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GENUS TWO CURVES WITH
EVERYWHERE TWISTED GOOD REDUCTION

HOURIA BAAZIZ AND JOHN BOXALL

ABSTRACT. We construct examples of genus two curves
C over quadratic fields K with everywhere twisted good re-
duction, i.e., for any finite prime p of K, C has a twist that
has good reduction at p. An analogous construction for ellip-
tic curves enables us to recover Setzer’s family of curves with
everywhere good reduction over an imaginary quadratic field.

1. Introduction. Let K be a number field, and let X/K be a
smooth projective variety. We say that X has good reduction at a
finite prime p of K if X has a smooth model Xp over the local ring at
p. It is well known that X has good reduction outside a finite set Σ(X)
of primes p; we say that X has everywhere good reduction if Σ(X) is
empty. A well-known theorem of Fontaine [4] and Abrashkin [1] asserts
that there are no abelian varieties with everywhere good reduction over
Q. On the other hand many authors have given examples of elliptic
curves having everywhere good reduction over quadratic fields. By
taking products, one obtains abelian varieties of arbitrary dimension
with everywhere good reduction over quadratic fields.

When X is a curve of genus at least one, one knows that if X has
good reduction at p then the jacobian JX of X also has good reduction
at p. The converse is not true: if, for instance X is of genus two and JX
has good reduction at p, then the special fiber of Xp is either smooth
or the union of two curves of genus one intersecting at a point.

This paper grew out of an attempt to find genus two curves over
quadratic fields with everywhere good reduction. (Of course, the
Fontaine-Abrashkin theorem implies that there are no such curves over
Q.) If C is a (smooth projective) genus two curves over a number field
K, then C has an affine model of the form y2 = P (x) where P is a
square-free polynomial of degree 5 or 6 with coefficients in K and all

2010 AMS Mathematics subject classification. Primary 11G05, 11G30.
Keywords and phrases. Genus two curves, elliptic curves, everywhere good

reduction.
Received by the editors on March 22, 2009, and in revised form on July 6, 2010.

DOI:10.1216/RMJ-2013-43-1-55 Copyright c©2013 Rocky Mountain Mathematics Consortium

55



56 H. BAAZIZ AND J. BOXALL

roots simple. If p is a prime of K with odd residue characteristic, then
one knows that C has good reduction at p if and only if we can choose
P to have coefficients in the local ring Op at p and to remain square-
free after reduction (mod p). (See [6].) This is equivalent to the
discriminant of P being a unit in Op. When the residue characteristic
of p is 2, we need to use a model

(0.1) y2 +Q(x)y = P (x),

where now P and Q have coefficients in Op and P + Q2/4 is square-
free of degree 5 or 6 and without repeated roots. One knows that
C has good reduction at p if and only if we can choose P and Q in
such a way that 28 times the discriminant of P +Q2/4 is an invertible
element of Op. To have a unified notation, we write ΔC for 28 times
the discriminant of P +Q2/4; of course, ΔC depends upon the choice
of P and Q and not just upon C.

We call a model of the form (0.1) a Weierstrass model of the genus
two curve C. Let OK denote the ring of integers of K. It follows from
the previous paragraph that, if C has a Weierstrass model (0.1) with P
and Q having coefficients in OK such that ΔC is an invertible element
of OK , then C has everywhere good reduction.

While we know of no Weierstrass model having these properties with
K a quadratic field, we did discover the following result.

Proposition 0.1. Let p, b ∈ K, and let C have the Weierstrass
model

(0.2) y2 + (px2 + px)y = x5 +

(
b+ 5

2

)
x4 + bx3 +

(
b− 5

2

)
x2 − x.

Then ΔC = ((p2 + 2b)2 + 108)2.

This can of course be checked directly, and leads to the following
construction of an infinite family of pairs (K,C) consisting of a quartic
number field K and a genus two curve C having everywhere good
reduction over K.

Proposition 0.2. Let b be an odd rational integer, let p be an
algebraic number such that either (p2 + 2b)2 = −107 or (p2 + 2b)2 =
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−109, and let K be the number field generated over Q by p. Then the
curve (0.2) has everywhere good reduction over K.

Since b is a rational integer, it is clear that p belongs to OK and,
since b is odd, (0.2) has coefficients in OK . The condition that
(p2 + 2b)2 = −107 or −109 implies that ΔC = 1.

It is clear that K is a quartic extension of Q, and it is easy to see
that the Galois group of its Galois closure is the dihedral group of
order 8. Also, K always contains Q(

√−107) when (p2 + 2b)2 = −107
and Q(

√−109) when (p2 + 2b)2 = −109. Since we have been unable
to find examples of genus two curves with everywhere good reduction
over number fields of degree 2 or 3 in the literature, the fields K in
Proposition 0.2 seem at present to be the fields of smallest known degree
that harbor examples of such curves.

The rest of this paper is devoted to the study of various properties of
these curves as well as their use in the construction of genus two curves
with various arithmetic properties.

Writing w = p2+2b and Y = y+(px2 + px)/2, we see that the curve
C with equation (0.2) is isomorphic to

(0.3) Y 2 = x(x+ 1)

(
x3 +

1

4
(w + 6)x2 +

1

4
(w − 6)x− 1

)
.

Furthermore, ΔC = (w2 + 108)2.

If X is a smooth projective variety over the number field K, a
twist of X is a second smooth projective variety over K that becomes
isomorphic to X over an algebraic closure of K. It is easy to see that a
twist of X is in fact isomorphic to X over some finite extension of K.

As an example that will be used later, consider a genus 2 curve C
with equation y2 = x5 + ax4 + bx3 + cx2 + dx + e, where a, b,
c, d, e ∈ K. If λ ∈ K×, the curve C(λ) with equation y2 =
x5 + λax4 + λ2bx3 + λ3cx2 + λ4dx + λ5e becomes isomorphic to C
over K(

√
λ), as may be seen by replacing x by x/λ and y by y/

√
λ5.

Note that ΔC(λ) = λ10ΔC . We call C(λ) the twist of C by
√
λ (or by

K(
√
λ) if no confusion is possible). We use a similar language for elliptic

curves: if C is an elliptic curve with Weierstrass model y2 = x3+ax+b,
a, b ∈ K and if λ ∈ K×, the twist of C by

√
λ or by K(

√
λ) is the
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curve with equation y2 = x3 + λ2ax+λ3b; it becomes isomorphic to C
over K(

√
λ).

Let p be a prime of K. We say that X has twisted good reduction at
p if there exists a twist of X that has good reduction at p. We say that
X has everywhere twisted good reduction over K if X has twisted good
reduction at every prime of K. By specializing to the cases w2 = −107,
and w2 = −109, we shall give two constructions, each leading to the
following result.

Theorem 0.3. There are infinitely many pairs (K,C) consisting of a
quadratic number field K and a genus two curve C that have everywhere
twisted good reduction over K.

It should be noted that the Jacobian varieties of the curves (0.2) or
(0.3) are not absolutely simple, and it follows by specialization that
this is also the case for the curves used to prove Theorem 0.3. Thus,
the question of the existence of genus two curves that have absolutely
simple Jacobians and everywhere twisted good reduction over quadratic
fields remains open. However, we shall prove that a further extension
of degree divisible by three is necessary for the Jacobians of our curves
to become isogenous to a product of elliptic curves.

Here is an outline of the paper. In Section 1, we bring together a few
simple properties of everywhere twisted good reduction. In particular,
we show that there do not exist elliptic curves over Q with everywhere
twisted good reduction and that, if K is a number field and Σ a finite
set of primes of K, then there are only finitely j ∈ K that are the j-
invariants of elliptic curves having twisted good reduction at all primes
not in Σ. The proof is an adaption of Shafarevich’s well-known proof
[9] of the corresponding assertions for usual good reduction (see, for
instance, Silverman [11, page 263]). In Section 2 we briefly study the
curve Cw, viewing w as an indeterminate; we show, in particular, that
the Jacobian Jw of Cw becomes isogenous to a product of two elliptic
curves over a suitable six degree Galois extension of Q(w) with cyclic
Galois group. In Section 3, we study genus two curves obtained from
the curve (0.3) specialized to w2 = −107 and give a first construction
proving Theorem 0.3. Section 4 is devoted to a similar study of Cw

specialized to w2 = −109. In the final Section 5, we explain briefly how
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the family (0.2) was discovered and show how, by applying a similar
strategy to elliptic curves, we obtain Setzer’s [8] examples of elliptic
curves having everywhere good reduction over imaginary quadratic
fields.

1. Everywhere twisted good reduction. Let K be a number
field, and let p be a prime of K. As in the introduction, we say that
the smooth projective variety X over K has twisted good reduction at p
if some twist of X has good reduction at p. It is clear from the Jacobian
criterion applied to any smooth model of X that X has good reduction
outside a finite set of primes. If X does not have good reduction at p
but some twist X ′ of X does, then X ′ becomes isomorphic to X over
some finite extension K ′ of K, so that X acquires good reduction over
K ′ or, as one says, that X has potential good reduction at p.

Let Σ be a set of primes of K. By reiterating this procedure, we
deduce that, if X has twisted good reduction at all primes of K that
do not belong to Σ, then it has potentially good reduction outside of
Σ, i.e., it acquires good reduction at every prime of K over some finite
extension of K.

From now on, X will always be either a curve or an abelian variety.
If X is a curve of genus g ≥ 1, it is well known that, if X has good
reduction at p, then the Jacobian variety JX also has good reduction at
p. The converse is false in general; if X is a genus two curve, then JX
may have good reduction while the stable reduction of X is the union
of two genus one curves meeting at a point. Thus, we cannot, a priori,
use abelian surfaces with everywhere good reduction to construct genus
two curves with everywhere good reduction.

Let E be an elliptic curve over K, and fix a Weierstrass model

(1.1) y2 = x3 + ax+ b, a, b ∈ K.

Then one knows that, if ab �= 0, every twist of E has a Weierstrass
model of the form E(λ) : y2 = x3 + λ2ax + λ3b, where λ ∈ K×, and
two such twists E(λ) and E(λ′) are K-isomorphic if and only λ′/λ is a
square of K.

When a = 0, every twist of E has a model y2 = x3 +λb with λ ∈ K×

and becomes isomorphic to E over K( 6
√
λ), while when b = 0, every

twist of E has a model y2 = x3 + λax with λ ∈ K× and becomes
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isomorphic to E over K( 4
√
λ). These cases correspond respectively to

elliptic curves with j-invariant 0 and 1728.

Let p be a prime of K, and let Op be the local ring of K at p. If E
is an elliptic curve over K, then we can find a generalized Weierstrass
model

(1.2)
y2 + (a1x+ a3)y = x3 + a2x

2 + a4x+ a6,

ai ∈ Op for all i ∈ {1, 2, 3, 4, 6}

of E over Op. Let Δp ∈ Op denote the discriminant of this model, and
let vE(p) denote the p-adic valuation of Δp: if Δ′

p is the discriminant
of a second Weierstrass model over Op and v′E(p) its p-adic valuation,
then v′E(p) ≡ vE(p) (mod 12). Finally, one knows that E has good
reduction at p if and only if we can find a model (1.2) with vE(p) = 0.

Suppose that E has a Weierstrass model (1.1), and that the j-
invariant of E is different from 0 and 1728. If E has twisted good
reduction at p, then it acquires good reduction over some quadratic
extension K ′ of K. If P is a prime of K ′ dividing p, then, by what
has just been said, vE(P) ≡ 0 (mod 12). It follows that vE(p) ≡ 0
(mod 6) (and in fact vE(p) ≡ 0 (mod 12) if p is unramified in K ′). By
varying p, we obtain the following lemma.

Lemma 1.1. Let Σ be a finite set of primes of K, and let E be an
elliptic curve with equation (1.1), with discriminant D = 16(4a3+27b2).
If ab �= 0 and if E has twisted good reduction everywhere outside Σ, then
D is the sixth power of a fractional OK,Σ-ideal of K.

Here OK,Σ denotes the ring of all elements of K that are integral
at every prime of K that doesn’t belong to Σ. We use the lemma
to prove the following results, using a mild variant of Shafarevich’s
arguments showing that there are no elliptic curves with everywhere
good reduction over Q and only finitely many isomorphism classes of
elliptic curves over a number field K having good reduction outside a
finite set of primes of K.

Theorem 1.2. There are no elliptic curves over Q with everywhere
twisted good reduction.
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Proof. We again consider elliptic curves with Weierstrass model (1.1),
supposing during the proof that a, b ∈ Q. We take Σ to be empty.

If a = 0, then every twist of E is of the form y2 = x3 + b, and the
discriminant is 16 · 27b2. But such a curve cannot have good reduction
at 3, since the 3-adic valuation of 16 · 27b2 is odd for any b ∈ Q×, so it
cannot be divisible by 12.

If b = 0, then every twist of E is of the form y2 = x3+ax with a ∈ Q×.
Write a = 2mA, with A a unit at 2. We can suppose that 0 ≤ m ≤ 3.
The discriminant is now 26+3mA3; since vE(2) ≡ 0 (mod 12), we have
m = 2. An analysis using Tate’s algorithm [12] shows that E cannot
have good reduction at 2.

Suppose then that ab �= 0. Then Lemma 1.1 shows that D = εd6 for
some d ∈ Q× and ε ∈ {±1}, so that

16(4a3 + 27b2) = εd6.

Hence, writing ξ = −(3 · 22 · a)/d2, η = (33 · 22 · b)/d3, we find that
η2 = ξ3+27ε. Thus, (ξ, η) is a rational point on one of the elliptic curves
y2 = x3+27ε. But it is well known that both of these curves have rank 0
and that their rational torsion is of order 2. Hence, (ξ, η) = (−3ε, 0)
and therefore b = 0, a case which has already been excluded.

Two elliptic curves are twists of each other if and only if they have
the same j-invariant, so it is natural to consider twisted good reduction
as a property of j-invariants.

Theorem 1.3. Let K be a number field and Σ a finite set of primes
of K. Then there are only finitely many j ∈ K that are j-invariants of
elliptic curves with twisted good reduction at all primes of K not in Σ.

Proof. We first enlarge Σ by adding all the primes of K that
divide 2, and then in such a way that the ring of Σ-integers OK,Σ

is a principal ideal ring. We can suppose that j �= 0, 1728, as this
excludes only finitely many j-invariants. If j �= 0, 1728, the curve
Ej : y2 = x3 + [(j − 1728)2/4]x2 − 36(j − 1728)3x − (j − 1728)5 has
j-invariant j and discriminant j2(j − 1728)9. Suppose that, for every
p /∈ Σ, Ej has a twist having good reduction at p. Then, assuming
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that OK,Σ is principal and that Σ contains the primes above 2, the
discriminant of E is of the form εδ6 with ε ∈ O×

K,Σ, δ ∈ OK,Σ. Also,
j ∈ OK,Σ since Ej has potential good reduction outside Σ. Since
O×

K,Σ/(O×
K,Σ)

6 is a finite group, we can assume that ε belongs to a

finite set of representatives of O×
K,Σ/(O×

K,Σ)
6 in O×

K,Σ. To conclude,

therefore, it suffices to show that, given ε ∈ O×
K,Σ, there are only finitely

many (j, δ) ∈ O2
K,Σ satisfying j2(j− 1728)9 = εδ6. Now the curve with

affine model y2(y − 1728)9 = εx6 is of genus one, birational over K to
the elliptic curve y2 = x3 − 27ε. By a theorem of Siegel [7, 10], it
therefore has only finitely many points (x, y) ∈ O2

K,Σ. In particular,
there are only finitely many possible values of j.

Remark 1.4. (1) When j �= 0, 1728, the existence of curve Ej

with discriminant j2(j − 1728)9 shows that, if p is a prime of K not
dividing 2j(j − 1728), then there is an elliptic curve over K with j-
invariant j having good reduction at p. The elliptic curve y2 + y = x3

has j-invariant 0 and good reduction outside 3, and the elliptic curve
y2 = x3 − 1 has j-invariant 1728 and good reduction outside 2. Thus,
whatever the value of j ∈ K, we can find an explicit finite set of primes
Σ such that if p /∈ Σ is a prime of K, there exists an elliptic curve over
K with invariant j and good reduction at p.

(2) Let Z be a K-isomorphism class of smooth projective varieties
over K, and let Σbad

Z be the set of primes of K at which all members
of Z have bad reduction. Then Theorem 1.2 asserts that, if K = Q
and Z consists of elliptic curves, we have Σbad

Z �= ∅. On the other
hand, Theorem 1.3 asserts that, given any finite set of primes Σ of K,
there are only finitely many K-isomorphism classes Z of elliptic curves
over K with Σbad

Z ⊆ Σ. It would be interesting to know whether these
results can be generalized to higher genus curves or higher dimensional
abelian varieties. In Sections 3 and 4 we shall construct infinitely many
examples of quadratic fields K and K-isomorphism classes Z of genus
two curves over K with Σbad

Z = ∅.

2. The curve Cw over k(w). Let k be a field of characteristic
different from 2 and 3, let w be an indeterminate and let K be the
rational function field k(w). In this section, we bring together a few
properties of the genus two curve (0.3) of the introduction, viewed as
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a curve over K. Fix an algebraic closure Ω of K.

It is convenient to replace x by x − 1 so that the equation of Cw

becomes

(2.1)
y2 = x(x− 1)W (x),

W (x) = x3 +
1

4
(w − 6)x2 − 1

4
(w + 6)x+ 1.

The discriminant of W is (w2 + 108)2. If α is one of the roots of W in
Ω, one sees easily that the other two roots are 1/(1− α) and 1− 1/α.
Using the fact that the coefficient of x2 in W is minus the sum of the
roots of W , we find that

(2.2)

w = −2
(α− 2)(α+ 1)(2α− 1)

α(α − 1)
,

w2 + 108 = 16
(α2 − α+ 1)3

α2(α − 1)2
.

Lemma 2.1. The polynomial W is irreducible over K with cyclic
Galois group.

Proof. Suppose W reducible. Since W is of degree 3, one of its roots,
α say, lies in K. It then follows that the other roots 1/(1 − α) and
1−1/α also lie inK. On the other hand,W is a monic polynomial whose
coefficients lie in the integrally closed subring k[w] of K. It follows that
α and 1− 1/α are both polynomials in w, and this can only happen if
α ∈ k. Hence, W (α) = ((α2/4)− (α/4))w+(α3− (3/2)α2− (3/2)α+1)
is the zero polynomial. Comparing coefficients of w shows that either
α = 0 or α = 1, neither of which make the constant coefficient vanish.

This proves that W is irreducible. Since its discriminant is a non zero
square, it follows that it is separable with cyclic Galois group.

One sees easily that Cw has an automorphism of order 3, defined
by (x, y) 	→ ((1/1− x), (y/(1− x)3)). When k = C, it was proved by
Bolza [2] that this implies that Cw also has an automorphism ι of order
two, different from the hyperelliptic involution. Such an automorphism
must transform the set of Weierstrass points {∞, (0, 0), (1, 0)} to the
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set of Weierstrass points {(α, 0), (1/(1 − α), 0), (1 − 1/α, 0)}, and one
finds that it is given, in our situation and up to composition with the
hyperelliptic involution, by

(2.3) x 	−→ αx+ 1− α

x− α
, y 	−→ α(α− 1)uy

4(x− α)3
,

where u is a square root of w2 + 108 in Ω. Since k is of characteristic
different to 2 and 3, w2 + 108 is not a square of K, so that K(u) is
a quadratic extension of K and K(α, u) is a degree 6 extension of K
which is Galois with cyclic Galois group.

Proposition 2.2. We keep the notation that has just been introduced.

(1) Let Jw be the Jacobian variety of Cw. Then Jw becomes isogenous,
over the cyclic degree 6 extension K(α, u) of K, to a product of two
elliptic curves.

(2) When k = Q, Jw is not isogenous to a product of elliptic curves
over any extension of K of degree strictly less than 6.

Proof. (1) We have already seen that K(α, u) is a cyclic degree 6
extension of K. If ι is the automorphism of order two of Cw defined
by (2.3), then ι is rational over K(α, u). Since ι is not the hyperelliptic
involution, the quotient curve Ew of Cw by the group generated by ι is
of genus one and, since Cw(K), and hence Cw(K(α, u)), is non empty,
Ew(K(α, u)) is non empty. Thus, Ew can be given the structure of
an elliptic curve over K(α, u). By the Albanese property of Jacobians,
the quotient map Cw → Ew can be extended to a homomorphism
φ : Jw → Ew. But then Jw is isogenous over K(α, u) to Ew × Fw,
where Fw is the connected component of the identity of kerφ, which is
well known to be an elliptic curve.

(2) It suffices to show that Jw has a specialization Jw0 which is not
isogenous to a product of elliptic curves over an extension of Q(w0)
of degree strictly smaller than 6. To do this, we take w0 =

√−109.
The prime 11 splits in Q(

√−109), and the curve C√−109 has good
reduction at the primes of K above 11. The same is therefore true
for J√−109. Let L be a finite extension of Q(

√−109), let P be a
prime of L dividing 11 and let kP be the residue field of L at P. If
φ : Jw0 → E × F is an isogeny defined over L, with E and F elliptic
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curves over L, then E and F would have good reduction at P and φ
would induce an isogeny between the fibers JP of J√−109 and EP×FP

of E×F over kP. Now, kP is a finite field, and it is well known that the
Frobenius endomorphisms of isogenous abelian varieties over a finite
field have the same characteristic polynomial. Hence, the existence
of an isogeny JP → EP × FP would imply that the characteristic
polynomial χL,P(t) ∈ Q[t] of the Frobenius endomorphism of JP is the
product of that of EP and that of FP. This would in turn imply that
χL,P(t) factorizes in Q[t] as the product of two quadratic polynomials.
A method for calculating χL,P(t) is explained in [5]. Applying it when
L = Q(

√−109), we find that χQ(
√−109),P(t) = t4+9t3+38t2+99t+121,

which is irreducible in Q[t]. Let L be a finite extension of Q(
√−109),

and let d be the residue class degree of L over Q(
√−109) at P. Then

one knows that if χQ(
√−109),P(t) factorizes as

χ
Q(

√−109),P(t) = (t− α)(t − β)(t− γ)(t− δ),

where α, β, γ, δ ∈ C, then

χL,P(t) = (t− αd)(t− βd)(t− γd)(t− δd).

The coefficients of χL,P(t) can then be calculated as symmetric func-
tions of α, β, γ and δ and the calculation shows that χL,P(t) is irre-
ducible when d ≤ 5.

We end this section by remarking that Cw has a twist defined over
k(w2). To see this, note that substituting x+(1/2) for x in x(x−1)W (x)
shows that Cw also has the equation

y2 = x5 +
1

4
wx4 − 5

2
x3 − 1

8
wx2 +

9

16
x+

1

64
w.

Substituting x/w for x, multiplying by w5 and writing v for w2 gives
the following result:

Proposition 2.3. Let v = w2. The smooth projective curve Cv
defined over k(v) by the affine equation

y2 = x5 +
1

4
vx4 − 5

2
vx3 − 1

8
v2x2 +

9

16
v2x+

1

64
v3

becomes isomorphic to Cw over k(
√
w).
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Remark 2.4. If k were equal to C, a classical result of Bolza [2] would
show that there exists an s ∈ Ω such that Cw is isomorphic to the curve
y2 = x6 + sx3 + 1. A calculation shows that this remains true in our
situation, with s a square root of 4w2/(w2 + 108).

3. The curve C−107 and its twists. In this section, we specialize
to the case w =

√−107, and write C√−107 for the corresponding curve

(0.3) or (2.4). It is defined over Q(
√−107) and has discriminant 1.

Since its coefficients are algebraic integers outside 2, C√−107 has good
reduction away from 2.

On the other hand, we can form the 4
√−107-twist of C√−107 as in

Proposition 2.3. This gives the curve C−107 defined over Q by the
equation

y2 = x5 − 107

4
x4 +

535

2
x3 − 11449

8
x2 +

103041

16
x− 1225043

64
,

which has good reduction away from 2 and 107. Twisting C−107 by√−1, gives the curve C′
−107

y2 = x5 +
107

4
x4 +

535

2
x3 +

11449

8
x2 +

103041

16
x+

1225043

64

which has ΔC′
−107

= 10710. The advantage is that this curve has good

reduction at 2, as can be seen by replacing x by x − (1/2) and then y
by y + (x2 + x+ 1/2). This gives the equation

y2 + (x2 + x+ 1)y = x5 + 24x4 + 216x3 + 1068x2 + 5196x+ 16247

with integral coefficients.

Since C√−107 has good reduction away from
√−107, and C′−107,

viewed as a curve over Q(
√−107), is a twist of C√−107 and has good

reduction away from 2, we deduce that C√−107 has everywhere twisted

good reduction over Q(
√−107).

We can generalize this construction to prove

Theorem 3.1. Let m be a non zero, square-free integer prime to 107,
and let K = Q(

√−107m). Then C−107 acquires twisted good reduction
everywhere over K.
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Proof. Since C′
−107 is a twist of C−107 that has good reduction away

from 107, we need only consider the prime of K lying above 107. Let

α =
√−107m. Then the twist C

(1/α)
−107 of C−107 by 1/

√
α over K has

equation

y2 = x5 − 107

4α
x4 +

535

2α2
x3 − 11449

8α3
x2 +

103041

16α4
x− 1225043

64α5
,

so that Δ
C

(1/α)

−107

= 10710/α20 = 1/m10. By the construction of α, this

model is integral at 107 and Δ
C

(1/α)

−107

is a unit at 107. Hence, C
(1/α)
−107

has good reduction above 107.

Remark 3.2. When w =
√−107, a root of the polynomial W (x)

of (2.1) generates the Hilbert class field of Q(
√−107). Hence the 2-

torsion on the Jacobian of C√−107 is rational over the Hilbert class field

L of Q(
√−107). In this case, the Jacobian of C√−107 also becomes

isogenous to a product of two elliptic curves over L. Recall that u
denotes a square root of w2+108. Thus, when w =

√−107, u specializes
to ±1, so that the specialization of the isogeny of Proposition 2.2
is defined over Q(

√−107, α) = L. The characteristic polynomial
t4 + t3 − 2t2 + 3t + 9 of C√−107 at a prime of Q(

√−107) above 3
is irreducible so, arguing as in the proof of Proposition 2.2 (2), we see
that the extension to L is necessary to realize the isogeny.

4. The curve C−109 and its twists. This time, we specialize to the
case w =

√−109 and write C√−109 for the corresponding curve (0.3) or

(2.4). We start with the model obtained by substituting w =
√−109

in (0.3):

y2 = x(x + 1)

(
x3 +

1

4
(
√−109 + 6)x2 +

1

4
(
√−109− 6)x− 1

)
.

It is defined over Q(
√−109), and again has discriminant 1. Since its

coefficients are algebraic integers outside 2, C√−109 has good reduction

away from 2. Twisting by
√

2 +
√−109 gives the curve C

(2+
√−109)√−109
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with equation

y2 = x5 +

(
12

√−109− 89

4

)
x4 −

(
105

√−109 + 436

2

)
x3

+

(
324

√−109 + 17033

4

)
x2 + (840

√−109− 9281)x,

which also has the integral model

y2 + (
√−109x2 + x)y = x5 + (3

√−109+ 5)x4 − (53
√−109+ 218)x3

+ (81
√−109 + 4258)x2 + (840

√−109− 9281)x.

Since 2 +
√−109 is one of the primes of Q(

√−109) above 113,

C
(2+

√−109)√−109
has good reduction outside 2 +

√−109 and, in particular,

at the prime of Q(
√−109) lying above 2. It follows that C√−109 has

everywhere twisted good reduction over Q(
√−109).

By Proposition 2.3, the 4
√−109-twist C−109 of C√−109 has equation

y2 = x5 − 109

4
x4 +

545

2
x3 − 11881

8
x2 +

106929

16
x− 1295029

64
.

It has good reduction outside 2 and 109.

Theorem 4.1. Let m be a square-free integer prime to 109 and
such that m ≡ 1 (mod 8), and let K = Q(

√−109m). Then C−109 has
everywhere twisted good reduction over K.

Proof. Since C−109 has good reduction outside 2 and 109, we only
need to construct twists with good reduction at the primes above 2

and 109 of K. Let β =
√−109m. Then the twist C

(1/β)
−109 of C−109 over

K has equation

y2 = x5 − 109

4β
x4 +

545

2β2
x3 − 11881

8β3
x2 +

106929

16β4
x− 1295029

64β5

and Δ
C

(1/β)
−109

= 1/m10. Since m is prime to 109, C
(1/β)
−109 has good

reduction at the prime of K above 109.
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To conclude, we need to prove that C−109 has a twist over K that
has good reduction at the prime above 2. Since m ≡ 1 (mod 8), m
is a square of Q2, and so Q2(

√−109) = Q2(
√−109m) (in some fixed

algebraic closure of Q2). Furthermore, C
(1/β)
−109 is isomorphic to C−109

over Q2(
√−109). Again, since 2 +

√−109m is invertible as a 2-adic
integer, the condition m ≡ 1 (mod 8) implies that (2+

√−109m)/(2+√−109) ≡ 1 (mod 8) and is therefore a square of Q2(
√−109). It

follows that the twist C
(1/β,2+β)
−109 of C

(1/β)
−109 by

√
2 + β is isomorphic over

Q2(
√−109) to C

(2+
√−109)√−109

. Since we have already seen that the latter

has good reduction at the prime above 2 of Q(
√−109) and therefore

also overQ2(
√−109), it follows that the former also has good reduction

over Q2(
√−109). Since good reduction at a prime of a number field

is equivalent to good reduction over the completion, we conclude that

C
(1/β,2+β)
−109 has good reduction at the prime of K above 2.

Remark 4.2. When w =
√−109, the roots of the polynomial W (x)

of (2.1) generate a cubic cyclic extension L of Q(
√−109) which is

everywhere unramified. It follows that the 2-torsion on the Jacobian
of C√−109 is rational over L. We have u = ±√−1, and L(u) is the

Hilbert class field of Q(
√−109). By specializing from Proposition 2.2,

we see that the Jacobian of C√−109 becomes isogenous to the product
of two elliptic curves over L(u). Thus, as with the twists of C√−107, an
extension of degree divisible by 3 is necessary for the Jacobian of C−109

to become isogenous to a product of elliptic curves.

5. Setzer’s curves revisited. As promised in the introduction, we
shall explain briefly how the genus 2 curves (0.2) were found. Let L be
a number field. We search for genus 2 curves over L with everywhere
good reduction. Inspired by the fact that Setzer’s elliptic curves over
imaginary quadratic fields K with everywhere good reduction have a
K-rational two-torsion point, we decided to start with genus two curves
having two L-rational Weierstrass points. Such curves have a model of
the form

y2 + (px2 + qx)y = x5 + ax4 + bx3 + cx2 + dx, a, b, c, d, p, q ∈ L,

the Weierstrass points being the unique point at infinity and (0, 0).
When q = p, it turns out that ΔC is of degree 10 as a polynomial in p
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with only even powers of p occurring. Furthermore, the coefficient of
p10 is d2(d+1−a+b−c)). This vanishes if and only if d = a−b+c−1.
(If d = 0, then (0, 0) is a singular point of C, which is therefore not
of genus 2.) Substituting this value for d in ΔC gives a polynomial of
degree 4 in p2 whose leading coefficient is

(a− b+ c− 1)2(3a− 2b+ c− 4)2.

A check now shows that, if a− b+ c− 1 = 0 or if 3a− 2b+ c− 4 = 0,
then ΔC = 0, so we cannot reduce the degree of ΔC in p any further.
We therefore try to arrange for the leading coefficient of ΔC to be a
unit. If this is the case, if a, b, c are algebraic integers, if ε ∈ L is a unit
and if p is a root of ΔC = ε, then C has everywhere good reduction
over L.

To simplify, we therefore suppose that a − b + c − 1 = ±1 and
3a − 2b + c − 4 = ±1. These conditions are equivalent to d ∈ {±1}
and 2a− b ∈ {1, 3, 5}. Calculating ΔC for each of these possibilities for
d and 2a − b shows that, up to simple transformations, there are two
cases, one leading to the curves (0.2) whose discriminant is a square
and the other to a family of curves with everywhere good reduction over
degree 8 number fields and whose discriminant has a more complicated
form.

After these calculations had been completed, we decided to make
a similar search for elliptic curves with everywhere good reduction.
This led to the parametric families of elliptic curves with Weierstrass
equation

(5.1) E = Eε
p,a : y2 + pxy = x3 + ax2 + εx, ε ∈ {±1},

with discriminant Δ = (p2 + 4a)2 − 64ε and j-invariant (Δ+ 16ε)3/Δ.

Again, if a ∈ Z and p is a root of one of the four polynomials
(t2 + 4a)2 ± 64 = ±1, then E acquires everywhere good reduction
over any field L containing p.

Recall that Setzer [8] determined all elliptic curves with everywhere
good reduction over imaginary quadratic fields K and having a K-
rational torsion point of order 2.

Theorem 5.1 (Setzer). Let K be an imaginary quadratic field, and
write K = Q(

√−m) with m a square-free positive integer. There exists
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an elliptic curve E/K with everywhere good reduction and a K-rational
2-torsion point if and only if m = 65m1, where m1 is a square (mod 5)
and (mod 13) and 65 is a square (mod m1).

We now give an alternative description of Setzer’s curves, starting
with the curves E = Eε

p,a as in (5.1).

We take the curve E−1
p,a and assume that the discriminant is 1. Thus,

(p2 + 4a)2 = 65, j = 173 and E has everywhere good reduction over
the field Q(p) whenever a ∈ Z.

Replacing y by y + (1/2)px, we obtain the model

(5.2) E′ : y2 = x3 +

√
65

4
x2 + x

over Q(
√
65) which has good reduction over that field away from the

primes dividing 2.

Twisting E′ by 4
√
65 gives the elliptic curve with equation y2 =

x3 + (65/4)x2 + 65x, which has rational coefficients. Writing this in
the form

(5.3) E65 : y2 + xy = x3 + 16x2 + 65x,

we find that E65 now has discriminant 653 so, in particular, it has good
reduction at 2. In fact, the conductor of E65 is 652 = 4225, and we can
identify it in Cremona’s tables [3] as the curve 4225m1, though we shall
not use this. By construction, we know that E65 acquires everywhere
good reduction over Q( 4

√
65).

Proposition 5.2. Let K be an imaginary quadratic field satisfying
the following conditions.

(1) The primes 5 and 13 are ramified in K and Q(
√
65) have isomor-

phic completions at the primes above 5 and 13.

(2) K has a quadratic extension L, unramified outside 5 and 13, such
that L and Q( 4

√
65) have isomorphic completions at the primes above

5 and 13.

Then the twist C by L of E65 (viewed as an elliptic curve over K) has
everywhere good reduction over K.
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Proof. As L is unramified outside 5 and 13, and E65 has good
reduction away from 5 and 13, C also has good reduction away from
the primes of K dividing 5 and 13. To see that C has good reduction
above 5, we use the fact that E′ is the 4

√
65-twist of E65 and C the

L-twist of E65; conditions (1) and (2) imply that E′ and C become
isomorphic over the 5-adic completions of K and Q(

√
65). Since E′ has

good reduction at the prime above 5, it follows that C also has good
reduction there. Since good reduction at a prime of a number field is
equivalent to good reduction over the completion, we deduce that C
has good reduction at the prime of K above 5. A similar argument
shows that C has good reduction at the prime above 13.

Now let K be a quadratic field in which 5 and 13 are ramified, and
denote by p5 and p13 the primes of K above 5 and 13. Condition (2) of
Proposition 5.2 shows that L is ramified at p5 and at p13. This implies
that there exists a θ ∈ OK such that L = K(

√
θ) and

θOK = p5p13b
2,

where b is an integral ideal of K. If, further, L/K is unramified at 2,
then b is prime to 2OK and θ is a square (mod 4OK). Conversely,
if θ ∈ OK verifies these conditions, and if L = K(

√
θ), then L/K is

ramified at p5 and at p13 and unramified elsewhere. These conditions
already occur in [8] and, as explained there, genus theory shows that
they are equivalent to K being of the form described in Theorem 5.1.
Thus Proposition 5.2 gives a proof of the “if” part of Theorem 5.1.

Remark 5.3. In fact, Setzer not only also proves the “only if” part
of Theorem 5.1 but also proves that, when K is of the form stated
in the Theorem, there are exactly 2t isomorphism classes of elliptic
curves with everywhere good reduction over K, where t ≥ 2 is the
number of primes ramified in K. Recall that the 2-part of the class
group of K is then isomorphic to a product of t− 1 groups of order 2.
Now if C is a curve as in Proposition 5.2, then C and the twists of C
by the 2t−1 − 1 unramifed quadratic extensions of K are mutually non
isomorphic and have everywhere good reduction over K. This accounts
for half of Setzer’s curves. The others are obtained by applying the
same argument to the quotient of C by the subgroup generated by its
K-rational subgroup of order 2.
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