(

1+ap qb

rc 1+dp

)
with c ≡ τa (mod χ). Thus, if−12 ∈ H(p, q, r;χ, τ),

we have ap = −2 and c = 0. So either p = 1 which is case (3), or p = 2.
Suppose p = 2; then χ is either 1 or 2. If χ = 1, then we are in case
(2). If χ = 2, then 0 ≡ τ(−1) (mod 2), and so τ is even, which is case
(1). Conversely, if p = 1 or p = 2, then from the definition we have
−12 ∈ H(p, q, r). If χ = 1, then the group T , defined above, is trivial.
It follows that μ(ρ(−12)) ∈ T . Hence, −12 ∈ H(p, q, r;χ, τ) in cases
(2) and (3) since χ = 1 in both cases. If χ = 2 and τ is even, then T is
the subgroup {(0, 0), (1, 0)}. So, since μ(ρ(−12)) = (1, 0) we also have
−12 ∈ H(p, q, r;χ, τ) in case (1).
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Propositions 2.6 and 2.9 now yield the expression for μ in Theorem 1.2
which is the index of H(p, q, r;χ, τ) in Γ. Since ±H(p, q, r;χ, τ) con-
tains−12, μ is also the index of±H(p, q, r;χ, τ) in Γ and±H(p, q, r;χ, τ)
in Γ. These propositions yield the equality of the indices in Lemma 1.1.

3. The elliptic fixed points of H(p, q, r;χ, τ). In this section we
determine ν2 and ν3, the number of inequivalent elliptic fixed points
of order two and three, respectively, of H(p, q, r;χ, τ). These are also
the number of inequivalent elliptic fixed points of order two and three
of ±H(p, q, r;χ, τ). We can use the fact that the signature is invariant
under conjugation to reduce the cases we have to consider. This will
also be useful later when we compute the cusp numbers.

Proposition 3.1. Let p, q, r, χ and τ be positive integers such
that p|qr and χ|gcd (p, qr/p). Let g = gcd (χ, τ). Then the groups
H(p, q, r;χ, τ) and H(p, qrg, 1;χ/g, τ/g) are conjugate in GL+(2,Q)
which is the group of nonsingular 2 × 2 rational matrices of positive
determinant.

Proof. H(p, q, r;χ, τ) has a conjugate which is contained in H(p, qr, 1;
χ, τ) since

(
1 0
0 1/r

)(
1 + ap bq
cr 1 + dp

)(
1 0
0 r

)(
1 + ap bqr
c 1 + dp

)
.

The inverse conjugation gives the reverse inclusion, so that H(p, q, r;χ,
τ) and H(p, qr, 1;χ, τ) are conjugate in GL+(2,Q).

Next we have that H(p,N, 1;χ, τ) is equal to H(p,Ng, 1;χ/g, τ/g),

where g = gcd (χ, τ). To see this, suppose
(

1+ap bN

c 1+dp

)
∈ H(p,N, 1;χ,

τ), so c ≡ aτ (mod χ), and therefore g | c. We have c = c′g
where c′ ≡ aτ/g (mod χ/g). Hence, H(p,N, 1;χ, τ) is contained in
H(p,N, g;χ/g, τ/g). Similarly, every element of H(p,N, g;χ/g, τ/g)
is in H(p,N, 1;χ, τ) so that H(p,N, 1;χ, τ) = H(p,N, g;χ/g, τ/g).
Applying the conjugation above now gives us the desired result.

By Proposition 3.1, when computing the number of inequivalent
elliptic fixed points and cusp numbers, one only needs to consider the
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groups H(p,N, 1;χ, τ) where (χ, τ) = 1. We will use this fact in the
proof of the following:

Proposition 3.2. Let p, N , χ and τ be positive integers such that
p|N , χ|gcd (p,N/p) and gcd (χ, τ) = 1. The values of ν2 and ν3 are
given by:

ν2 =

⎧⎪⎨
⎪⎩
ν2(N) if p = 1,

or p = 2 and 2||N ,

0 otherwise,

ν3 =

⎧⎪⎨
⎪⎩
ν3(N) if p = 1,

or p = 3 and 3||N ,

0 otherwise.

Proof. Let
(
a b

c d

)
be an elliptic element of H(p,N, 1;χ, τ). Then we

have |a + d| < 2. So there is no such element if p � 4 since a + d ≡ 2
(mod p). So it is enough to consider the three following cases.

If p = 1, then H(p,N, 1;χ, τ) = Γ0(N) where

Γ0(N) =

{(
a b
c d

)
∈ SL (2,Z) | b ≡ 0 (mod N)

}
.

As Γ0(N) is a conjugate of Γ0(N), the number of inequivalent elliptic
fixed points is given by ν2(N) and ν3(N) as defined in the introduction.

For p = 2, we assert that there is no elliptic element if 2 |
(N/2). To see this, suppose that

(
1+2a bN

c 1+2d

)
is an elliptic element

of H(2, N, 1;χ, τ). Then (1 + 2a)(1 + 2d) ≡ 1 (mod N), and so
1 + 2(a + d) + 4ad ≡ 1 (mod N). If 2 | (N/2), then 2 | (a + d),
and this contradicts the trace condition |2 + 2(a+ d)| < 2.

If p = 3, as in the previous case, it can be proved that there are no
elliptic elements if 3 | (N/3).
Finally, we have to consider the two cases p = 2, 2||N and p = 3, 3||N .

In both cases we must have χ = 1. Now H(p,N, 1; 1, τ) = H(p,N, 1) ⊂
Γ0(N), and this inclusion implies

H(2, N, 1; 1, τ) = H(2, N, 1) = Γ0(N),



A CLASS OF CONGRUENCE SUBGROUPS 93

since both have the same index in Γ by Proposition 2.1. Thus, if p = 2
and 2||N , the number of inequivalent fixed points is given by ν2(N)
and ν3(N). However, since 2|N , in this case, we have ν3(N) = 0 from
the formula given for ν3(N) in the introduction. Similarly,

H(3, N, 1; 1, τ) = H(3, N, 1) = Γ0(N),

since they have the same index in Γ by Proposition 2.1 and Proposi-
tion 2.9. So, in the cases p = 3 and 3||N , the number of inequivalent
elliptic fixed points is given by ν2(N) and ν3(N). However, since 3|N ,
in this case we have ν2(N) = 0 from the formula given for ν2(N) in the
introduction.

This accounts for all the cases listed in the proposition.

This completes the proof of the expressions for μ, ν2 and ν3 in
Theorem 1.2. So it remains to compute the cusp numbers. We start
in the next three sections by developing the necessary machinery. The
computation of the cusp numbers is contained in the final section.

As the expressions for ν2 and ν3 in Proposition 3.2 are independent
of τ , it follows that Propositions 3.1 and 3.2 establish the equality of
ν2 and ν3 in Lemma 1.1.

4. Double cosets and the number of inequivalent regular and
irregular cusps. We first recall some standard facts about group
actions and cusps of finite index subgroups of Γ. The treatment in
this section and the next is based on that of Miyake [5], in particular
subsection 4.2 in which Miyake computes the signatures of Γ0(N),
Γ1(N) and Γ(N).

Lemma 4.1. Let a group G act transitively on a set S, and let H be a
finite index subgroup of G. Fix s ∈ S, and write Gs for the stabilizer of
s in G. Then the map φ : H\G/Gs → H\S defined by HgGs �→ Hg(s)
is bijective. We adopt the notation H\S for the orbits of S under the
left action of H, and H\G/Gs for the orbits of H\G under the right
action of Gs. In particular, |H\S| = |H\G/Gs|.

Lemma 4.2. Under the assumptions of Lemma 4.1, we have

Index (Gg(s) : Hg(s)) = Index (Gs : (Gs)Hg) = Index (Gs : Gs∩g−1Hg),
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where (Gs)Hg is the stabilizer of Hg under the action of Gs acting from
the right on H\G.

Now, let S = Q ∪ {∞} = Q∗ be the set of cusps of Γ, i.e., the
fixed points of parabolic elements of Γ acting on H∗ by fractional linear
transformations. By [8, Proposition 1.30], if G and G′ are mutually
commensurable discrete subgroups of SL(2,R), that is to say, if

Index (G : G ∩G′) <∞ and Index (G′ : G ∩G′) <∞,

then they have the same set of cusps. In particular, the cusp set of any
finite index subgroup of Γ is Q∗. For a finite index subgroup H of Γ,
|H\Q∗| is the cusp number of H .

Note that the stabilizer subgroup of ∞ in Γ is

Γ∞ =

{
±
(
1 n
0 1

) ∣∣∣ n ∈ Z

}
.

It follows from Lemma 4.1 that

Theorem 4.3. Suppose that H is a finite index subgroup of Γ. Then
a bijective map φ : H\Γ/Γ∞ → H\Q∗ exists defined by HαΓ∞ �→
Hα(∞), and therefore |H\Q∗| = |H\Γ/Γ∞|.

Definition 4.4. Let x be a cusp of a subgroup H of Γ and σ an
element of Γ such that σx = ∞. Then n > 0 exists so that

σHxσ
−1{±12} =

{
±
(
1 n
0 1

)m ∣∣∣ m ∈ Z

}
.

If −12 /∈ H , σHxσ
−1 contains either

(
1 n

0 1

)
or

(−1 n

0 −1

)
, but not both,

and the cusp x is called regular or irregular, respectively.

The (ir)regularity of a cusp x of H is independent of the choice of σ.
See, for example, [5, Lemma 1.5.6].

To distinguish regular and irregular cusps of H , we put

Γ+
∞ =

{(
1 n
0 1

) ∣∣∣ n ∈ Z

}
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and define a map η : H\Γ/Γ+
∞ → H\Γ/Γ∞ by HαΓ+

∞ �→ HαΓ∞. Note
that Index (Γ∞ : Γ+∞) = 2.

Lemma 4.5. If H is regular, then η is a bijection.

Proof. By construction, η is surjective. If η(HαΓ+∞) = η(HβΓ+∞),
then there are h ∈ H and t ∈ Γ+

∞ such that either β = hαt or
β = hα(−t). In the first case, β ∈ HαΓ+∞, while in the second case
β = (−h)αt. Since H is regular −h ∈ H and so in the second case also
β ∈ HαΓ+

∞, η is injective.

Lemma 4.6. If H is an irregular subgroup of Γ, then with the
notation as above, we have η−1(HαΓ∞) = {HαΓ+∞, H(−α)Γ+∞}.

Proof. HαΓ∞ = H(−α)Γ∞ since −12 ∈ Γ∞, and so {HαΓ+∞,
H(−α)Γ+

∞} ⊂ η−1(HαΓ∞). For the inverse inclusion, suppose that
η(HβΓ+

∞) = η(HαΓ+
∞) and suppose thatHβΓ+

∞ 
= HαΓ+
∞. Then, since

HβΓ∞ = HαΓ∞, we must have β = hα
(−1 n

0 −1

)
, for some n ∈ Z, and

therefore β = h(−α)
(

1 −n
0 1

)
. This implies thatHβΓ+

∞ = H(−α)Γ+
∞.

Theorem 4.7. For H an irregular subgroup of Γ and α ∈ Γ, the
following are equivalent:

(1) α(∞) is an irregular cusp of H.

(2) |η−1(HαΓ∞)| = 1.

(3) Index (Γ∞(Hα) : Γ
+
∞(Hα)) = 2.

(4) Index (Γ∞ : Γ∞(Hα)) = Index (Γ+∞ : Γ+
∞(Hα)).

Proof. From the last lemma, (2) is equivalent toHαΓ+
∞ = H(−α)Γ+

∞.
On the other hand, one observes that

HαΓ+
∞ = H(−α)Γ+

∞ ⇐⇒ −α ∈ HαΓ+
∞

⇐⇒ −12 ∈ α−1HαΓ+
∞

⇐⇒
(−1 n

0 −1

)
∈ α−1Hα for some n ∈ Z
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⇐⇒ α(∞) is an irregular cusp.

This shows that (1) and (2) are equivalent. To see the equivalence
between (3) and (4), consider the action of Γ+∞ on the cosets H \ Γ.
Then we have the following diagram:

Γ∞
�

�
�
�
�

�
�
�
�
�

2

Γ∞(Hα)�
�
�
�

Γ+
∞

�
�
�
�

Γ+
∞(Hα)

where Γ∞(Hα) and Γ+
∞(Hα) are the stabilizer subgroups of the cosets

Hα in Γ∞ and Γ+∞, respectively. This diagram implies

Index (Γ∞ : Γ∞(Hα)) = Index (Γ+
∞ : Γ+

∞(Hα))

⇐⇒ Index (Γ∞(Hα) : Γ
+
∞(Hα)) = 2.

This shows that (3) and (4) are equivalent.

Finally, we show that (1) and (4) are equivalent. Since H is irregular,
we must have Hα(−12) 
= Hα. This implies −12 /∈ Γ∞(Hα). It follows

that Γ∞(Hα) is a cyclic subgroup generated either by
(

1 n

0 1

)
or by(−1 n

0 −1

)
for some n > 0. In the former case, Index (Γ∞ : Γ∞(Hα)) =

2n, Index (Γ+∞ : Γ+
∞(Hα)) = n and Index (Γ∞(Hα) : Γ

+
∞(Hα)) = 1, while,

in the latter case, Index (Γ∞ : Γ∞(Hα)) = 2n, Index (Γ+
∞ : Γ+

∞(Hα)) =

2n and Index (Γ∞(Hα) : Γ
+
∞(Hα)) = 2. This shows that (4) is equivalent

to the statement that Γ∞(Hα) contains
(−1 n

0 −1

)
for some n > 0 since,

if (4) holds, then we have just shown that Γ∞(Hα) is generated by an
element of this type. Conversely, if (4) does not hold, then Γ∞(Hα) is

generated by an element of the form
(

1 n

0 1

)
for some n > 0.

Finally, Γ∞(Hα) contains an element of the form
(−1 n

0 −1

)
for some

n > 0 if and only if
(−1 n

0 −1

)
∈ α−1Hα, which means that (1) is

equivalent to (4) and this completes the proof.
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An analogous theorem can also be stated for regular cusps.

Theorem 4.8. For α ∈ Γ and H an irregular subgroup of Γ, the
following statements are equivalent:

(1) α(∞) is a regular cusp of H.

(2) |η−1(HαΓ∞)| = 2.

(3) Index (Γ∞(Hα) : Γ
+
∞(Hα)) = 1.

(4) Index (Γ∞ : Γ∞(Hα)) = 2 Index (Γ+
∞ : Γ+

∞(Hα)).

Corollary 4.9. Suppose H is an irregular subgroup of Γ, and let ν∞
and ν′∞ be the number of inequivalent regular and irregular cusps of H,
respectively. Then 2ν∞ + ν′∞ = |H\Γ/Γ+

∞| and ν∞ + ν′∞ is the cusp
number of H in this case.

Corollary 4.10. If H is a regular subgroup of Γ, then all the cusps
are regular and ν∞ = |H\Γ/Γ+∞| = |H\Γ/Γ∞|.

This section gives us a characterization of the regular and irregular
cusps of an irregular congruence subgroup in terms of double cosets.
However, we will need a more concrete description which will be derived
in the next section.

5. The action of congruence subgroups on MN . We set

MN =

{(
α
β

)
∈ (Z/NZ)2 | gcd (α, β,N) = 1

}
.

Consider the faithful action of SL (2,Z/NZ) on MN , given by:

(
a b
c d

)(
α
β

)(
aα+ bβ
cα+ dβ

)
.

If H is a subgroup of Γ and H contains Γ(N), then H acts on MN

via the surjective map ϕN : Γ → SL (2,Z/NZ). Moreover, the image
ϕN (H) is isomorphic to H/Γ(N).
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Remark. To simplify notation, we will not distinguish between an
integer a and the corresponding equivalence class a in Z/NZ as the
meaning will be clear from the context.

Theorem 5.1. Suppose H is a subgroup of Γ which contains Γ(N).
Define

ψ : H\Γ/Γ+
∞ −→ H\MN

H

(
a b
c d

)
Γ+
∞ �−→ O( a

c

)
where O( a

c

) is the orbit of the action of H on MN containing( a

c

)
. Then ψ is well defined and is a bijection. So, in particular,

|H\Γ/Γ+
∞| = |H\MN |.

Proof. ψ is well defined because, if
(

a′ b′

c′ d′

)
∈ H

(
a b

c d

)
Γ+
∞, then(

a′

c′

)
= h

( a

c

)
for some h ∈ H , and so

(
a′

c′

)
∈ O( a

c

).
ψ is surjective. One way to see this is that if we have two integers a

and c such that 0 ≤ a, c < N and gcd (a, c,N) = 1, then by Dirichlet’s
theorem the sequence c+kN , k = 0, 1, 2, . . . will contain infinitely many
terms of the form gcd (c,N)� where � is prime. Thus, for a suitable
choice of k, we can find a and c′ with gcd (a, c′) = 1 such that c′ ≡ c
(mod N). We can then find b and d such that m =

(
a b

c′ d

)
is in Γ and

by construction satisfies ψ(HmΓ+
∞) = O( a

c

). To prove its injectivity,

suppose ψ(H
(

a b

c d

)
Γ+
∞) = ψ(H

(
a′ b′

c′ d′

)
Γ+
∞). So we have

(
a′

c′

)
∈ O( a

c

),
and therefore

(
a′

c′

)
≡ h

( a

c

)
(mod N) for some h ∈ H . By [8, Lemma

1.41], g ∈ Γ(N) exists such that
(

a′

c′

)
= gh

( a

c

)
. We also know that,

for any matrix
( a ∗

c ∗

) ∈ Γ, a γ ∈ Γ+∞ exists such that
( a ∗

c ∗

)
=
(

a b

c d

)
γ.

These imply that
(

a′ b′

c′ d′

)
= gh

(
a b

c d

)
γ, and this completes the proof.

Next observe that the image of −12 under the map ϕN is a central
element of SL(2,Z/NZ). Thus, there is an action of −12 on H\MN

given by −12 ·H
( a

c

)
= H

( −a

−c

)
. Let O be an element of H\MN ; then

either −12 · O = O or −12 · O 
= O. In the first case, {O} is an
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orbit of length 1, and in the second, {O,−O} is an orbit of length 2.
If −12 ∈ H , all orbits of −12 have length 1. We make the following
definition:

Definition 5.2. Let H be a congruence subgroup of Γ of level M
and M |N . If H is regular, we say that all the orbits of H on MN are
regular. If H is irregular, we call an orbit O of H on MN irregular if
−12 · O = O and regular if −12 · O 
= O.

The motivation for this definition is given by the following result:

Theorem 5.3. The map

w = φ ◦ η ◦ ψ−1 : H\MN → H\Q∗

maps regular orbits to (classes of) regular cusps and irregular orbits to
(classes of) irregular cusps. If H is regular, then w is a bijection. If
H is irregular, then if a/c represents a regular cusp and gcd (a, c) = 1,

then w−1(a/c) =
{
O( a

c

),O(−a

−c

)}, and these two elements are distinct,

and if a/c represents an irregular cusp, then w−1(a/c) =
{
O( a

c

)}.
Proof. If H is regular, then by Theorems 4.3, 5.1 and Lemma 4.5, the

map w is a bijection. Since H is regular all cusps are regular, and by
Definition 5.2, all orbits of H on MN are regular and are fixed by −12.

Suppose next that H is irregular. Note that there is an action of −12
on H\Γ/Γ+

∞ given by −12 ·HαΓ+
∞ = H(−α)Γ+

∞. By Theorems 4.7 and
4.8, an orbit of −12 acting on H\Γ/Γ+

∞ maps to a class of irregular
cusps under the composition φ ◦ η if and only if the orbit has length 1.
Similarly, it maps to a class of regular cusps if and only if the orbit
has length 2. Since the actions of −12 on H\Γ/Γ+∞ and H\MN satisfy
−12 ◦ψ = ψ ◦−12 and ψ is a bijection, we obtain the required result.

Theorem 5.3 gives an explicit construction which allows the determi-
nation of the regular and irregular cusps of a given irregular congruence
subgroup. However, to prove the remaining parts of Theorem 1.2, we
will require some “multiplicative decomposition” results which will be
derived in the next section.
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6. Multiplicativity and the action of −12. In [7], Selberg gives
a general definition of a multiplicative function as follows:

Let n =
∏
� �
a where the product extends over all primes (so that all

but a finite number of a are zero). Let there be defined for each � a
function f�(a) on the non-negative integers such that f�(0) = 1 except
for at most finitely many �. Then

f(n) =
∏
�

f�(a)

defines a multiplicative function. If f(1) = 1, Selberg calls f(n) normal.
The class of multiplicative functions defined by the standard definition
coincides with the class of normal multiplicative functions according to
the new definition.

Selberg’s new definition can be used to define multiplicative functions
of several variables. He uses the notation {n}r for an r-tuple of positive
integers n1, n2, . . . , nr and writes

{n}r =
∏
�

�{a}r

to denote that

ni =
∏
�

�ai for i = 1, . . . , r.

Then a function f(n1, . . . , nr) = f({n}r) is multiplicative if it has the
form

f({n}r) =
∏
�

f�({a}r),

where the functions f�({a}r) satisfy the condition that, for each �,
f�(a1, . . . , ar) is defined on r-tuples of non-negative integers and is
such that f�(0, . . . , 0) = 1 except for at most finitely many �. Again,
if f(1) = 1, call f normal.

In this section we shall prove that the function c(p,N ;χ) is a normal
multiplicative function in Selberg’s sense. We also analyze the action
of −12 which will allow us in the next section to compute the number
of inequivalent regular and irregular cusps of H(p,N ;χ). We start with
a technical lemma:
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Lemma 6.1. Let N , p and χ be positive integers. Suppose N =
N1N2 with gcd (N1, N2) = 1. Suppose p divides N , and let p1 and
p2 be such that p = p1p2 and p1|N1 and p2|N2. Suppose also that
χ|gcd (N,N/p) with χ = χ1χ2 with χ1|N1 and χ2|N2. Then

H(p,N, 1;χ, 1) ∩ Γ(N1) = H(p2N1, N,N1;χ2, p
′
1),

where p′1 is any integer such that p1p
′
1 ≡ 1 (mod χ2).

Proof. If m ∈ H(p2N1, N,N1;χ2, p
′
1), then m =

(
1+ap2N1 bN

cN1 1+dp2N1

)
with c ≡ p′1a (mod χ2) and det (m) = 1. As N1|N , we have m ∈
Γ(N1). Also ap2N1 = (aN1/p1)p, a(N1/p1) ≡ N1c (mod χ2) and
also a(N1/p1) ≡ N1c ≡ 0 (mod χ1), so a(N1/p1) ≡ N1c (mod χ).
It follows that m ∈ H(p,N, 1;χ, 1), and therefore

H(p2N1, N,N1;χ2, p
′
1) ⊆ H(p,N, 1;χ, 1) ∩ Γ(N1).

If m ∈ H(p,N, 1;χ, 1)∩Γ(N1), then m ∈ H(p,N, 1)∩H(N1, N1, N1) =

H(p2N1, N,N1). So m =
(

1+ap2N1 bN

cN1 1+dp2N1

)
. Moreover, since m ∈

H(p,N, 1;χ, 1), we have a(N1/p1) ≡ N1c (mod χ), and this implies
that a(N1/p1) ≡ N1c (mod χ2) and so ap′1 ≡ c (mod χ2). Thus,
H(p,N, 1;χ, 1) ∩ Γ(N1) ⊆ H(p2N1, N,N1;χ2, p

′
1), and combined with

the reverse inclusion above, we have the required equality.

In particular, Lemma 6.1 shows that Γ(N) is a subgroup ofH(p,N ;χ).
We shall use this fact shortly.

Now suppose G is a subgroup of Γ containing Γ(N) and, as above,
N = N1N2 with (N1, N2) = 1. Denote by G1 and G2 the inverse images
of ψ1 ◦ ϕN (G) and ψ2 ◦ ϕN (G), respectively, where

Γ
ϕN−→ SL

(
2,

Z

NZ

)
ψi−→ SL

(
2,

Z

NiZ

)
, for i = 1, 2.

It follows that Gi = GΓ(Ni), the group generated by G and Γ(Ni) for
i = 1, 2. We next show that, in the case that G = H(p,N ;χ), the
groups G1 and G2 are related in a simple way to H(p1, N1;χ1) and
H(p2, N2;χ2):
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Lemma 6.2. With the notation as above, the images of ϕNi(H(pi, Ni;
χi)) and ϕNi(Gi) where Gi = H(p,N ;χ)Γ(Ni) are conjugate in
GL (2,Z/NiZ) for i = 1, 2. Moreover, H(pi, Ni;χi) and Gi have the
same number of inequivalent regular cusps and the same number of
inequivalent irregular cusps for i = 1, 2.

Proof. We give the proof for i = 1 as the proof for i = 2 is essentially

identical. Let
(
a 0

c d

)
∈ ϕN1(G1); then(

1 0
0 p2

)(
a 0
c d

)(
1 0
0 p−1

2

)
=

(
a 0
cp2 d

)
∈ ϕNi(H(p1, N1;χ1)),

where the final inclusion follows from the congruence conditions on a,
c and d. Now, we prove that both images have the same cardinality.
By Lemma 6.1,

H(p,N ;χ) ∩ Γ(N1) = H(p2N1, N,N1;χ2, p
′
1).

So
G1

Γ(N1)
� H(p,N ;χ)

H(p,N ;χ) ∩ Γ(N1)
=

H(p,N ;χ)

H(p2N1, N,N1;χ2, p′1)
,

and hence by Proposition 2.6,∣∣∣∣ G1

Γ(N1)

∣∣∣∣ =
∣∣∣∣ H(p,N ;χ)

H(p2N1, N,N1;χ2, p′1)

∣∣∣∣ = N1φ(N1)
χ1φ(p1)

,

which, again by Proposition 2.6, is the same as |H(p1, N1;χ1)/Γ(N1)|,
as required.

The conjugation above induces a bijection between the orbits of the
two groups acting on MN1. Moreover, the conjugations commute with
the action of −12, and so by Theorem 5.3, the number of inequivalent
regular and irregular cusps is the same for the two groups.

In general, the homomorphism ψ1 × ψ2 : G/Γ(N) → G1/Γ(N1) ×
G2/Γ(N2) is injective (by the Chinese remainder theorem) but is not
necessarily surjective. However, we have the following proposition:

Proposition 6.3. With notation as above, if G = H(p,N ;χ), then
the map ψ1 × ψ2 is surjective. In particular, G/Γ(N) is isomorphic to
G1/Γ(N1)×G2/Γ(N2).
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Proof. By Proposition 2.6, the order of G/Γ(N) is Nφ(N)/χφ(p).
But, by Lemma 6.2, this is the order of G1/Γ(N1)×G2/Γ(N2), and so
ψ2 × ψ2 from G/Γ(N) to G1/Γ(N1)×G2/Γ(N2) is an isomorphism.

We will also have to consider the action of −12. The next lemma
gives a general result.

Lemma 6.4. Suppose G and H are subgroups of groups A and B
with −1G and −1H involutions in A and B which centralize G and
H, respectively. Let ±G = 〈−1G, G〉 and ±H = 〈−1H , H〉. Suppose
there is an isomorphism γ : ±G → ±H such that γ(G) = H and
γ(−1G) = −1H . Suppose X is a set with an action of ±G and Y is
a set with an action of ±H and that there is a bijection φ from X to
Y which intertwines the actions of ±G and ±H. In other words, for
all g ∈ ±G and all x in X, we have φ(g · x) = γ(g) · φ(x). Then
there is an action of −1G on G\X given by (−1G) · Ox = O−x where
−x = (−1G) ·x for x in X, and similarly there is an action of −1H on
H\Y . The bijection φ between X and Y induces a bijection φ between
G\X and H\Y which intertwines the actions of −1G and −1H . In
other words, φ((−1G) · Ox) = (−1)H · φ(Ox).

Proof. Let Ox be the element of G\X containing the element x of
X and define Oy similarly. The action of −1G on G\X is well defined
since −1G centralizes the action of G. Similarly −1H has a well defined
action on H\Y .

Define φ : G\X → H\Y by φ(Ox) = Oφ(x). This is well defined since

φ intertwines the actions ofG andH . Surjectivity of φ follows from that
of φ. It is also injective since, if Oφ(x) = Oφ(x′), then φ(x) = h · φ(x′)
for some h in H . This implies φ(x) = γ(g)φ(x′) for some g in G and so
x = g · x′ as φ is a bijection. Thus, Ox = Ox′ as required.

Finally, φ((−1G) · Ox) = φ(O−x) = Oφ(−x) = O−φ(x) = (−1)H ·
Oφ(x) = (−1)H · φ(Ox), as required.

Note that we allow for the possibility that −1G is an element of G.
By the properties of γ, this is the case if and only if −1H is an element
of H . So, if −1G is an element of G, then the actions of −1G and −1H
are both trivial.
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Applying this general result in this case yields:

Corollary 6.5. With the notation as above, there is a bijection
between H(p,N ;χ)\MN and H(p1, N1;χ1)\MN1×H(p2, N2;χ2)\MN2 .
There is an action of −12 on H(p,N ;χ)\MN given by −12 ·Ox = O−x
and also an action of −12 on H(p1, N1;χ1)\MN1×H(p2, N2;χ2)\MN2 ,
given by −12 · (Ox1 ,Ox2) = (O−x1 ,O−x2). The bijection intertwines
these two actions. As a consequence, the function c(p,N ;χ), which is
the cardinality of H(p,N ;χ)\MN , is a multiplicative function.

Proof. Let G = H(p,N ;χ). The groups SL(2,Z/NZ) and SL(2,Z/
N1Z) × SL(2,Z/N2Z) are isomorphic by the map ψ1 × ψ2. The map
γ between MN and MN1 ×MN2 given by restriction modulo N1 and
N2 is a bijection which intertwines the actions of SL(2,Z/NZ) and
SL(2,Z/N1Z)×SL(2,Z/N2Z). By Proposition 6.3, these restrict to an
isomorphism of G/Γ(N) and G1/Γ(N1) × G2/Γ(N2), and a bijection
which intertwines the actions on MN and MN1 ×MN2 .

Let −1 be the image of −12 in SL(2,Z/NZ) and, for convenience,
we use the same notation for the image of −12 in SL(2,Z/N1Z) and
SL(2,Z/N2Z). Then the image of −1 under ψ1 × ψ2 is (−1,−1). The
elements −1 and (−1,−1) are involutions which centralize G/Γ(N)
and G1/Γ(N1) × G2/Γ(N2), respectively. The isomorphism ψ1 × ψ2

maps G/Γ(N) to G1/Γ(N1) × G2/Γ(N2) and maps −1 to (−1,−1).
The bijection γ intertwines the corresponding actions on MN and
MN1 ×MN2 . By Lemma 6.2, the actions of Gi on MNi are conjugate
in GL (2,Z/NiZ) to the actions of H(pi, Ni;χi), i = 1, 2, and this
conjugation commutes with the action of −1. Thus, composing ψ1×ψ2

and γ with these conjugations we obtain an isomorphism and a bijection
which intertwine the action of −1 Thus, applying Lemma 6.4, we obtain
the required bijection φ between the orbit spaces which intertwines the
actions of −1 and (−1,−1), as required.

It follows that the number of elements of G\MN is c(p1, N1;χ1)c (p2,
N2;χ2). By induction on the number of primes dividing N , the function
c(p,N ;χ) is multiplicative (and normal) in the sense of Selberg.

Finally, we find the relationship between the number of inequivalent
regular and irregular cusps of H(p,N ;χ) and those of H(p1, N1, χ1)
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and H(p2, N2;χ2). If −12 is an element of G, then by Proposition 2.9
it is also an element of H(p1, N1;χ1) and H(p1, N1;χ2), and so in this
case the actions of −1 and (−1,−1) in Corollary 6.5 are both trivial.

If H(p1, N1;χ1) and H(p1, N1;χ2) are both regular, then by Lemma
6.2 G1/Γ(N1) × G2/Γ(N2) contains (−1,−1). So, by Proposition 6.3,
it follows that −12 ∈ H(p,N ;χ) and so H(p,N ;χ) is also regular. This
leaves the four cases described in the following corollary.

Corollary 6.6. Suppose G = H(p,N ;χ), and let H1 = H(p1, N1;χ1)
and H2 = H(p2, N2;χ2) with other notation as above. Let ν∞ and
ν′∞ be the number of inequivalent regular and irregular cusps of G.
Let ν1 and ν2 be the number of inequivalent regular cusps of H1 and
H2, respectively, and ν

′
1 and ν′2 be the number of inequivalent irregular

cusps. Then we have the following four cases:

G H1 H2

regular regular regular ν∞ = ν1ν2 ν′∞ = 0

irregular irregular regular ν∞ = ν1ν2 ν′∞ = ν′1ν2
irregular regular irregular ν∞ = ν1ν2 ν′∞ = ν1ν′2
irregular irregular irregular ν∞ = 2ν1ν2 + ν1ν′2 + ν′1ν2 ν′∞ = ν′1ν

′
2

Proof. By Corollary 6.5, there is a bijection between the orbits of G
onMN and the orbits of H1×H2 onMN1×MN2 . Recall from Section 5
that, for a regular group containing Γ(N), the cusp number is equal to
the number of orbits on MN , and there are no irregular cusps. Thus,
when G, H1 and H2 are all regular, we have ν∞ = ν1ν2 and ν′∞ = 0.

Next suppose that G is irregular. If one ofH1 andH2 is regular, then,
as discussed above, the other is irregular. So suppose H1 is irregular
and H2 is regular. Recall again, from Section 5, that an orbit O of
G on MN is irregular if −12 · O = O and regular if −12 · O 
= O.
Also, ν∞ is equal to half the number of regular orbits and ν′∞ is equal
to the number of irregular orbits. By Corollary 6.5, O is irregular if
and only if it corresponds to O1 × O2 where O1 is an irregular orbit
of G1 on MN1 and O2 is an orbit of G2 on MN2 , so that ν′∞ = ν′1ν2.
Similarly, O is regular if and only if it corresponds to O1×O2 where O1

is regular. The number of such pairs of orbits is ν1ν2, and so ν∞ = ν1ν2.
Alternatively, we can use the fact that the number of orbits is given
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both by 2ν∞+ν′∞ and (2ν1+ν
′
1)(ν2) and then that ν′∞ = ν′1ν2 to reach

the same conclusion.

The case that G is regular, G1 is regular and G2 is irregular just
exchanges the roles of G1 and G2.

Finally, if all three groups are irregular, we have that −12 · O = O
if and only if −12 · O1 = O1 and −12 · O2 = O2 where O corresponds
to O1 ×O2 as before. This implies that ν′∞ = ν′1ν

′
2. Finally, the total

number of orbits is given by both 2ν∞ + ν′∞ and (2ν1 + ν1)(2ν2 + ν′2).
Using ν′∞ = ν′1ν

′
2 then gives ν∞ = 2ν1ν2 + ν1ν

′
2 + ν′1ν2, as required.

7. The cusp number of H(p,N ;χ). In this section we compute
the cusp number of H(p, q, r;χ, τ). We first observe that it suffices
to compute the cusp number of H(p,N ;χ) where p | N and χ |
gcd (N,N/p)). This simplification is based upon Proposition 3.1 and
the following

Lemma 7.1. If gcd (χ, τ) = 1, then H(p,N,1;χ, τ) and H(p,N,1;χ, 1)
contain Γ(N), the images of the groups under ϕN are conjugate and
the two groups have the same number of regular and irregular orbits on
MN , and hence the same number of inequivalent regular and irregular
cusps.

Proof. That the two groups contain Γ(N) follows, for example, from
Lemma 6.1, or by a straightforward verification from their definitions.
Let m =

( 1+ap 0

c 1+dp

) ∈ ϕN (H(p,N, 1;χ, τ)). Since gcd (χ, τ) = 1, a
k ∈ N exists such that gcd (τ +kχ,N) = 1, so (τ +kχ)m ≡ 1 (mod N)
for some m. Now we have(

1 0
0 (τ + kχ)m−1

)(
1 + ap 0
c 1 + dp

)(
1 0
0 (τ + kχ)

)

=

(
1 + ap 0

c(τ + kχ)m−1 1 + dp

)

where c(τ +kχ)m−1 ≡ aτ(τ +kχ)m−1 ≡ a(τ +kχ)m ≡ a (mod χ), and
so m is in ϕN (H(p,N, 1;χ, 1). Conversely, suppose that

( 1+ap 0

c 1+dp

) ∈
ϕN (H(p,N, 1;χ, 1)); then, applying the inverse of the conjugation

given above, we have
(

1+ap 0

c(τ+kχ) 1+dp

)
∈ ϕN (H(p,N, 1;χ, τ)), because

c(τ + kχ) ≡ aτ (mod χ). Thus, the two images are conjugate.
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Finally, note that, as in Proposition 6.2, −1 commutes with the
conjugation and so the two groups have the same number of regular
and irregular orbits onMN and hence the same number of inequivalent
regular and irregular cusps.

We start by computing

c(p,N ;χ) := |(H(p,N ;χ)\MN |

=

{
2ν∞ + ν′∞ −1 /∈ H(p,N ;χ),

ν∞ −1 ∈ H(p,N ;χ),

and then find ν∞ and ν′∞, the number of inequivalent regular and
irregular cusps of H(p,N ;χ).

7.1. Computing c(p,N ;χ). A key theorem here is the Cauchy-
Frobenius formula, so we recall its statement.

Theorem 7.2. Let a group G act on a set X with both G and X
finite. Then the total number, n, of orbits is given by

n =
1

|G|
∑
x∈X

|Gx|.

To apply the Cauchy-Frobenius formula, we observe first that the
number of elements of ϕN (H(p,N ;χ)) is

Index (Γ : Γ(N))

Index (Γ : H(p,N ;χ))
=
φ(N)ψ(N2)
χφ(P )ψ(N)

=
Nφ(N)
χφ(p)

.

If the stabilizer of
( α

β

) ∈ MN in ϕN (H(p,N ;χ)) is denoted by H( α

β

)
then the Cauchy-Frobenius formula implies that

(1) c(p,N ;χ) =
χφ(p)

Nφ(N)

∑
(α

β

)
∈MN

∣∣∣H( α

β

)∣∣∣.
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In order to compute
∣∣∣H( α

β

)∣∣∣, we also need the following form of the

Chinese remainder theorem:

Lemma 7.3. Suppose A | N and B | N . Then the system of
equations {

x ≡ a (mod A)

x ≡ b (mod B)

has solutions in Z
NZ if and only if a ≡ b (mod (A,B)). If the condition

is satisfied, then the number of solutions is N
[A,B] .

(A,B) (respectively, [A,B]) here represents the greatest common
divisor (respectively, the least common multiple) of A and B.

Computing |H(α

β

)|. Now we choose
(

x−1 0

y x

)
∈ H(α

β

). It follows

from the definition of H(p,N ;χ) that

x ≡ 1 (mod p),(2)

y ≡ 1− x

p
(mod χ).(3)

We must also have(
x−1 0
y x

)(
α
β

)
≡
(
α
β

)
(mod N)

or

x−1α ≡ α (mod N)(4)

yα+ xβ ≡ β (mod N).(5)

To apply the Cauchy-Frobenius formula, we need to calculate, for
given p, N , χ, α and β, the number of solutions for x and y of the
congruences (2), (3), (4) and (5). We shall do this by finding an
equivalent “triangular” system of congruences.

Observe first that

(4) ⇐⇒ x−1 ≡ 1

(
mod

N

(N,α)

)
⇐⇒ x ≡ 1

(
mod

N

(N,α)

)
,

(5) ⇐⇒ −β(x− 1) ≡ yα (mod N),
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and, since ((N,α), β) = 1, we infer that (N,α) | (x−1) or, equivalently,
x ≡ 1 (mod (N,α)). The latter condition on x, together with the
congruence equation (5) imply that

(6) y ≡
(

α

(N,α)

)−1

(−β) x− 1

(N,α)

(
mod

N

(N,α)

)
.

Now we apply Lemma 7.3 to the following system of equations in order
to find condition(s) on x which guarantees the existence of a solution
for y.

(7)

⎧⎨
⎩
y ≡ 1−x

p (mod χ)

y ≡
(

α
(N,α)

)−1

(−β) x−1
(N,α)

(
mod N

(N,α)

)
.

This system has solutions if and only if 1−x
p ≡ ( α

(N,α))
−1(−β) x−1

(N,α)

(mod ( N
(N,α) , χ)). That is equivalent to (1 − x) α

(N,α) ≡ −pβ x−1
(N,α)

(mod (p( N
(N,α) , χ))), or to (1−x)α ≡ −pβ(x−1)(mod (p(N,α)( N

(N,α) , χ))).

Finally, we have

(x− 1)(α− pβ) ≡ 0

(
mod

(
p(N,α)

(
N

(N,α)
, χ

)))
.

The last condition is satisfied if and only if

x ≡ 1

(
mod

p(N,α)
(

N
(N,α) , χ

)
(
α− pβ, p(N,α)

(
N

(N,α) , χ
))).

So, we have the following conditions to be satisfied by x:

(8)

x ≡ 1 (mod p),

x ≡ 1 (mod (N,α)),

x ≡ 1

(
mod

N

(N,α)

)
,

x ≡ 1

(
mod

p(N,α)
(

N
(N,α) , χ

)
(
α− pβ, p(N,α)

(
N

(N,α) , χ
))).
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Note that, in the modulus of the last congruence, the denominator
has a factor of (α, p) and since χ divides N

p , we deduce that the whole

modulus divides ( pN
(α,p) ,

(N,α)N
(α,p) ); since ( p

(α,p) ,
(N,α)
(α,p) ) = 1, it follows that

this modulus divides N .

As we have just seen, any solution for x and y to congruences (2),
(3), (4) and (5) gives rise to a solution to congruences (7) and (8).
Conversely, it is clear that any solution to (7) and (8) will satisfy (2),
(3) and (4), and a solution to (7), and hence (6), gives a solution to
(5). Thus, the two sets of congruences are equivalent.

By applying Lemma 7.3, we find the number of solutions for x of the
congruences (8) is

N[
p, (N,α), N

(N,α) ,
p(N,α)

(
N

(N,α)
,χ
)(

α−pβ,p(N,α)
(

N
(N,α)

,χ
))] .

For each given x satisfying (8), there are unique values of 1−x
p (mod χ)

and x−1
(N,α) (mod N

(N,α)). Moreover, each such x satisfies the consistency

condition for (7). Thus, we can count the number of solutions (7) using
Lemma 7.3, which gives N

[ N
(N,α)

,χ]
. Therefore,

(9)
∣∣∣H( α

β

)∣∣∣ = N[
p, (N,α), N

(N,α) ,
p(N,α)

(
N

(N,α)
,χ
)(

α−pβ,p(N,α)
(

N
(N,α)

,χ
))]

N[
N

(N,α) , χ
] ,

and, by substituting |H(α

β

)| in formula (1), we get

(10)

c(p,N ;χ) =
χφ(p)

Nφ(N)∑
( α

β

)
∈MN

N[
p, (N,α), N

(N,α) ,
p(N,α)

(
N

(N,α)
,χ
)(

α−pβ,p(N,α)
(

N
(N,α)

,χ
))]

N[
N

(N,α) , χ
]

=
χφ(p)N

φ(N)∑
( α

β

)
∈MN

1[
p, (N,α), N

(N,α) ,
p(N,α)

(
N

(N,α)
,χ
)(

α−pβ,p(N,α)
(

N
(N,α)

,χ
))]

N[
N

(N,α) , χ
] .
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Although (10) is somewhat unwieldy, we shall show that it reduces to
the following remarkably simple expression:

Theorem 7.4.

(11) c(p,N ;χ) =
Nχφ(p)

φ(N)

∑
d| kχ

φ(d)φ(d′)
[d, d′, pkN ]

,

where k = [(p2, N)χ,N ] and dd′ = k/χ.

The difficulty in a direct approach is the additive term α − pβ,
which makes a direct simplification problematic. Our strategy will
be to invoke multiplicativity of c(p,N ;χ) and then do a case-by-case
verification that (10) and (11) are equal. We start with the following
special case:

Lemma 7.5.

c(p,N ; 1) =
Nφ(p)

φ(N)

∑
d|N

φ(d)φ(Nd )

[d, Nd , p]
.

Proof. Let
(

a−1 0

b a

)
∈ H(α

β

), where a ≡ 1 (mod p). Now we have the

following system of congruences to be satisfied by a and b:

a−1α ≡ α (mod N),

bα+ aβ ≡ β (mod N).

In this case, the conditions on a and b are given by

a ≡ 1 (mod p),

a ≡ 1 (mod (N,α)),

a ≡ 1
(
mod

N

(N,α)

)
,

and b ≡ ( α
(N,α))

−1(−β) a−1
(N,α) (mod N

(N,α)). These conditions, as in the

general case, imply that |H( α

β

)| = (N,α) N
[(N,α), N

(N,α)
,p]
, and the main
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formula (11) becomes

c(p,N ; 1) =
φ(p)

Nφ(N)

∑
(α

β

)
∈MN

(N,α)
N[

(N,α), N
(N,α) , p

]

=
φ(p)

φ(N)

∑
(α

β

)
∈MN

(N,α)[
(N,α), N

(N,α) , p
] .

Now it is not difficult to show that
∑(α

β

)
∈MN

1 = N
d φ(d)φ(

N
d ), where

the sum is over all
( α

β

)
with (N,α) = d with d fixed. Thus, we have

c(p,N ; 1) =
Nφ(p)

φ(N)

∑
d|N

φ(d)φ(Nd )

[d, Nd , p]
.

Since c(p,N ;χ) is a multiplicative function in the sense of Selberg
[7], as shown in Section 6, it will suffice to prove Theorem 7.4 in the
case where N = la is a prime power. Note that this assumption implies
that p = lb and χ = lc so that

b ≤ a and c ≤ min(a− b, b).

Lemma 7.6. Let l be a prime number. Then

c(lb, la; lc) =

⎧⎨
⎩
c(lb+c, la; 1) a ≤ 2b

lc c(lb, la−c; 1) 2b+ c ≤ a

la−2b c(l3b+c−a, l2b; 1) 2b < a < 2b+ c.

Proof. (Case a ≤ 2b). The equality in this case follows from the fact
that H(lb, la; lc) and H(lb+c, la; 1) are conjugate.

If (
1 + ulb vla

w 1 + xlb

)
∈ H(lb, la; lc),
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then (1+ulb)(1+xlb)−vwla = 1 and u ≡ w (mod lc), and so lc | (w+x).
Now consider the relation

(
1 −lb
0 1

)(
1 + ulb vla

w 1 + xlb

)(
1 lb

0 1

)

=

(
1 + (u− w)lb (u− w − x)l2b + vla

w 1 + (w + x)lb

)
.

Therefore,

(
1 + (u− w)lb (u− w − x)l2b + vla

w 1 + (w + x)lb

)
∈ H(lb+c, la; 1).

So H(lb, la; lc) is conjugate to a subgroup of H(lb+c, la; 1) and, by
Proposition 2.6, H(lb, la; lc) and H(lb+c, la; 1) have the same index in
Γ which implies that they are conjugate.

(Cases 2b + c ≤ a and 2b < a < 2b + c). Before proceeding, we first
show that

(12)

(
α− pβ, p(N,α)

(
N

(N,α)
, χ

))
= (p, (N,α)),

where all parameters are as above, but with the extra condition that
the common prime divisors of p and (N,α) do not have the same multi-
plicities. It is easy to see that the right hand side is a divisor of the left
hand side. Conversely, in order to show that (α−pβ, p(N,α)( N

(N,α) , χ)) |
(p, (N,α)), let qs‖(α − pβ, p(N,α)( N

(N,α) , χ)) where q is a prime num-

ber, and also suppose that qt‖p and qt
′‖(N,α) so that t 
= t′. Then

qs | qmin(t,t′)( α
qmin(t,t′) − β p

qmin(t,t′) ), where ( α
qmin(t,t′) − β p

qmin(t,t′),q ) = 1.

This proves qs | (p, (N,α)), and hence our statement.

Now we can apply equality (11) to simplify the formula for c(lb, la; lc)
where α = ulm so that m 
= b and (u, l) = 1. To do so, the sum in
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c(lb, la; lc) is broken into the following sums:

c(lb, la; lc) =
lcφ(lb)la

φ(la)∑
(α

β

)
∈Mla

1[
lb, (la, α), la

(la,α) ,
lb(la,α)( la

(la,α)
,lc)(

α−lbβ,lb(la,α)
(

la

(la,α)
,lc
))][ la

(la,α) , l
c
]

=
lcφ(lb)la

φ(la)

⎧⎪⎨
⎪⎩

a∑
m=0
m �=b

φ(lm)φ(la−m)la−m[
lb, lm, la−m, l

b+m(la−m,lc)
(lb,lm)

]
[la−m, lc]

s

+
∑

(β,l)=1
u

1[
lb, la−b, l2b(la−b,lc)

lb(u−β,lb(la−b,lc))

]
[la−b, lc]

⎫⎪⎬
⎪⎭ .

It is convenient to further split these two sums into three terms S1, S2

and S3 corresponding to those α’s such that 0 ≤ m ≤ b− 1, m = b and
b+ 1 ≤ m ≤ a, respectively. S1 and S3 can be written as

S1 =
∑

0≤m≤b−1

φ(lm)φ(la−m)

[la−m, lb+c]
since m < b and 2b ≤ a

S3 =
∑

b+1≤m≤a

φ(lm)φ(la−m)la−m

[la−m, (la, lm+c)][la−m, lc]
since m > b,

and S2 splits into the following sums

S2 =
∑

(l,β)=1
u

1[
la−b, lb, l2b(la−b,lc)

lb(u−β,lb(la−b,lc))

]
[la−b, lc]

S2 =
(φ(la)− la−1)φ(la−b)

[la−b, lb(la−b, lc)][la−b, lc]

+

b+c∑
m=1

φ(la−m)φ(la−b)[
la−b, lb, lb+c

lm

]
[la−b, lc]

+
la−b−c−1φ(la−b)
[la−b, lb][la−b, lc]

.

If (u − β, la) = lm, then these three terms correspond to m = 1,
1 < m ≤ b+ c and b+ c < m ≤ a, respectively.
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By considering the two cases 2b+ c ≤ a and 2b < a < 2b+ c, we can
simplify S1, S2 and S3 as follows:

(Case 2b+ c ≤ a). What we want to prove is

(13) S1 + S2 + S3 =
a−c∑
m=0

φ(lm)φ(la−c−m)

[lm, la−c−m, lb]
.

It is not difficult to see

(14) S1 =

b−1∑
m=0

φ(lm)φ(la−m)

la−m
=

b−1∑
m=0

φ(lm)φ(la−c−m)

[lm, la−c−m, lb]
,

and also

S3 =

a∑
m=b+1

φ(lm)φ(la−m)la−m

[la−m, (la, lm+c)][la−m, lc]

=

a−c−1∑
m=b+1

φ(lm)φ(la−m)

[la−m, lm+c]

+

a∑
m=a−c

φ(lm)φ(la−m)la−m

la+c
.

The first sum can be rewritten as

(15)

a−c−1∑
m=b+1

φ(lm)φ(la−c−m)

[lm, la−c−m, lb]
,

and the second sum is simplified to 1
lc (1− 1

l )
∑a

m=a−c φ(l
a−m), or

(16)
1

lc

(
1− 1

l

)2 a−1∑
a−c

(la−m) +
1

lc

(
1− 1

l

)
= 1− 1

l
.

Now, by the assumption 2b+ c ≤ a, so S2 can be written as

(17)

S2 =
φ(la−b)
la−b

{
la − 2la−1

la−b
+

(1− 1
l )

la−b

b+c∑
m=1

la−m +
1

lc+1

}

=

(
1− 1

l

)
(lb − lb−1).
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Statement (13) follows from (14) (17).

(Case 2b < a < 2b+ c). In this case the statement we want to show
is

(18) S1 + S2 + S3 =

2b∑
m=0

φ(lm)φ(l2b−m)

[lm, l2b−m, l3b+c−a]
.

S1 can be written as S1 =
∑b−1
m=0

φ(lm)φ(la−m)
[la−m,lb+c]

, or

S1 =

b−1∑
m=0

φ(lm)φ(l2b−m)

[lm, l2b−m, l3b+c−a]
.

We can split S3 into the following sums:

S3 =

a−c∑
m=b+1

φ(lm)φ(la−m)

[la−m, lm+c]
+

a∑
m=a−c+1

φ(lm)φ(la−m)la−m

la+c
,

and it can be simplified to

S3 =
a∑
b+1

φ(lm)φ(la−m)

lm+c
= φ(la−b−c−1).

Finally, the simplification of S2 in this case is given by:

S2 =
φ(la−b)
la−b

{
la − 2la−1

lb+c
+

2b+c−a∑
m=1

φ(la−m)

lb+c−m

+

b+c∑
2b+c−a+1

φ(la−m)

la−b
+

1

lc−1

}

=

(
1− 1

l

){
la−b−c − 2la−b−c−1

+ (2b+ c− a)

(
1− 1

l

)
la−b−c + la−b−c−1

}

=

(
1− 1

l

){
(2b+ c− a+ 1)φ(la−b−c)

}
.
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It is easy to verify that the right hand side of (18) is

S1 +
3b+c−a∑
m=b

φ(lm)φ(l2b−m)

l3b+c−a
+

2b∑
m=3b+c−a+1

φ(lm)φ(l2b−m)

lm

= S1 +

(
1− 1

l

){
(2b+ c− a+ 1)φ(la−b−c) + la−b−c−1

}
= S1 + S2 + S3.

This completes the proof.

Finally observe that Lemmas 7.5 and 7.6 show that Theorem 7.4
holds for the prime power case and so the general case of Theorem 7.4
now follows from the multiplicativity of c(p,N ;χ).

7.2. The number of inequivalent regular and irregular cusps.
By Theorem 5.3, if H(p,N ;χ) is regular, then ν∞ = c(p,N ;χ) and
ν′∞ = 0, and so, by Theorem 7.4 and Proposition 2.9, the first case of
the formula for (ν∞, ν′∞) in Theorem 1.2 is proved. In this subsection
we give the proof of the remaining cases of Theorem 1.2, giving the
number of inequivalent regular and irregular cusps where H(p,N ;χ) is
irregular. We start with the following lemma

Lemma 7.7. If p has a nontrivial odd divisor and H(p,N ;χ) is

irregular, then H(p,N ;χ) has no irregular cusps and ν∞ = c(p,N ;χ)
2 .

Proof. Suppose the contrary, so H(p,N ;χ) has an irregular cusp.
Then, by Theorem 5.3, the action of H(p,N ;χ) onMN has an irregular
orbit. Let

( α

β

) ∈ MN be an element of this irregular orbit. Since the
action of −1 maps this orbit to itself, it follows that there is an element(

1+px Nz

y 1+pt

)
∈ H(p,N ;χ) such that(
1 + px Nz
y 1 + pt

)(
α
β

)
≡
(−α
−β

)
(mod N).

This gives rise to the following system of congruences:{
(1 + px)α ≡ −α (mod N)

yα+ (1 + pt)β ≡ −β (mod N).
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The first equation implies that px ≡ −2 (mod N/(N,α)). Hence,

(19) 2 ≡ 0 (mod (N/(N,α), p)).

Since p has an odd divisor, say q 
= 1, this shows that q | (N,α). On
the other hand, the second equation can be rewritten as

(2 + pt)β ≡ −yα (mod N).

From this and the fact that ((N,α), β) = 1, we deduce that (N,α) |
2 + pt, and therefore q | 2 + pt. This is a contradiction, since q is a
nontrivial odd divisor of p. The second part of the lemma now follows
from Theorem 5.3, since the preimage of a class of regular cusps consists
of a pair of (distinct) regular orbits on MN .

Note that the previous lemma proves the final case of Theorem 1.2
except the case when p is a power of 2 greater than or equal to 4.

Lemma 7.8. Suppose N = 2a for some a ≥ 1 and H(p,N ;χ) is
irregular. Let c = c(p,N ;χ). Then:

If p = 2, then χ = 2 and⎧⎨
⎩
ν∞ = (2/5)c ν′∞ = (1/5)c if a = 2,

ν∞ = (1/4)c ν′∞ = (1/2)c if a > 2 is even,

ν∞ = (1/3)c ν′∞ = (1/3)c if a > 1 is odd.

If p = 4, then a = 2, χ = 1 and ν∞ = (2/5)c, ν′∞ = (1/5)c.

Otherwise, there are no irregular cusps for H(p,N ;χ), and therefore
ν∞ = (1/2)c and ν′∞ = 0.

Proof. If N = 2a, then p = 2b for some b ≤ a. Now suppose that( α

β

) ∈M2a is an irregular cusp of H(2b, 2a;χ), and therefore(
1 + 2bx 2az

y 1 + 2bt

)(
α
β

)
=

(−α
−β

)
,

for some
(

1+2bx 2az

y 1+2bt

)
∈ H(2b, 2a;χ). So

{
(1 + 2bx)α ≡ −α (mod 2a)

yα+ (1 + 2bt)β ≡ −β (mod 2a).



A CLASS OF CONGRUENCE SUBGROUPS 119

An argument similar to the one we used to conclude (19) implies that

(20) 2 ≡ 0

(
mod

(
2a

(2a, α)
, 2b

))
.

We now consider the following cases:

Case I. b ≥ 2. The congruence (20) implies that (2a, α) = 2a or
(2a, α) = 2a−1. If (2a, α) = 2a, then 2btβ ≡ −2β (mod 2a), and this
contradicts the assumption that 2 � β. If (2a, α) = 2a−1, then

(21) 2btβ ≡ −2β (mod 2a−1).

Subcase. b = 2. In this case, since 2 � β, we have a = 2 and
immediately χ = 1. This is the case H(4, 4; 1) which is conjugate
to Γ1(4). One knows that Γ1(4) has one inequivalent irregular and two
inequivalent regular cusps. As c(4, 4, 1) = 5, the result follows in this
case.

Subcase. b > 2. In this case (21) contradicts (2, β) = 1; thus, there
is no irregular cusp in this case and the number of inequivalent regular
cusps is given by ν∞ = c

2 .

Case II. b = 1. In this case the assumption −12 /∈ H(2, 2a;χ) implies
that χ = 2, and therefore a ≥ 2.

Subcase. a = 2. The group H(2, 4; 2) is conjugate to H(4, 4; 1) by the
first case of Lemma 7.6, and so it has the same number or inequivalent
regular and irregular cusps as Γ1(4). As c(2, 4, 2) = 5, the result follows
in this case.

Subcase. a ≥ 3. The vector
( α

β

)
is an element of an irregular orbit of

H(2, 2a; 2) if and only if x, y and t exist satisfying

(1 + 2x)α ≡ −α (mod 2a)(22)

yα+ (1 + 2t)β ≡ −β (mod 2a)(23)

x ≡ y (mod 2)(24)

(1 + 2x)(1 + 2t) ≡ 1 (mod 2a).(25)

We shall now prove that such x, y and t exist if and only if α is of
the form u2m, where u is odd and a ≥ m > a−1

2 , and β is odd. First
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we prove that α must be even. If not, by congruence (22), xα ≡ −α
(mod 2a−1), and hence x is odd and so is y. But congruence (23)
can be reduced to yα + 2tβ ≡ −2β (mod 2a), which shows that yα is
even, which is a contradiction. Thus, α = u2m for some u odd and
a ≥ m ≥ 1.

Next, we show that no solutions exist for the system of congruence
equations above if m ≤ a−1

2 . By substituting α = u2m where a ≥ m
in (22), we have 2x ≡ −2 (mod 2a−m). Then (25) gives 2t ≡ −2
(mod 2a−m). These combined with (23) yield yu2m ≡ 0 (mod 2a−m).
If m ≤ (a− 1)/2, then a−m ≥ (a+1)/2. Since a ≥ 3, the congruence
2x ≡ −2 (mod 2a−m) implies that x is odd, and hence y is odd. Also,
m ≤ (a− 1)/2 implies m < a/2 and so m < a−m. Since u is odd, the
congruence yu2m ≡ 0 (mod 2a−m) then yields a contradiction, and so
m > (a− 1)/2.

Any
( α

β

) ∈M2a , where β is odd and α = u2m such that a ≥ m > a−1
2

and where u is an odd number, is an element of an irregular orbit of
H(2, 2a; 2), since it is easily checked that

x = −1 + 2m−1 − 2m + 22m−1

t = −1 + 2m−1

y = −u−1β where uu−1 ≡ 1 (mod 2a)

is a solution to the congruences (22) (25).

By the Cauchy-Frobenius formula and Theorem 5.3, the number of
irregular orbits and the number of inequivalent irregular cusps is given
by

ν′∞ =
χφ(p)

Nφ(N)

∑
( α

β

)
∣∣∣H(α

β

)∣∣∣ = 1

22a−2

∑
( α

β

)
∣∣∣H( α

β

)∣∣∣,

where the sum is taken over all α and β such that β is odd and α = u2m

with a ≥ m > a−1
2 . Using the expression for |H( α

β

)| from equation (9)

gives

ν′∞ = 4
∑
(α

β

) 1

(2a, 2m+1)[2a−m, 2]
.
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This simplifies to

ν′∞ = 4

a∑
m=a/2

φ(2m)φ(2a−m)2a−m

(2a, 2m+1)[2a−m, 2]
if a is even,

ν′∞ = 4
a∑

m=(a+1)/2

φ(2m)φ(2a−m)2a−m

(2a, 2m+1)[2a−m, 2]
if a is odd.

Evaluating these sums gives ν′∞ = 2a/2 where a is even and a > 2
and ν′∞ = 2(a−1)/2 where a is odd and a > 1. Using Theorem 7.4 to
compute c(2, 2a; 2) when a ≥ 3 gives

c(2, 2a; 2) =

{
2

a
2+1 if a is even,

3× 2
a−1
2 if a is odd.

Comparing this with the number of inequivalent irregular cusps
computed above gives ν′∞ = (1/2)c where a is even and a > 2 and
ν′∞ = (1/3)c if a is odd and a > 1. Finally, Corollary 4.9 and
Theorem 5.1 give ν∞ = (1/4)c if a is even and a > 2 and ν∞ = (1/3)c
if a is odd and a > 1, which completes the proof.

The above two lemmas combined with Corollary 6.6 give the following
proposition to obtain the number of inequivalent regular and irregular
cusps for H(p,N ;χ) in the case H(p,N ;χ) is irregular.

Proposition 7.9. Let N = 2aN1, p = 2b and χ = 2c where N1 is
an odd number. Suppose H(p,N ;χ) is irregular. Then there are no

irregular cusps for H(p,N ;χ), and therefore ν∞ = c(p,N ;χ)
2 , except in

the following cases:

If p = 2, then χ = 2 and⎧⎪⎪⎨
⎪⎪⎩
ν∞ = 2c(p,N ;χ)

5 ν′∞ = c(p,N ;χ)
5 if a = 2,

ν∞ = c(p,N ;χ)
4 ν′∞ = c(p,N ;χ)2 if a > 2 is even,

ν∞ = c(p,N ;χ)
3 ν′∞ = c(p,N ;χ)

3 if a > 1 is odd.

If p = 4, then a = 2, χ = 1 and

ν∞ =
2c(p,N ;χ)

5
ν′∞ =

c(p,N ;χ)

5
.
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Proof. If H(p,N ;χ) is irregular, then by Proposition 2.9, b > 0,
and if b = 1 then c > 0. Then, again by Proposition 2.9, H(1, N1;χ)
is regular and H(2b, 2a, 2c) is irregular. Thus, by Corollary 6.6, the
numbers of inequivalent regular and irregular cusps of H(p,N ;χ) is
given by ν∞ = ν1ν2 and ν′∞ = ν1ν

′
2 where ν1 is the cusp number of

H(1, N1; 1) and ν2 and ν′2 are, respectively, the numbers of inequivalent
regular and irregular cusps of H(2b, 2a, 2c). Except for the four cases
listed in Lemma 7.8, H(2b, 2a; 2c) has no irregular cusps, and so, by the
multiplicativity of c(p,N ;χ), ν∞ = (c(1, N1; 1)) × (c(2b, 2a; 2c)/2) =
c(p,N ;χ)/2. The four exceptions follow similarly using the expressions
for ν2 and ν′2 from Lemma 7.8 and multiplicativity of c(p,N ;χ).

By Lemma 7.8 the cases in Proposition 7.9 are the only cases for
which H(p,N ;χ) is irregular and has irregular cusps. This accounts
for all the cases of Theorem 1.2 and so completes the proof of this
theorem.
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