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POLYNOMIALS AND WEYL ALGEBRAS ON TIME SCALES

MARKUS HUNZIKER AND MARK R. SEPANSKI

ABSTRACT. We define the Weyl algebra on a time scale
as the C-algebra generated by the coordinate function t and
the Hilger derivative operator δ. This leads to a rich variety
of algebras that generalize the usual Weyl algebra on R
and also the q-Weyl algebra. The main focus of the paper
is on the computation of the Gelfand-Kirillov dimension of
these algebras. Related to the Gelfand-Kirillov dimension, we
also introduce a new invariant for arbitrary time scales (i.e.,
arbitrary closed subsets ofR) that is invariant under the group
of affine linear transformations.

1. Introduction.

1.1. Time scales. A time scale T is any nonempty closed subset
of the set of real numbers R with the induced (standard) metric and
linear order. Analysis on time scales was introduced by Stefan Hilger
in his Ph.D. thesis (see [4]) to unify continuous and discrete analysis
of one variable. For example, Hilger defined the notion of derivative
for functions on a time scale that coincides with the usual derivative
if T = R and with the difference operator if T = Z. Similarly,
there is a generalized notion of integration that coincides with the
usual (Riemann) integral for continuous functions if T = R and
with summation if T = Z. Since its introduction, analysis on time
scales has become an active field of research in applied mathematics
with an abundance of applications to dynamical systems that arise in
engineering and control theory (see [1] and the references therein for
an overview).

1.2. The q-Weyl algebra. Calculus on time scales also generalizes
the calculus of q-analogs (or “quantum calculus,” see [6]) that plays
an increasingly important role in algebraic combinatorics and repre-
sentation theory. Fix a real number q > 1, and consider the time scale
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T = qN0 = {qν | ν ∈ N0}. Then the Hilger derivative of a function

Dqf(t) =
f(qt)− f(t)

qt− t

for t ∈ T. The operator Dq and the coordinate function t, identified
with the operator on functions given by left multiplication by t, satisfy
the q-Heisenberg relationDq ·t−qt·Dq = 1. TheC-algebra generated by
t and Dq is called the q-Weyl algebra and is a deformation of the Weyl
algebra which is obtained in the limit as q → 1. All of these algebras are
Ore extensions of the polynomial ring C[t] and have Gelfand-Kirillov
dimension equal two.

1.3. Weyl algebras on time scales. The main purpose of this
paper is to define and study Weyl algebras on time scales. Let T be a
time scale, and assume that the space of infinitely Hilger differentiable
C-valued functions forms an algebra, i.e., is closed under multiplication.
(It is easy to give examples of time scales for which the function t2 is
not Hilger differentiable, even though t is always differentiable with
constant Hilger derivative 1.) Then we define the Weyl algebra on T
as the C-algebra generated by t and the Hilger derivative operator. For
example, if T = qN0 with q > 1, then the Weyl algebra on T is the q-
Weyl algebra described above. Our general construction leads to a rich
variety of new C-algebras with two generators. The main focus in this
paper will be on the Gelfand-Kirillov dimension of these algebras. We
conjecture that, if r is any integer ≥ 2, then there exists a time scale for
which the corresponding Weyl algebra has Gelfand-Kirillov dimension
equal to r. Related to the Gelfand-Kirillov dimension of Weyl algebras
on time scales, we also introduce a new invariant for arbitrary time
scales (i.e. arbitrary closed subsets of R) that is invariant under the
group of affine linear transformations.

2. Preliminaries. The reader should consult [1, Chapter 1] for
more details and proofs.

2.1. Basics. Let T be a time scale, i.e., a nonempty closed subset
of R. The forward-jump operator σ : T → T is defined by

σ(t) = inf{s ∈ T | s > t}
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for all t ∈ T. Similarly, the backward-jump operator ρ : T → T is
defined by ρ(t) = sup{s ∈ T | s < t}. A point t ∈ T is called left-
dense if ρ(t) = t and left-scattered if ρ(t) < t. Similarly, t ∈ T is called
right-dense if σ(t) = t and right-scattered if σ(t) > t. Points that are
left-dense and right-dense are called dense. If f : T → C is a function,
we define the function fσ : T → C by

(2.1.1) fσ(t) = f(σ(t))

for all t ∈ T, i.e., fσ = σ∗(f) is the pull-back of f by σ. We will often
slightly abuse notation and write t to denote the coordinate function
on R restricted to T. Thus, we would write tσ to denote the function
on T whose value at t0 ∈ T is σ(t0).

2.2. The Hilger derivative. If T has a left-scattered maximum m,
define Tκ = T−{m}; otherwise, define Tκ = T. The delta or (Hilger)
derivative of a function f : T → C at t ∈ Tκ is the complex number
fΔ(t) (if it exists) with the property that, given any ε > 0, there is a
neighborhood U (in the relative topology) of t such that

∣∣[f(σ(t)) − f(s)]− fΔ(t) [σ(t)− s]
∣∣ ≤ ε |σ(t) − s|

for all s ∈ U . It is an easy theorem that, if f is differentiable at t ∈ Tκ,
then f is continuous at t. Moreover, if f is continuous at t ∈ Tκ and t
is right-scattered, then f is differentiable at t with

fΔ(t) =
f(σ(t))− f(t)

σ(t)− t
,

and if t is right-dense, then f is differentiable at t if and only if the
standard limit exists, i.e.,

fΔ(t) = lim
s→t

f(s)− f(t)

s− t
,

where the limit is over s ∈ T. It follows immediately from the definition
that, if f and g are differentiable at t ∈ Tκ and c ∈ C, then f + g
and cf are differentiable at t with (f + g)Δ(t) = fΔ(t) + gΔ(t) and
(cf)Δ(t) = cfΔ(t).
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2.3. The product rule. If f and g are differentiable at t ∈ Tκ,
then the product fg is differentiable at t with

(2.3.1) (fg)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t).

If f and g are differentiable functions on T, we will frequently use
(2.1.1) to write the product rule in the form

(2.3.2) (fg)Δ = fΔg + fσgΔ.

Warning. In general, fg is not twice differentiable even if both f and
g are twice differentiable. For instance, consider a time scale T which
contains a point t0 that is left-dense and right-scattered so that the
forward-jump function σ is not continuous and hence not differentiable
at t0. Since (t2)Δ = t + tσ = t+ σ by (2.3.2), it follows that t2 is not
twice differentiable at t0 even though t is twice differentiable everywhere
with tΔΔ ≡ 0.

2.4. Anti-derivatives. A function f : T → C is called rd-
continuous if it is continuous at right-dense points in T and its left-sided
limits exist at left-dense points in T. Clearly, every continuous function
is rd-continuous. A function F : T → C is called an anti-derivative of
f : T → C if FΔ(t) = f(t) for all t ∈ Tκ. It is a theorem that every
rd-continuous function has an anti-derivative that is unique up to an
additive constant. If f : T → C is rd-continuous and F : T → C is an
anti-derivative of f , we define

∫ b

a

f(t)Δt = F (b)− F (a)

for any a, b ∈ T.

2.5. Taylor’s formula. For a fixed s ∈ T, define hk( , s) recursively
by

(2.5.1) h0(t, s) ≡ 1, hk+1(t, s) =

∫ t

s

hk(τ, s)Δτ.
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If f is n-times delta differentiable on Tκn

and a ∈ Tκn−1

, then for any
t ∈ T,

(2.5.2) f(t) =

n−1∑
k=0

fΔk

(a)hk(t, a) +

∫ ρn−1(t)

a

fΔn

(τ)hn−1(t, σ(τ))Δτ.

3. Polynomials.

3.1. Restrictions of polynomial functions. Let C[t] be the
polynomial ring in the variable t overC. We will interpret the elements
ofC[t] asC-valued functions onR and, by restriction, on any time scale
T.

In the following we will assume that |T | = ∞.

Then a polynomial p(t) ∈ C[t] is identically zero as a function on
T if and only if p(t) = 0 as a polynomial, and hence we may view
C[t] as a subalgebra of the algebra of C-valued functions on T, where
multiplication is given by (fg)(t) = f(t)g(t), t ∈ T. In general, the
algebra C[t] is not invariant under the delta derivative.

Lemma 1. The polynomial ring C[t] viewed as an algebra of
functions on a time scale T is invariant under the delta derivative if
and only if tσ = p(t) for some p(t) ∈ C[t].

Proof. Suppose that C[t] is invariant under the delta derivative.
Since (t2)Δ = t + tσ, it follows that tσ = p(t) for some p(t) ∈ C[t].
Conversely, suppose tσ = p(t) for some p(t) ∈ C[t]. Then (tn)Δ =
tn−1+tσ(tn−1)Δ = tn−1+p(t)(tn−1)Δ, and hence it follows by induction
that (tn)Δ ∈ C[t] for all n ∈ N0.

3.2. Another notion of polynomial functions. In the case when
T = R, the polynomial functions are the precisely the functions with
the property that some higher derivative vanishes identically. For a
general time scale T, define

P(T) = {f : T → C | fΔn ≡ 0 on T κn

for some n ∈ N}.
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Clearly, P(T) is a C-vector space. As a vector space, P(T) shares
many properties with the polynomial ring C[t]. For instance, one has
the following result.

Lemma 2. For n ∈ N0, let P(T)n = {f : T → C | fΔn+1 ≡ 0 on

Tκn+1}. Then P(T)n is a C-vector space of dimension n + 1. More
precisely, for any fixed s ∈ T, the functions hk(t, s), 0 ≤ k ≤ n, form
a basis of P(T)n.

Proof. Let f ∈ P(T)n and s ∈ Tκn+1

. Then, by Taylor’s formula
(2.5.2), f is a linear combination of the functions hk(t, s), 0 ≤ k ≤ n.

Since (t)Δ = 1 and 1Δ, one has t ∈ P(T) for every time scale T.
Recall, however, that t2 is not twice differentiable, and hence t2 /∈ P(T)
in general. Thus, P(T) is not an algebra in general.

Proposition 3. If P(T) = C[t], then tσ = at+ b for some a, b ∈ R.

Proof. Since t2 ∈ C[t] = P(T) and since (t2)Δ = t + tσ = t + σ,
it follows that σ is n-times Δ-differentiable with σΔn

= 0 on Tκn

for
some n ∈ N. In particular, σ ∈ P(T), so there exists a p(t) ∈ C[t] so
that tσ = p(t).

By way of contradiction, suppose d = deg p(t) ≥ 2. We claim that
there exists a sequence {t0, t1, t2, . . . } ⊆ T with tν = σ(tν−1) = p◦ν(t0)
and tν−1 < tν for ν ∈ N. To see this, first suppose T possesses right-
dense elements. Since a ∈ T is right-dense if and only if a = σ(a) = p(a)
and since p(t)− t has only a finite number of zeros, it follows that there
is a maximal right-dense element, M ∈ T. By definition, there exists
a t0 ∈ T with M < t0. Now define tν = σ(tν−1) = p(tν−1) = p◦ν(t0).
Since p(t) = σ(t) ≥ t for t ∈ T, it follows that tν−1 ≤ tν . Since M was
maximal, it also follows that tν < tν+1, and we are done. On the other
hand, if T has no right-dense points, choose any t0 ∈ T to start and
set tν = σ(tν−1) as before.

We now claim that, for any m ∈ N, pΔ
m

(t) is the restriction of a
rational function Pm(t)/Qm(t) on {t0, t1, t2, . . . }, where Pm(t), Qm(t) ∈
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C[t] are polynomials with Qm(t) not vanishing on {t0, t1, t2, . . . } and

degPm(t)− degQm(t) =
dm+1(d− 2) + d

d− 1
.

Since d = deg p(t) ≥ 2, we have [dm+1(d− 2) + d]/(d− 1) > 0, and
hence pΔ

n

(t) cannot vanish identically on {t0, t1, t2, . . . }, which will
give us our desired contradiction and finish the proof.

Thus, it remains to verify the claim. First note that

pΔ(t) =
p(p(t))− p(t)

p(t)− t

on {t0, t1, t2, . . . }. Set P1(t) = p(p(t))−p(t) and Q1(t) = p(t)−t. Since
deg p◦m(t) = dm, it follows that degP1(t) = d2 and degQ1(t) = d.
Furthermore, Q1(t) > 0 on {t0, t1, t2, . . . } by construction. Since
degP1(t)−degQ1(t) = d2−d and since [d2(d− 2) + d]/(d− 1) = d2−d,
we are done with the m = 1 case. For the inductive step, note that

pΔ
m

(t) =
pΔ

m−1

(p(t)) − pΔ
m−1

(t)

p(t)− t

=
[Pm−1(p(t))]/[Qm−1(p(t))]− [Pm−1(t)]/[Qm−1(t)]

p(t)− t

=
Pm−1(p(t))Qm−1(t)− Pm−1(t)Qm−1(p(t))

Qm−1(p(t))Qm−1(t) (p(t)− t)

on {t0, t1, t2, . . . }. Set Pm(t) = Pm−1(p(t))Qm−1(t)−Pm−1(t)Qm−1(p(t))
andQm(t) = Qm−1(p(t))Qm−1(t)(p(t)−t). Clearly, we have degPm(t) =
ddegPm−1(t) + degQm−1(t) and degQm(t) = ddegQm−1(t) + d.
Therefore, using the induction hypothesis, degPm(t) − degQm(t) =
d(degPm−1(t) − degQm−1(t) − 1) = d((dm(d− 2) + d/d− 1) − 1) =
[dm+1(d− 2) + d]/(d− 1). This completes the proof, and the lemma
follows as noted above.

Corollary 4. P(T) = C[t] if and only if T is one of the following:

(a) a bounded or unbounded closed interval,

(b) an arithmetic sequence (possibly bounded below), or

(c) a geometric sequence or the closure of a geometric sequence.
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Proof. By the previous proposition, tσ = at + b whenever P(T) =
C[t]. Furthermore, P(T) = C[t] is equivalent to P(T′) = C[t]
if T′ is obtained from T by an orientation preserving affine linear
transformation of R. Thus, without loss of generality, we can assume
that either (a) tσ = t, (b) tσ = t+1, or (c) tσ = qt with 1 	= q > 0. The
three normal forms correspond to the three cases of the proposition.
Conversely, if tσ is one of the three normal forms above, it is easy to
verify that P(T) = C[t]. For example, if tσ = qt with q > 1, we may
assume (after another linear change of coordinates) that T = qN0 or
T = qZ ∪ {0}. For these time scales (see [1, (1.19)]),

hk(t, s) =
k−1∏
i=0

t− qis∑i
j=0 q

j
.

Since the hk(t, s) for fixed s ∈ T form a basis for both P(T) and C[t],
we conclude that P(T) = C[t] in this case.

4. Weyl algebras and Ore extensions.

4.1. Differential operators. In the following, we will assume that

T = Tκ and C∞(T) is closed under multiplication.

Thus, the space C∞(T) of infinitely delta differentiable functions on
T is a C-algebra with the product given (as usual) by pointwise
multiplication: (fg)(t) = f(t)g(t) for all t ∈ T. Let EndC∞(T)
denote the algebra of C-linear endomorphisms of C∞(T). We have
an injective C-algebra homomorphism C∞(T) ↪→ EndC∞(T) given
by f �→ (g �→ fg). Furthermore, the delta derivative defines a linear
differential operator δ : C∞(T) → C∞(T) given by δ(g) = gΔ. By the
product rule (2.3.2), for f ∈ C∞(T), we have the identity

(4.1.2) δ · f = fσδ + fΔ

in EndC∞(T). Note that δ ·f denotes the operator given by (δ ·f)(g) =
δ(fg) = (fg)Δ which is not to be confused with δ(f) = fΔ.

4.2. Weyl algebras on a time scale. Keeping our assumption
(4.1.1), we define the Weyl algebra on T as the subalgebra W(T) of
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EndC∞(T) that is generated by the operators t and δ:

W(T) = C〈t, δ〉.

If T = R then W(T) is the usual Weyl algebra, i.e., the algebra of
linear differential operators on R with polynomial coefficients. The
generating relation in this case is the Heisenberg relation δ · t = tδ+1.
If T = qN0 with q > 1, then W(T) is the quantum Weyl algebra with
the generating relation δ · t = qtδ + 1.

Lemma 5. The time scale analogue of the Heisenberg relation is the
identity

[δ, t] = σ∗.

Proof. By (4.1.2), δ · t = tσδ + 1, and hence [δ, t] = (tσ − t)δ + 1. If
t0 ∈ T and σ(t0) > t0, then

([δ, t]− 1)(f)|t=t0 = (σ(t0)− t0)f
Δ(t0)

= f(σ(t0)) − f(t0) = (σ∗ − 1)(f)|t=t0 ,

and hence [δ, t](f)|t=t0 = σ∗(f)|t=t0 . The argument in the case when
σ(t0) = t0 is similar and left to the reader.

Remark. One can show that the total degree (Bernstein degree) of
σ∗ is two unless T is a closed interval (in which case σ∗ = 1 is of total
degree zero).

4.3. Ore extensions. Let A be a C-algebra and α : A → A
an algebra endomorphism. A C-linear map δ : A → A is called an
α-derivation if δ(ab) = δ(a)b + α(a)δ(b) for all a, b ∈ A. If x is an
indeterminate, we define a (non-commutative) multiplication on the
free left A-module

⊕∞
i=0 Ax

i by the rule

x · a = α(a)x + δ(a)

for a ∈ A. The resulting C-algebra is denoted A[x;α, δ] and is called
a skew-polynomial ring over A or an Ore extension of A. If A is left
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Noetherian (e.g., if A is a finitely generated commutative algebra) and
α is an automorphism, then A[x;α, δ] is also left Noetherian.

4.4. Ore extensions on time scales. Let A be a subalgebra of
C∞(T) that is invariant under the delta derivative and pull-pack by
σ. Define σ∗ : A → A by σ∗(f) = fσ. Then σ∗ is an algebra ho-
momorphism and, by the product rule (2.3.2), the differential operator
δ : A → A given by δ(f) = fΔ is a σ∗-derivation. Thus, we can form an
Ore extension A[x;σ∗, δ]. In light of the identity, we obtain an algebra
homomorphism A[x;σ∗, δ] → A[δ] ⊆ EndC∞(T) by mapping x to δ
and f ∈ A to the multiplication operator corresponding to f .

Lemma 6. The homomorphism A[x;σ∗, δ] → A[δ] ⊆ EndC∞(T) is
injective.

Proof. Let P =
∑m

i=0 aiδ
i be such that P (f) = 0 for all f ∈ C∞(T).

Consider the functions fk ∈ C∞(T) given by fk(t) = hk(t, s), where
the hk(t, s) are defined as in (2.5.1). Then δi(fk) = 1 if i = k and = 0
if i > k. It follows that ai = 0 for all i.

Corollary 7. Let T be a time scale satisfying (4.1.1). If A ⊆ C∞(T)
is a subalgebra containing C[t] that is stable under δ and σ∗, then the
Weyl algebra W(T) is isomorphic to a subalgebra of the Ore extension
A[x;σ∗, δ].

4.5. Polynomial time scales. In general, the differential operators
in W(T) do not have polynomial coefficients. More precisely, we have
the result.

Proposition 8. Let T be a time scale satisfying (4.1.1). Then
W(T) = spanC{tiδj | i, j ∈ N0} if and only if tσ = p(t) for some
p(t) ∈ C[t]. In that case, the generating relation is δ · t = p(t)δ + 1.

Proof. First suppose that tσ = p(t) ∈ C[t]. Clearly B = span {tkδj |
k, j ∈ N0} ⊆ W(T), so it remains to see the reverse inclusion. For this,
we show V n ⊆ B for each n ∈ N0, where V n is the span of all words
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of length at most n in t and δ. To this end, we induct on n. Since the
case of n = 0 is clear, assume n ≥ 1. By construction, V n is the span of
V n−1, tV n−1 and δV n−1. By the inductive hypothesis, V n−1 ⊆ B and
hence tV n−1 ⊆ B as well. It remains to examine δV n−1. By linearity,
it suffices to show that δ · tj ∈ B for j ∈ N0. For this, we proceed
by induction on j. Since the case of j = 0 is clear, assume j ≥ 1 and
calculate

δ · tj = δ · t · tj−1 = (1 + tσδ) · tj−1 = tj−1 + p(t)δ · tj−1.

By the induction hypothesis, δ · tj ∈ B, and we are done.

For the converse, observe that δ ·t = 1+tσδ, and hence tσδ ∈ W(T) =
spanC{tiδj | i, j ∈ N0}. Write tσδ =

∑m
k=0 pk(t)δ

k with pk(t) ∈ C[t].
Applying both sides to the function 1 gives 0 = p0(t), and then applying
both sides to the function t gives tσ = p1(t). Since tσ = σ(t), we are
done.

Corollary 9. Let T be a time scale with tσ = p(t) for some
p(t) ∈ C[t]. Then the Weyl algebra W(T) is an Ore extension of C[t],
namely, W(T) = C[t][x;σ∗, δ].

5. Gelfand-Kirillov dimension.

5.1. Basics. (For more details the reader should consult [7].) The
Gelfand-Kirillov dimension of a C-algebra A, denoted GKdimA, is
defined as

GKdimA = sup
V

lim sup
n→∞

log(dim V n)

logn
,

where V runs through all finite-dimensional subspaces of A with 1 ∈ V .
Here V n denotes the subspace of A that is spanned by “monomials of
degree n in elements of V ,” i.e., V n = spanC{v1v2 · · · vn | vi ∈ V }.
Note that 1 ∈ V implies that V 1 ⊆ V 2 ⊆ V 3 ⊆ · · · . It is a theorem that,
if A is a finitely generated C-algebra, then the supremum is attained
for any V containing a system of generators. If B is a subalgebra of
A, then GKdimB ≤ GKdimA. The Gelfand-Kirillov dimension of an
Ore extension satisfies the inequality

GKdimA[x;α, δ] ≥ GKdimA+ 1,
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where equality is attained if every finite-dimensional subspace U of A
is contained in a finite-dimensional subspace V that is α-stable and
satisfies δ(V ) ⊆ V m for some m ≥ 1 (see [5]).

5.2. Gelfand-Kirillov of Weyl algebras. Assume thatT is a time
scale satisfying (4.1.1), and let W(T) be the Weyl algebra on T. As
we will see, computing GKdimW(T) is a difficult problem in general.
First, let us note the following elementary lower bound.

Lemma 10. GKdimW(T) ≥ 2.

Proof. Let V = spanC{1, t, δ}. For 0 ≤ i + j ≤ n, the operators tiδj

are contained in V n. By the proof of Lemma 6, the tiδj ’s are linearly
independent. Thus, dimV n ≥ (

n+1
2

)
, and hence GKdimW(T) ≥ 2, as

desired.

5.3. Polynomial time scales. If T = R, Z or qN0 with q > 1,
then GKdimW(T) = 2. The following result says that these examples
are essentially the only examples (see the proof of Corollary 4) of
polynomial time scales having a two-dimensional Weyl algebra.

Proposition 11. Let T be a time scale such that tσ = p(t) for some
p(t) ∈ C[t]. Then GKdimW(T) = 2 if and only if deg p(t) ≤ 1.

Proof. By Corollary 9, W(T) = C[t][x, σ∗, δ] is an Ore extension. By
a theorem of Zhang [10], GKdimC[t][x;σ∗, δ] = GKdimC[t] + 1 = 2
if and only if every finite-dimensional subspace of C[t] is contained in
a σ∗ stable finite-dimensional subspace. It is elementary to verify that
σ∗ in our context satisfies this property if and only if the degree of p(t)
is ≤ 1.

5.4. Periodic time scales. Let T = {tν | ν ∈ Z} with
tν+1 > tν for all ν ∈ Z. We say that T is periodic with period k if
σ(tν+k) − tν+k = σ(tν) − tν for all ν ∈ Z. We will see below that the
Weyl algebra of a discrete periodic time scale is two dimensional. First,
we prove the following general lemma.
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Lemma 12. Let T be a time scale satisfying (4.1.1), and let A ⊆
C∞(T) be a subalgebra that is δ- and σ∗-stable. If A = C[t][e0, . . . , em],
where the ei’s are idempotent, then GKdimA = 1. If, furthermore, ev-
ery finite-dimensional subspace of A is contained in a finite-dimensional
subspace that is δ- and σ-stable, then GKdimA[x;σ∗, δ] = 2.

Proof. Let U = spanC{1, t, e0, . . . , em}. Since e2i = ei and eiej = 0
for i 	= j, it follows that Un = spanC{tn, tn−1e1, . . . , t

n−1em}+ Un−1,
and hence n+ 1 ≤ dimUn ≤ n(m+ 1) + 1 for all n ∈ N. This proves
that GKdimA = 1. The last statement follows from our remarks at
the end of subsection 5.1.

Proposition 13. Let T be a discrete periodic time scale. Then
GKdimW(T) = 2.

Proof. Let T = {tν | ν ∈ Z} with tν+1 > tν be a periodic time scale
of period k. For 0 ≤ i < k, define the idempotent ei by

ei(tν) =

{
1 if ν ≡ i mod k

0 if ν 	≡ i mod k,

and let A = C[t][e0, . . . , ek−1]. It is easy to check that A is δ-
and σ∗-invariant. Furthermore, every finite-dimensional subspace of
A is contained in a finite-dimensional subspace that is δ- and σ∗-
stable. By the previous lemma, GKdimA[x;σ∗, δ] = 2. By Corol-
lary 6, W(T) is a subalgebra of A[x;σ∗, δ], and hence GKdimW(T) ≤
GKdimA[x;σ∗, δ] = 2.

5.5. The time scale T = Z \ {0}. We have the following general
conjecture.

Conjecture 14. Let T and T′ be two (infinite) discrete time scales
such that their symmetric difference TΔT′ = (T \ T′) ∪ (T′ \T) is a
finite set. Then GKdimW(T) = GKdimW(T′).

In the following, we will consider the simplest non-trivial special case
of the conjecture. Let T = Z \ {0} and T′ = Z, i.e., TΔT′ = {0}. For
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i ∈ N0, define the idempotent function e−i on T by

e−i(t) =

{
1 if t = −i;

0 otherwise.

Note that σ(t) = t+ 1 + e−1(t) for every t ∈ T. We also note that the
Weyl algebraW(T) can be embedded as a subalgebra in A[x;σ∗, δ] with
A = C[t][e−i | i ∈ N0]. It is possible to show that GKdimA = 1, but
we are unable to conclude that GKdimA[x;σ∗, δ] = 2 since not every
subspace of A is contained in a finite dimensional σ∗-stable subspace.

Proposition 15. Let T = Z \ {0}. Then GKdimW(T) = 2.

Proof. Let V = spanC{1, t, δ}. We claim that V n is obtained from
V n−1 by adding the span of

ti · δn−i, 0 ≤ i ≤ n,

and

e−i · (δ + 1)i−1 · δn−i, 1 ≤ i ≤ n− 1.

Clearly, the claim implies that dimV n ≤ dimV n−1 + 2n and hence
dimV n ≤ n2 + n+ 1, which gives GKdimW(T) ≤ 2. Thus, it remains
to prove the claim. We proceed by induction on n. Since V 1 is spanned
by V 0 = C and {t, δ}, the case of n = 1 is complete. For the inductive
step, note that V n is obtained from V n−1 by adding the span of

t · ti · δn−1−i = ti+1 · δn−1−i, 0 ≤ i ≤ n− 1,

δ · ti · δn−1−i, 0 ≤ i ≤ n− 1,

t · e−i · (δ + 1)i−1δn−1−i = −ie−i

· (δ + 1)i−1 · δn−1−i, 1 ≤ i ≤ n− 2,

δ · e−i · (δ + 1)i−1 · δn−1−i, 1 ≤ i ≤ n− 2.

The ti+1 ·δk−1−i terms account for the ti ·δn−i terms for 1 ≤ i ≤ n, the
term δ · ti · δn−1−i for i = 0 gives δn, and the −ie−i · (δ+1)i−1 · δn−1−i

terms are in V n−1. Therefore, we only need to examine the δ ·ti ·δn−1−i
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terms for 1 ≤ i ≤ n − 1 and the δ · e−i · (δ + 1)i−1δn−1−i terms for
1 ≤ i ≤ n− 2. For the first case with 1 ≤ i ≤ n− 1, calculate that

δ · ti · δn−1−i =

(
((t+ 1)i − ti) + (t+ 1)iδ +

3 + (−1)i

2
e−1δ

)
δn−1−i

= ((t+ 1)i− ti)δn−1−i+ (t+ 1)iδk−i+
3+(−1)i

2
e−1δ

k−i.

Since ((t + 1)i − ti)δn−1−i ∈ V n−1 since we already have tiδn−i ∈ V n

for 0 ≤ i ≤ k, this term is equivalent to [3 + (−1)i]/2 e−1δ
n−i. We also

have e−1δ
n−i ∈ V n−j+1 ⊆ V n−1 when n − j + 1 ≤ n − 1, i.e., when

j ≥ 2. Thus, it only remains to look at j = 1. In that case we get
e−1δ

n−1. We now turn to the second case. We must show that the
given terms δe−i · (δ + 1)i−1 · δn−1−i for 1 ≤ i ≤ n− 2 give rise to the
desired terms e−i · (δ + 1)i−1 · δn−i, 2 ≤ i ≤ n − 1. To that end, we
calculate (letting c1 = −1/2 and cj = −1 when j ≥ 2) that

δ · e−i · (δ + 1)i−1δn−1−i

= (e−i−1 − cje−i + e−i−1 · δ) (δ + 1)i−1δn−1−i

= −cje−i · (δ + 1)i−1 · δn−1−i + e−i−1 · (δ + 1)i · δn−1−i.

Since e−i · (δ + 1)i−1 · δn−1−i ∈ V n−1, this is equivalent to e−i−1 · (δ +
1)i · δn−1−i, which finishes the proof.

6. Lower bounds for the Gelfand-Kirillov dimension.

6.1. Leading terms. In the following, let T be a time scale
satisfying (4.1.1). For k, i ∈ N0, define

(6.1.1) dk,i = dim
{
polynomials in t, tσ, tσσ, . . . , tσ

k

of degree ≤ i
}
.

For example, d0,i = i + 1 for all i, d1,2 = dim (spanC{1, t, tσ, t2, t ·
tσ, (tσ)2}), and d2,1 = dim (spanC{1, t, tσ, tσσ}).

Lemma 16. Let V = spanC{1, t, δ} ⊆ W(T). Then dim (V n) ≥∑n
k=0 dk,n−k.



1908 MARKUS HUNZIKER AND MARK R. SEPANSKI

Proof. We say that a differential operator P =
∑k

i=0 aiδ
i ∈ W(T)

with ai ∈ C∞(T) has order k if ak 	= 0; the term akδ
i is called the

leading term of P . For n, k ∈ N0 such that 0 ≤ k ≤ n, define

Ln,k = spanC
{
leading terms of elements in V n of order k

}

and Ln =
∑n

k=0 Ln,k. By the proof of Lemma 6, this sum is direct.
Since, for any i, j ∈ N0,

δi · tj = (
tσ

i)j
δi + lower order terms,

it is straightforward to see that the coefficients of the leading terms of
the monomials in t and δ of degree ≤ n are precisely the monomials in t,

tσ, tσσ, . . . , tσ
k

of degree ≤ n−k. This shows that dim (Ln,k) = dk,n−k,
and hence dim (Ln) =

∑n
k=0 dk,n−k. Since Ln ⊆ V n, it follows that∑n

k=0 dk,n−k ≤ dim (V n), and the proof of the lemma is complete.

Proposition 17.

GKdimW(T) ≥ lim sup
n→∞

log

(∑n
k=0 dk,n−k

)

logn
.

Proof. The proposition follows immediately from the previous lemma
and the definition of GKdimW(T).

Conjecture 18. The inequality in Proposition 17 is in fact an
equality.

6.2. A family of examples. As a first application of Proposi-
tion 17, we prove that there exist time scales T for which GKdimW(T)
is arbitrarily large.

Lemma 19. Let p1, . . . , pm be the first m primes, and let T =
{∑m

j=1 p
ν
j | ν ∈ N0}. Then the functions t, tσ, . . . , tσ

m−1

on T are
algebraically independent.
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Proof. For ν ∈ N0, set tν =
∑m

j=1 p
ν
j . We claim that there exists an

invertible m×m-matrix A = (aij) with rational coefficients such that

(6.2.1) pνj =

m−1∑
i=1

aijtν+i−1 for all ν ∈ N0.

In fact, A is explicitly given as

A =

⎛
⎝ 1 p1 p21 · · · pm−1

1

1 p2 p22 · · · pm−1
2

1 pm p2m · · · pm−1
m

⎞
⎠

−1

.

Equation (6.2.1) follows since

A =

⎛
⎝ pν1 pν+1

1 · · · pν+m−1
1

pν2 pν+1
2 · · · pν+m−1

2

pνm pν+1
m · · · pν+m−1

m

⎞
⎠

−1
⎛
⎜⎜⎝

pν1
pν2

. . .

pνm

⎞
⎟⎟⎠

for all ν ∈ N0. Clearly, showing that the functions t, tσ, . . . , tσ
m−1

are
algebraically independent is equivalent to showing that the functions
fj =

∑m−1
i=1 aijt

σi−1

, 1 ≤ j ≤ m, are algebraically independent. So
suppose that there is a relation

(6.2.2)
∑

i1,... ,im

ci1,... ,imf i1
1 · · · f im

m = 0,

with some coefficient ci1,... ,im 	= 0. By (6.2.1), fj(tν) = pνj for all
ν ∈ N0, and hence

(6.2.3)
∑

i1,... ,im

ci1,... ,im(pi11 · · · pimm )ν = 0

with some coefficient ci1,... ,im 	= 0. Let M = max{pi11 · · · pimm |
ci1,... ,im 	= 0}. Multiplying equation (6.2.3) by M−ν , and taking the
limit as ν → ∞, shows that

(6.2.4)
∑

p
i1
1 ··· pim

m =M

ci1,... ,im = 0.
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By the uniqueness of the prime decomposition of M , there is only one
coefficient ci1,... ,im with pi11 · · · pimm = M . By (6.2.4), this coefficient is
zero, and we have a contradiction.

Proposition 20. Let p1, . . . , pm be the first m primes, and let
T = {∑m

j=1 p
ν
j | ν ∈ N0}. Then GKdimW(T) ≥ m+ 1.

Proof. For ν ∈ N0, let tν =
∑m

j=1 p
ν
j . For 1 ≤ l ≤ m, define al by

m∏
j=1

(1− pjx) = 1−
m∑
l=1

alx
l.

Then, by the general theory of linear recursions, the tν ’s satisfy the
relation

tν =
m∑
l=1

altν−l for ν ≥ m.

Thus, tσ
k

=
∑k

l=1 alt
σk−l

, and hence

(6.2.5) dk,i = dm−1,i for k ≥ m.

Furthermore, by Lemma 19,

(6.2.6) dk,i =

(
k + i− 1

k + 1

)
for k ≤ m− 1.

From (6.2.5) and (6.2.6), one obtains

n∑
k=0

dk,n−k =

m+1∑
i=1

(
n+ 1

i

)
,

and hence limn→∞ log(
∑n

k=0 dk,n−k)/ logn = m + 1. The result now
follows from Proposition 17.

Conjecture 21. The inequality in Proposition 20 is in fact an
equality.
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Remark. If Conjecture 21 is true, then for every integer r ≥ 2,
there exists a discrete time scale T = {tν | ν ∈ N0} such that
GKdimW(T) = r. We note that, in general, the Gelfand-Kirillov
dimension of an algebra does not need to be an integer. In fact, Borho
and Kraft proved in [1] that, for every real number r ≥ 2, there exists
a C-algebra A generated by two generators such that GKdimA = r.
Thus, it is conceivable (and in fact we expect) that for every real
number r ≥ 2, there exists a discrete time scale T = {tν | ν ∈ N0}
such that GKdimW(T) = r.

6.3. An infinite-dimensional Weyl algebra. As a second
application of Proposition 17, we prove that there exist time scales
for which GKdimW(T) = ∞.

Proposition 22. Let T be a time scale with tσ = t2. Then
GKdimW(T) = ∞.

Proof. If tσ = t2, then tσ
k

= t2
k

for all k. Thus,

dk,i = 1 + dim
(
span {t

∑
j

l=1
2nl | 1 ≤ j ≤ i, 0 ≤ nl ≤ k})

= 1 + dim

(
span

{
t
∑k

m=0
cm2m | 1 ≤

k∑
m=0

cm ≤ i

})

= dim

(
span

{
t
∑k

m=0
cm2m | 0 ≤

k∑
m=0

cm ≤ i

})

=

∣∣∣∣
{ k∑

m=0

cm2m |
k∑

m=0

cm ≤ i

}∣∣∣∣.

Here, and in the following, the coefficients cm are nonnegative integers.
From this it follows (multiply by 2) that

dk,i =

∣∣∣∣
{ k∑

m=0

cm2m |
k∑

m=0

cm ≤ i

}∣∣∣∣

=

∣∣∣∣
{ k∑

m=0

cm2m+1 |
k∑

m=0

cm ≤ i

}∣∣∣∣
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=

∣∣∣∣
{ k+1∑

m=0

cm2m |
k+1∑
m=0

cm ≤ i with c0 = 0

}∣∣∣∣
and (multiply by 2 and add 1) that

dk,i−1 =

∣∣∣∣
{ k∑

m=0

cm2m |
k∑

m=0

cm ≤ i− 1

}∣∣∣∣

=

∣∣∣∣
{
1 +

k∑
m=0

cm2m+1 |
k∑

m=0

cm ≤ i− 1

}∣∣∣∣

=

∣∣∣∣
{ k+1∑

m=0

cm2m |
k+1∑
m=0

cm ≤ i with c0 = 1

}∣∣∣∣.

By parity, the sets {∑k+1
m=0 cm2m | ∑k+1

m=0 cm ≤ i with c0 = j} for

j = 0, 1 are disjoint and, since both sets are contained in {∑k+1
m=0 cm2m |∑k+1

m=0 cm ≤ i}, it follows that
(6.3.1) dk+1,i ≥ dk,i + dk,i−1.

For k, i ∈ N0, define s0,i = d0,i = i+1, sk,0 = dk,0 = 1, and, recursively,
for i ≥ 1,

sk+1,i = sk,i + sk,i−1.

By (6.3.1), and by construction, dk,i ≥ sk,i for all k, i ∈ N0. Let
Sn =

∑n
k=0 sk,n−k so that

∑n
k=0 dk,n−k ≥ Sn. Then

Sn−1 + Sn =

n−1∑
k=0

sk,n−k−1 +

n∑
k=0

sk,n−k

=

n−1∑
k=0

(sk,n−k + sk,n−k−1) + sn,0

=
n−1∑
k=0

sk+1,n−k + 1

=

n∑
k=1

sk,n+1−k + sn+1,0 + s0,n+1 − (n+ 2)

= Sn+1 − (n+ 2),
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and hence Sn+1 = Sn + Sn−1 + (n + 2). Using that S0 = 1 and
S1 = 1+ 2 = 3, it is straightforward to prove by induction that, for all
n ∈ N0,

(6.3.2) Sn = Fn+6 − n− 4 =
ϕn+6 − (1− ϕ)n+6

√
5

− n− 4,

where Fn+6 is the (n+ 6)-th Fibonacci number and ϕ = (1 +
√
5)/2 is

the golden ratio. By (6.3.2), and since
∑n

k=0 dk,n−k ≥ Sn, we obtain

lim
n→∞

log (
∑n

k=0 dk,n−k)

logn
= ∞.

Thus, by Proposition 17, GKdimW(T) = ∞.

Remark. The above proof can easily be generalized to tσ = tk for
any k ≥ 2. This, in turn, can be used to prove that, if tσ = p(t) is any
polynomial of degree ≥ 2, then GKdimW(T) = ∞.

7. More examples.

7.1. A table of examples. Table 1 shows the value of

lim
n→∞

log(
∑n

k=0 dk,n−k)

logn

for a sample of discrete time scales of the form T = {tν | ν ∈ N} with
tν+1 > tν for all ν ∈ N. A question mark indicates a conjectured value.
In the following subsections, we provide more details for the time scales
that were not discussed in previous sections.
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TABLE 1. limn→∞
log
(∑

n

k=0
dk,n−k

)
log n

for some discrete time scales.

tν
∑n

k=0 dk,n−k lim
n→∞

log(
∑n

k=0 dk,n−k)

log n

νh (h > 0)
(
n+2
2

)
2

qν (q > 1)
(
n+2
2

)
2

Fν = ν-th Fibonacci
∑3

i=1

(
n+1
i

)− (
n−2
3

)
2

2ν + ν
∑3

i=1

(
n+1
i

)
3

ν!
∑4

i=1

(
n+1
i

)
4 (?)∑ν

j=1
1
j

∑4
i=1

(
n+1
i

)
4 (?)∑m

j=1 p
ν
j

∑m+1
i=1

(
n+1
i

)
m+ 1

tν = tν−1 + tν−2tν−3

∑5
i=1

(
n+1
i

)
5 (?)

tν = t2ν−1 ≥ Fn+6 − n− 4 ∞
ν-th prime 2n+1 − 1 ∞ (?)

7.2. The Fibonacci sequence. Let T = {tν | ν ∈ N}, where
tν = Fν is the ν-th Fibonacci number. Since tν = tν−1 + tν−2 for
ν ≥ 3,

(7.2.1) tσ
k

= tσ
k−1

+ tσ
k−2

for k ≥ 2.

Thus, every monomial in t, tσ, tσσ, . . . , tσ
k

of degree≤ i is a polynomial
in t and tσ of degree ≤ i, which implies that dk,i = d1,i for k ≥ 1.
Furthermore, d1,i ≤ (

i+2
2

)
for all i ∈ N0. If the functions t and tσ

were algebraically independent, then this last inequality would be an
equality. However, t and tσ satisfy the relation

(7.2.2) (t2 + t tσ − (tσ)2 + 1)(t2 + t tσ − (tσ)2 − 1) ≡ 0,

which is a consequence of Cassini’s identity F 2
ν + FνFν+1 − F 2

ν+1 =
(−1)ν . Relation (7.2.2) of degree 4 implies that

(7.2.3) d1,i ≤
(
i+ 2

2

)
−
(
i− 2

2

)

for all i. Using that dk,i = d1,i for k ≥ 1 and d0,i = i +

1, one obtains
∑n

k=0 dk,n−k ≤ ∑3
i=1

(
n+1
i

) − (
n−2
3

)
, which gives

limn→∞ log (
∑n

k=0 dk,n−k) /logn ≤ 2.
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7.3. The time scale T = {2ν+ν | ν ∈ N0}. LetT = {tν | ν ∈ N0},
where tν = 2ν + ν. Note that tν = 3tν−1 − 2tν−2 − 1 for ν ≥ 2, and
hence

tσ
k

= 3tσ
k−1 − 2tσ

k−2 − 1 for k ≥ 2.

Thus, as for the Fibonacci sequence, every monomial in t, tσ, tσσ, . . . , tσ
k

of degree ≤ i is a polynomial in t and tσ of degree ≤ i. This implies
that dk,i = d1,i for all k ≥ 1. An argument similar to the one given
in the proof of Lemma 19 shows that the functions t and tσ on T are
algebraically independent. Thus,

d1,i =

(
i+ 2

2

)
.

Using that dk,i = d1,i for k ≥ 1 and d0,i = i + 1, one obtains∑n
k=0 dk,n−k =

(
n+1
3

)
+

(
n+1
2

)
+

(
n+1
1

)
, which gives limn→∞ log(

∑n
k=0

dk,n−k)/logn = 3.

7.4. The time scales T = {ν! | ν ∈ N} and {∑ν
j=1(1/j) | ν ∈ N}.

For the time scales T = {ν! | ν ∈ N} and {∑ν
j=1(1/j) | ν ∈ N},

we used Mathematica to compute the dk,i for k + i ≤ 10. The data
suggests that the dk,i are polygonal numbers:

(7.4.1) dk,i =
(1 + i)(2 + ki)

2

for all k, i. From (7.4.1), one obtains
∑n

k=0 dk,n−k =
∑4

i=1

(
n+1
i

)
, and

hence the conjectured value limn→∞ log(
∑n

k=0 dk,n−k)/logn = 4.

7.5. A time scale satisfying tν = tν−1 + tν−2tν−3. Let T =
{tν |ν ∈ N0} with t0 = 1, t1 = 2, t2 = 3 and tν = tν−1 + tν−2tν−3 for
ν ≥ 3. Again, we used Mathematica to compute the dk,i for k+ i ≤ 10.
Based on the data, we conjecture that

dk,i = (k − 1)

(
i+ 2

3

)
+

(
i+ 2

2

)
for k ≥ 1 and all i.

From (7.5), one obtains
∑n

k=0 dk,n−k =
∑5

i=1

(
n+1
i

)
, and hence the

conjectured value limn→∞ log(
∑n

k=0 dk,n−k)/logn = 5.
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7.6. Primes. For generic time scales, we expect that the functions

tσ
k

and k ∈ N0 are algebraically independent, and hence

(7.6.1) dk,i =

(
k + i+ 1

k + 1

)

for all k, i. (In fact, for time scales satisfying (4.1.1), this is equivalent
to W(T) being the free algebra in two generators.) An example of a
time scale for which we conjecture (7.6.1) to hold is T = {tν |ν ∈ N},
where tν is the ν-th prime. We remark that (7.6.1) is related to some
open problems in number theory. For example, (7.6.1) for k = 1 is
equivalent to the statement that there exists no nonzero polynomial
P (x, y) ∈ C[x, y] such that P (tν , tν+1) = 0 for all ν ∈ N.

8. Algebraic dimension of a time scale.

8.1. The Gelfand-Kirillov dimension GKdimW(T) is an interesting
invariant of a time scale. Unfortunately, in order to define the Weyl
algebra W(T), it was necessary to assume (4.1.1). However, the right
hand side of the inequality in Proposition 17 can be defined for general
time scales as we will now show.

8.2. Generalized polynomials on arbitrary time scales. Let
T be an arbitrary (possibly finite) time scale. Note that T ⊇ Tκ ⊇
Tκ2 ⊇ · · · , and hence for m ∈ N0, we can view polynomial expressions
in t, tσ, tσσ, . . . , tσ

m

as C-valued functions (via restriction) on Tκm

.
Thus, for k, i ∈ N0, it makes sense to define

dk,i = max
0≤m≤k

dim
{
polynomials in t, tσ, . . ., tσ

m

on T κm

of degree ≤ i
}
.

(By convention, if Tκm

= ∅, any space of C-valued functions on Tκm

has dimension 0.) If Tκ = T, then the definition of the dk,i coincides
with the definition (6.1.1); also, T 	= ∅ implies that we always have
dk,i ≥ 1 for all k, i since the constant functions are polynomials in t of
degree 0.

8.3. The algebraic dimension of a time scale. We define the
algebraic dimension of T as the number

(8.3.1) d(T) = lim sup
n→∞

log(
∑n

k=0 dk,n−k)

logn
− 1.
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We note that it is not clear whether d(T) is always an integer. However,
the following proposition shows that d(T) does not take any values
between 0 and 1.

Proposition 23. If |T| < ∞, then d(T) = 0, and if |T| = ∞, then
d(T) ≥ 1.

Proof. If |T| < ∞, then 1 ≤ dk,i ≤ |T| for all k, i. (The second
inequality holds since the dimension of the space of all C-valued
functions on T equals |T|.) Thus, n + 1 ≤ ∑n

k=0 dk,n−k ≤ (n + 1)|T|,
which implies d(T) = 0. If |T| = ∞, then dk,i ≥ i+ 1 for all k, i since
{1, t, t2, . . . , ti} is a linearly independent set of functions for all i. Thus,
if |T| = ∞, then

∑n
k=0 dk,n−k ≥ (

n+2
2

)
, which implies d(T) ≥ 1.

8.4. Invariance under affine linear transformations. The fol-
lowing results says that our notion of algebraic dimensions is invariant
under affine linear transformations.

Proposition 24. Let T be a time scale.

(a) If T′ = aT+ b for some a, b ∈ R with a > 0, then d(T′) = d(T).

(b) If Tκ = T and (−T)κ = −T, then d(−T) = d(T).

Proof. Statement (a) follows immediately from the definition of the
dk,i. For (b), observe that the conditions Tκ = T and (−T)κ = −T
imply that σ∗ is an automorphism of the C-algebra F(T) of all C-
valued functions f : T → C with the inverse given by ρ∗, the pullback
by the backward-jump operator ρ. Since (ρ∗)◦k defines a bijection

between monomials in t, tσ, tσσ, . . . , tσ
k

of degree ≤ i and monomials

in t, tρ, tρρ, . . . , tρ
k

of degree ≤ i, the dk,i could have been defined by
using ρ instead of σ. If σ denotes the forward jump operator of the
time scale −T, then for t ∈ T, σ(−t) = −ρ(t). Together with the
remarks above, this implies that the dk,i for −T are the same as for T,
and hence d(−T) = d(T).
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