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YOUNG PERSON’S GUIDE TO
TRANSLATION SURFACES OF GENUS TWO:
MCMULLEN’S CONNECTED SUM THEOREM

ANDREW BOUWMAN AND JAROSLAW KWAPISZ

ABSTRACT. A translation surface is a surface obtained by
identifying pairs of parallel edges of a polygon in the Cartesian
plane R2. We give an introduction to translation surfaces
of genus two including their hyperellipticity and a detailed
elementary proof of McMullen’s result that any such surface
can be obtained as a connected sum of two flat tori.

1. Introduction. We give an introduction to some basic properties
of translation surfaces of genus two, including their hyperellipticity
and McMullen’s theorem that any such surface can be obtained as a
connected sum of two flat tori joined along a straight slit [6] (Figure 1).
This decomposition result enabled McMullen to leverage the classical
theory of genus one surfaces to obtain deep insight into the properties
of the SL2(R) action on the bundle of holomorphic one-forms in genus
two. In particular, he classified the possible orbit closures establishing
analogues of Raghunathan’s conjectures in this context.

Our goal is to make the decomposition theorem accessible to an unini-
tiated reader by supplying an alternative detailed argument proceeding
through elementary geometric considerations. The proof offers a new
perspective on the relative combinatorial simplicity enjoyed by the case
of genus two (as compared with higher genera).

Our departure point is an observation that there is only one combi-
natorial type of arc exchange induced on a closed geodesic cross-section
by the vertical flow on M . This is the content of Discrete Datum The-
orem in Section 2, which also contains the necessary background on
translation surfaces. This theorem offers an alternative to the classi-
fication of “ribbon graphs” relied upon by McMullen. Section 3 gives
some immediate corollaries showing, in particular, how one can avoid
the more advanced tools of complex analysis to establish hyperelliptic-
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FIGURE 1. A genus two surface as a sum of two slitted tori. (The slits glue together
to form a saddle connection J and its image η(J) under the hyperelliptic involution
η, which acts on the parallelograms by their central symmetry.)

ity and existence of Weierstrass points on M . These play a pivotal role
in McMullen’s result, which is stated and demonstrated in Section 4.

Upon completion of this work, we learned that a similar proof of
existence of splittings can be found in the survey [2] but the result
there is weaker in that it gives one splitting whereas McMullen’s
theorem secures an infinite number (as required by the application to
the SL2(R) action).

2. Translation surfaces and polyband construction. A trans-
lation surface M is a surface obtained by identifying the corresponding
edges of a polygon P (contained in R2) whose edges come in pairs e+

and e− where e− is a translation of e+. Taking P to be a regular poly-
gon gives nice examples, with the square and the hexagon yielding a
torus and the octagon yielding a torus with one “handle” attached (a
genus two surface, as in the inset in Figure 3). Figure 2 depicts a more
“generic” octagon. The identifications being effected by translations,
M is locally isometric to R2 at all points with the possible exception of
the vertices where a conical singularity may form with the total angle
that is a multiple of 2π. Alternatively, a translation surface can be
defined as a compact two-dimensional (real) surface carrying on the
complement of a finite set an atlas of charts into R2 whose transition
functions are translations. To ensure that the omitted points are coni-
cal singularities, it is furthermore assumed that the area of the surface
is finite.
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If one thinks of R2 as identified with the plane of complex numbers
C in the usual way, then the atlas determines a structure of a Riemann
surface and also gives a holomorphic 1-form obtained by pulling back
dz = dx + idy via the charts. The process can be reversed1 and,
in complex analysis, translation surfaces are usually spoken of as
holomorphic 1-forms on Riemann surfaces. That is the language of [6],
but we will use it only briefly to illustrate (in Section 3) the utility of our
approach. The interplay between different perspectives on translation
surfaces makes it an exciting and rich subject; see the surveys [5, 10]
(or the source [3]).

Going back to the identified polygon, if the genus of M is to be
g = 2, then we can either have one singularity with angle 6π or two
singularities each with angle 4π. This can be seen by applying the
Poincaré-Hopf formula to a vertical vector field on M or by computing
the Euler characteristic of M from a partition of M into rectangles
such that a vertex of any one of two touching rectangles is a vertex of
both.2 The subcollections of genus two translation surfaces with one
6π singularity or two 4π singularities are denoted H(2) and H(1, 1),
respectively.

Whether M is in H(2) or H(1, 1) depends upon the number of sides
of P and the order in which they are arranged along its boundary. To
neatly organize the possible orders, we introduce below a variation of
the polygon construction where P comes with two sides “pre-glued” and
thus forms a “band.” (Theorem 1 asserts that M is always obtainable
in this way.)

Consider the strip S := {(x, y) : 0 ≤ x ≤ 1} and the infinite cylinder
S/ ∼ in R2 obtained by identifying the boundary lines of S by the
translation (x, y) �→ (x+ 1, y). Let L+ be a closed broken line (broken
geodesic) in S/ ∼ that is a graph of a continuous function over the
equatorial circle E := {(x, 0) : 0 ≤ x ≤ 1}/ ∼ and consists of m
(m ≥ 2) segments (see Figure 2). Suppose that L− in S/ ∼ is another
broken line lying below E and obtained from L+ by rearrangement
of its segments by translations. The topological annulus A in S/ ∼
bounded by L+ and L− forms a translation surface upon identifying the
corresponding segments of L+ and L−. For lack of a better name, we
call the polygonal band A a polyband and the whole process a polyband
construction.
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FIGURE 2. M ∈ H(2) arises from gluing sides of a polygon P (left) or a polyband
A (right).

Each instance of the polyband construction can be assigned a discrete
datum as follows. Give L+ and L− the orientation induced from the
standard orientation on E by projecting. Label the edges of L+ as
L+
1 , . . . , L

+
m by going once around L+ in the positive direction starting

from some edge. Label the edges of L− as L−
1 , . . . , L

−
m where the L−

i is
the segment corresponding to L+

i under the rearrangement that formed
L− from L+. Going around L− in the positive direction starting from
some edge, the encountered edges are L−

π(1), . . . , L
−
π(m) where π is a

permutation of {1, . . . ,m}. In Figure 2, starting from L−
3 , the π is

(3, 2, 1), i.e., π(1) = 3, π(2) = 2 and π(3) = 1. This permutation
depends upon the choice of the starting edges on L+ and L− so, to
remove this ambiguity, we consider two permutations π and π′ as
equivalent if and only if π = c1 ◦ π′ ◦ c2 where the ci are some powers
of the cyclic permutation (2, . . . ,m, 1). The equivalence class, called
a reduced permutation, is what we brand as the discrete datum of the
construction. We will denote it by using square brackets; in Figure 2
the discrete datum is [3, 2, 1]. (One can check that, for m = 3, there
are only two distinct reduced permutations: [1, 2, 3] and [3, 2, 1], while
for m = 4 there are three: [1, 2, 3, 4], [4, 3, 1, 2] and [4, 3, 2, 1].) The
following result is our way of expressing the combinatorial simplicity of
genus two translation surfaces.

Theorem 1 (Discrete Datum Theorem). (i) Any M ∈ H(2) is
isometric to a translation surface obtained from a polyband construction
with discrete datum [3, 2, 1].
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closed geodesic
affine transformation

FIGURE 3. Smillie’s construction of a (regular) closed geodesic.

(ii) Any M ∈ H(1, 1) is isometric to a translation surface obtained
from a polyband construction with discrete datum [4, 3, 2, 1].

To prove the theorem, we use that any translation surface has a
regular closed geodesic (i.e., a closed geodesic disjoint from the singular
points). This innocent fact is not trivial and has been originally shown
by Masur with help from Teichmüller theory [4]. A nice elementary
proof has been found by Smillie [7] (see also [9]). The crux is in
deforming P by an affine transformation so that M has area A = 1 and
the diameter of M is so large that some point p ∈ M is further than
1/

√
π from the singularities (see Figure 3)3. (Affine transformations

map closed geodesics to closed geodesics.) Since A = 1, upon increasing
r > 0 from zero, the r-neighborhood Br(p) in M centered at p must
cease to be an embedded Euclidean disk for some r0 ∈ (0, 1/

√
π]. For r

that is a tad bigger than r0, Br(p) is still free of singularities but “laps
over itself” and thus contains a flat cylinder made of a multitude of
parallel regular closed geodesics.

As another standard preliminary, let us fix a regular closed geodesic
E and some direction transversal to E. Consider the subset M ′ of the
points p′ of M that can be reached from a point of E by traveling
along geodesic segments of that fixed direction. Here we do not insist
that a single segment is used for any given point p′ and allow unions
of segments joined at singularities of M . It is not hard to see that,
unless M ′ coincides with all of M , its boundary must be a union of
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saddle connections, that is, geodesic segments connecting singularities.
In particular, by choosing a generic direction, that is, not one of the
countably many directions of all possible saddle connections, one can
ensure that M ′ = M .

Proof of Theorem 1. Consider a translation surface M of genus
two. Let E be a regular closed geodesic. Pick a generic direction
transversal to E as in our preliminary discussion so that M ′ = M and
every geodesic segment in the chosen direction contains at most one
singularity. It is convenient to apply an affine transformation to make
the direction vertical and E horizontal. Consider the first return map
T : E → E under the vertical flow, i.e., the movement of points of
M with unit speed in the vertical direction, which is unambiguously
defined except at singularities having several outgoing verticals. T is an
arc exchange: it is a well-defined local isometry apart from the finitely
many points p whose outgoing vertical geodesic hits a singularity s
before returning to E. T acts by cutting E at all such cut points p
and rearranging the resulting arcs in E by translations. At this point
we are tempted to say that T is easily seen to be as depicted in one of
Figures 4 and 5, but let us flesh out this argument.

To be precise, for small ε > 0, the horizontal arc (p − ε, p + ε)
centered at a cut point p flows vertically intact and sweeps a rectangle
in M until it hits a singularity s where the rectangle is slit along two
verticals outgoing from s and forming angle 2π in M . (By our choice of
direction, the slitted rectangle has its two parts returning to E without
further encounters with singularities, granted ε > 0 is small enough.) In
particular, a small portion of the slitted rectangle forms a small radius
2π-sector with a tip at s (darkly shaded in Figure 4). Such sectors for
different p are disjoint and (their closures) form a neighborhood of the
set of singularities. Therefore, if M ∈ H(2), then there are 6π/2π = 3
cut points p in E and if M ∈ H(1, 1), then there are (4π + 4π)/2π = 4
cut points.

Let us focus on the case of M ∈ H(2) when E is cut into three (open)
arcs E1, E2 and E3 (Figure 4). Each arc Ei sweeps an open rectangle
Ri before returning to E. The vertical portions of the boundaries of
any two adjacent rectangles Ri and Ri+1 that are below the singularity
impact are identified in M . We shall call the disjoint union R of R1,
R2 and R3 with those identifications a tower. As discussed, the vertical
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FIGURE 4. For M ∈ H(2), there are three cut points splitting E into E1, E2

and E3. The tower of three rectangles above E rearranges into a polyband. The
[3, 2, 1] datum is forced because the three slitted rectangles (one presented in two
pieces) have to glue so that a neighborhood of the sole singularity with angle 6π is
homeomorphic to a disk.

sides of the tower (above the singularities) are identified so that M
contains a neighborhood of s with the total angle at s equal to 6π.
In Figure 4, the neighborhood is glued together from the three small
darkly shaded slitted rectangles labeled by the three tower vertices s12,
s23 and s31 they abut.

In circumnavigating the 6π-singularity s ∈ M clockwise, one must
visit the slitted rectangles in one of the two (cyclic) orders s12, s23, s31
or s12, s31, s23. The second order is simply the reversal of the first
so we deal only with the first. (Both lead to the same discrete datum
[3, 2, 1].) Looking at Figure 4, we see that the first order forces the
identifications of the vertical sides of R to be R+

1 ↔ R−
3 , R

+
2 ↔ R−

1 ,
R+

3 ↔ R−
2 . But that means that, upon returning to E, the Ei appear

in the cyclic order E3, E2, E1 along E. (Indeed, E3 is followed by E2
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FIGURE 5. For M ∈ H(1, 1), the tower of four rectangles above E rearranges into
a [4, 3, 2, 1] polyband.

to its right and E2 is followed by E1.)

Finally, to uncover the polyband, (still looking at Figure 4) we let
L+ be the broken geodesic obtained by joining s12 to s23 by a segment
in R2 and s23 to s31 by a segment in R3 and s31 to s12 by a segment in
R1. Cutting R along L+ and moving the top pieces below E yields a
polyband representing M . It is bounded by L+ and its rearrangement
L− with discrete datum [3, 2, 1].

This finishes the proof for M ∈ H(2), and we move to the case when
M ∈ H(1, 1), which proceeds along the same lines except that now E is
divided into four subarcs E1, E2, E3, E4. Each of the two singularities
corresponds to a pair of the four vertices of R with angle 2π (named
s12, s23, s34, s41 according to the rectangles to which they belong, see
Figure 5).

First observe that such a pair cannot be formed by two vertices that
are adjacent (i.e., belong to the same rectangle Ri). Indeed, if that
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FIGURE 6. The horizontal and vertical lines of the 1-form ω = w−1dz on one of
the two copies of the triply slitted plane making up the Riemann surface of w =√

(z + 1)(z − 1)(z − 2)(z − 3)(z − 4)(z − 5). The real part of ω is Re (w−1) dx −
Im (w−1) dy, and the darker flowlines are those of the corresponding vectorfield
(Re (w−1),−Im (w−1)). The lighter flowlines similarly correspond to the imaginary
part of ω. (Here x and y are the standard coordinates in the depicted z-plane, not
the polyband A.)

were the case and, say s12 and s23 were identified in M , then the
vertical sides of R2 above the singularities would be identified as well
and so T (E2) would have to be an arc whose endpoints coincide in M ,
contradicting T (E2) being a proper subarc of a simple closed curve E.
Therefore, it must be that s12 and s34 identify to one singularity and
s23 and s41 to the other, as depicted in Figure 5. The identifications of
the vertical sides of the tower are then given by R+

1 ↔ R−
4 , R

+
3 ↔ R−

2 ,
R+

2 ↔ R−
1 and R+

4 ↔ R−
3 . This means that, upon returning to E

the E1, E2, E3, E4 appear in the order T (E4), T (E3), T (E2), T (E1).
As before, cutting the tower along the broken line L+ joining s12, s23,
s34,s41 leads to a rearrangement into a polyband representing M and
with discrete datum [4, 3, 2, 1].
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3. Hyperellipticity. As the first application of the Discrete Datum
Theorem, we give a geometric reason for the hyperellipticity of all genus
two Riemann surfaces a property usually derived via Riemann-Roch
theorem, [1]. Basically, all we have to say is: Look, the polybands in
Figures 4 and 5 are manifestly centrally symmetric. Let us explain and
provide some complex analytic context for this fact.

Recall that the Riemann surface M of the (two-valued) analytic
function

w =
√
(z − a1)(z − a2) · · · (z − an)

is conformally equivalent to the Riemann sphere when n = 1, 2 and
to the complex torus (a quotient of C by a lattice) if n = 3, 4.
In the latter case, M is called an elliptic curve. The hyperelliptic
curves are the Riemann surfaces obtained by taking n > 4. They
are of the smallest genus g = 2 for n = 5, 6. An abstract Riemann
surface M is hyperelliptic if and only if it is conformally equivalent
to a hyperelliptic curve, and this is characterized by existence of a
conformal involution η with exactly 2g + 2 fixed points (which are
called Weierstrass points). Indeed, if such an involution η exists, then
the quotient M/η is equivalent to the Riemann sphere4 and the inverse
of the natural factor map π : M → M/η is essentially the square root
function above, with the action of η corresponding to the choice of sign.

To connect with our development, an abstract Riemann surface M
can be turned into a translation surface by fixing a holomorphic one
form5 ω on M and letting its real and imaginary parts play the roles
of the coordinate forms dx and dy (so ω corresponds to dz = dx+ idy
in the M = P/ ∼ or M = A/ ∼ presentations). Against this backdrop
note that, due to 1, 2, 3, . . . and . . . , 3, 2, 1 being flips of each other, any
polyband A with datum [3, 2, 1] or [4, 3, 2, 1] is left invariant under an
isometry of the infinite cylinder S/ ∼ that rotates it by 180◦ about a
suitable point, i.e., a mapping given by (x, y) �→ (−x+a,−y+b) where
x is mod 1 and the parameters a, b are picked so that each segment
of L+ goes to the corresponding segment of L−. (For the polybands
constructed in the proof of Theorem 1 and depicted in Figures 4 and
5, b = 0 and a is easy to guess.) We refer to this isometry as the
central symmetry of A although, it has two fixed points: (a/2, b/2)
and (a/2 + 1/2, b/2).
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FIGURE 7. Any M ∈ H(2) (left) arises from a flat torus (center) with a parallelo-
gram removed (“stamped out”). Generally (right), the removed parallelogram need
not fit into any fundamental parallelogram.

Central symmetry respects the boundary identifications in A that
glue it into the surface M and thus induces an isometry η : M → M ,
called the hyperelliptic involution, that has exactly six fixed points: two
in the interior of the polyband A, one at the center of each side, and
the singularity if M ∈ H(2). (For M ∈ H(1, 1), the two singularities
are interchanged.) Viewed on the original Riemann surface, η is
conformal manifestly so away from the singularities but also there (if
only because isolated singularities of conformal maps are removable).
We established the following classical result:

Corollary 1 (Hyperellipticity). Any Riemann surface M of genus
g = 2 is hyperelliptic: it admits a conformal involution η : M → M
with six fixed points.

Before moving on, let us offer the following visually appealing pre-
sentation of any M ∈ H(2) illustrated by Figure 7.

Theorem 2 (Stamped Torus). Any M ∈ H(2) is isometric to
the translation surface obtained by identifying the opposite sides of a
parallelogram (perhaps degenerate) in a flat torus (with the interior of
the parallelogram removed).

Proof. By the Discrete Datum Theorem, we may suppose that M
is obtained from a polyband construction. First assume that L+ is
not straight (i.e., not all of its segments have the same direction). For
each vertex of L+, consider the (possibly degenerate) triangle spanned
by this vertex and the adjacent vertices. One of the triangles has to
be non-degenerate and have interior above the polyband as otherwise
L+ would be convex and thus straight. We may as well suppose that
the two sides of this triangle Δ+ are L+

2 and L+
3 (as in Figure 7). By

adjoining Δ+ and its symmetric counterpart η(Δ+) to the polyband we
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get a new polyband with discrete datum [1, 2], which yields a flat torus.
The desired parallelogram is obtained by identifying Δ+ and η(Δ+)
along their edges that are not in L±. In the case when L+ is straight
(and thus horizontal), a degenerate parallelogram L+

2 ∪L+
3 = L−

3 ∪L−
2

can be used.

The situation depicted on the right of Figure 7 serves as a warning
that some M ∈ H(2) cannot be presented as a “big” parallelogram
with a “small” parallelogram stamped out (as happened in the middle
of Figure 7).

4. McMullen’s theorem. We turn to our main objective, which
is the following restatement of the key combinatorial result in [6]
(Theorem 7.4 lumped together with a much easier Theorem 7.3). It
implies that any genus two translation surface can be constructed from
two slitted parallelograms in a way suggested by Figure 1. Observe
that the depicted surface is in H(1, 1). To get a surface in H(2) one of
the slits has to start and end at the same point of the torus.

Theorem 3 (McMullen). Any translation surface M of genus g = 2
contains a saddle connection J such that η(J) �= J (where η is the
hyperelliptic involution). The surface M splits along J ∪ η(J) into a
connected sum of two tori. Moreover, given a (maximal) open cylinder
C such J can be found so that neither J nor η(J) cross ∂C (although
they may be contained in ∂C or have endpoints in ∂C).

Proof. Given a genus g = 2 surface M and a cylinder C, we can
instantiate the proof of the Discrete Datum Theorem with E being the
equator of C to present M via the polyband construction so that C is
the maximal horizontal cylinder in polyband A the shaded region in
Figures 9 and 10.

We start with the easier case when M ∈ H(2). As in the previous
argument, we first assume that L+ is not straight and consider the
triangles spanned by each vertex of L+ together with the two adjacent
vertices. Again, one such triangle, call it Δ+, has to be non-degenerate
and contained in A (see Figure 8). The desired J is the lower side
of Δ+ (the side not in L+). Indeed, cut away from A along J ∪ η(J),
Δ+ and η(Δ+) naturally identify to form a torus and A\(Δ+∪η(Δ+))
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FIGURE 8. The construction of J for M ∈ H(2); the degenerate case is on the
right.

is a new polyband with the Discrete Datum [2, 1], yielding a torus as
well. For J when L+ is straight, see Figure 8.

It remains to deal with the case when M ∈ H(1, 1). The situa-
tion is a bit more complicated by virtue of L+ containing four seg-
ments. L+ is a graph of a function over E and we may well as-
sume that s41 is the minimum, the lowest point of L+. The seg-
ment L+

1 must then go up, i.e., have a non-negative slope. Subse-
quent segments L+

2 , L
+
3 can go up or down and L+

4 has to go down,
i.e., have a non-positive slope. Below we consider the four possibilities
for the slopes of L+

1 , L
+
2 , L

+
3 , L

+
4 : up,up,up,down, up,down,down,down,

up,up,down,down, and up,down,up,down. (These are not exactly mu-
tually exclusive because some slopes may be zero.) We first restrict
attention to the “non-degenerate” situation when the minimum on L+

is attained at the sole location s41.

up,up,up,down. Let J = J234 connect s12 to the “rightmost” point
of L+, s41,right in Figure 9. Observe that the segments J , L+

2 , L
+
3 , L

+
4

bound a quadrilateral Q+. Q+ and η(Q+) glue (along J and η(J)) to
form a hexagon, which identifies to a torus. What remains of polyband
A has discrete datum [2, 1] so also forms a torus.

up,down,down,down. This case is (vertical) axis-symmetric to the
previous one.

up,up,down,down. Consider J234 as in the first case and its symmet-
ric counterpart J123 connecting the leftmost point s41,left of L

+
4 to s34,

see Figure 9. J = J234 is as desired unless it is not entirely contained in
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FIGURE 9. up,up,up,down and up,up,down,down (non-degenerate cases).

the polyband A, which is when s34 is below J234. Likewise, J = J123
works unless s12 is below J123. It is impossible for s12 and s23 to both
be “below.”

up,down,up,down. Now s23 is a local minimum on L+ (but it is not
in ∂C by our temporary non-degeneracy assumption). It is really easy
to find a suitable J that crosses ∂C; see Figure 10. For J that does not
cross ∂C, we have to work a bit harder.

Let K+ be the triangle in A with L+
3 and L+

4 for its two sides. Upon
identifying a pair of parallel sides in K+ ∪ η(K+), we get a cylinder
K ⊂ M . Consider the oriented half-line D originating from s41,left and
passing through s23. The portion of D in cylinder K cuts K into a
parallelogram. The union of this parallelogram and the triangle with
vertices s41,left, s23, s41,right forms a trapezoid (see Figure 11). Note
that the side opposite to the s41,left, s41,right-side in the trapezoid must
contain a point that represents a singularity. Let J be the segment in
the trapezoid connecting that point to s41,left. Note that η(J) �= J (if
only because, presented6 in A, η(J) ends at η(s41,right) which is not in
J). From η(J) �= J , it already follows that M cut along γ := η(J) ∪ J
disassociates into two slitted tori (cf. [6, Theorem 7.3]). Indeed, since
η acts on the first homology H1(M,Z) by −Id and η(γ) = γ, γ is a null
homologous loop and thus cuts M into two subsurfaces of lower genus.
For concreteness, Figure 12 identifies those two tori explicitly.



MCMULLEN’S CONNECTED SUM THEOREM 51

s23

J
η(J) C

FIGURE 10. up,down,up,down (non-degenerate case): An “easy” J could be found
if it were allowed to cross ∂C.
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s23 K+
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η(K+)

FIGURE 11. up,down,up,down (non-degenerate case): K+ and η(K+) form a
cylinder, which is shown “unfolded” to unveil the trapezoid inside which J is found.
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FIGURE 12. J and η(J) cut M into two tori (presented by the two shaded
hexagons).
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FIGURE 13. Degenerate cases with 3, 2, and all 4 vertices of L+ in ∂C. (The
second and third pictures are essentially the same.)

The proof is complete save for the degenerate cases when s41 is not
the only vertex of L+ in ∂C. These are all easy and taken care of in
Figure 13.

ENDNOTES

1. This can be done by representing M via Veech’s “zippered
rectangle” [8] erected over the first return map of the geodesic flow
in a minimal direction for the metric associated with the 1-form.

2. To each vertex v associate i(v) ∈ N so that i(v) · 2π is the total
angle at v making v a common point of i(v) · 4 rectangles and i(v) · 4
edges. The Euler characteristic 2− 2g = −2 is expressed as

V − E + F =
∑

v

1− 1

2

∑

v

i(v) · 4 + 1

4

∑

v

i(v) · 4 = −2.

Hence,
∑

v i(v)−1 = 2, yielding the two possibilities 2 = 2 or 1+1 = 2.

3. The delicate point is that the diameter of M is generally smaller
than the diameter of the deformed P .

4. As can be seen by using Riemann-Hurwitz formula.

5. Such forms correspond to incompressible irrotational flows on M .
One can usually be constructed by hand in any given example (say dz/w
in ours) and its a priori existence is clear to a physicist. Mathematicians
construct them from suitable harmonic functions obtained either as
limits of subharmonic functions or as minimizers of a Dirichlet integral,
see [1].

6. We abuse the notation η: in the context of A, η is the obvious
central symmetry.



MCMULLEN’S CONNECTED SUM THEOREM 53

REFERENCES

1. H.M. Farkas and I. Kra, Riemann surfaces, Grad. Texts Math. 71, Springer-
Verlag, New York, 1992.

2. P. Hubert, E. Lanneau and M. Möller, GL+
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