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EXISTENCE OF POSITIVE SOLUTIONS FOR
THE p(x)-LAPLACIAN EQUATION

JINGXUE YIN, JINKAI LI AND YUANYUAN KE

ABSTRACT. In this paper, we study the existence of pos-
itive solutions for the p(x)-Laplacian equation based on the
Krasnoselskii fixed point theorem on the cone. Our efforts
mainly center on the establishment of the global C1,α esti-
mates on bounded weak solutions and the Harnack inequality
which, together with the blow-up argument and Liouville type
theorem, plays a key role in the a priori estimates.

1. Introduction. In this paper, we consider the following problem

(1.1)

⎧⎨⎩
−Δp(x)u = f(x, u,∇u) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω,

u(x) > 0 x ∈ Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary, N ≥ 2,
Δp(x) is the p(x)-Laplacian operator, namely,

Δp(x)u := div (|∇u|p(x)−2∇u),

p(x) and f satisfy some conditions, which will be mentioned later.

For the case p(x) ≡ Constant, there is a rich literature concerning
problem (1.1), see e.g., [2 4, 18, 19, 23, 24] and the references therein.
Azizieh and Clément [2] obtained the existence of positive solutions for
problem (1.1) with f depending only upon u. Later, Ruiz [19] and
Zou [24] extended the results by considering the general case where
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f depends upon x, u and ∇u with disparate conditions, respectively.
While, for the case p(x) �≡ Constant, most of the current research
focuses on problem (1.1) with f = f(x, u), which can be solved by the
variational approach and the upper and lower solutions method, see
e.g., [5 8, 11] and the references therein.

In the present paper, we extend Ruiz’s results [19] to the p(x)-
Laplacian, namely, we establish the existence of solutions for problem
(1.1). Since the exponent p(x) is not a constant, the methods, which
can usually deal with the case p(x) ≡ Constant, are inappropriate.
For example, one cannot expect that the first eigenvalue of the p(x)-
Laplacian is always positive; one cannot use the eigenfunction for the
first eigenvalue of the p(x)-Laplacian to construct upper and lower
solutions, etc. The proofs are more complex than those for the
constant case. Furthermore, due to the appearance of ∇u in f , the
variational approach is no longer suitable. In this paper, we use the
topological method to deal with problem (1.1). Our efforts center on
the establishment of the Harnack inequality which, together with the
blow-up argument and Liouville type theorem, plays a key role in the
a priori estimates. After obtaining the a priori estimates, we can use the
Krasnoselskii fixed point theorem on the cone to obtain the existence
of solutions for problem (1.1). To verify the conditions which satisfy
the fixed point theorem, we need a similar conclusion as that in [19].
However, the proof of this conclusion in this paper is quite different
from that in [19].

This paper is organized as follows. In Section 2, we introduce some
necessary preliminaries. In Section 3, we use an iteration technique
to establish the Harnack inequality, for solutions of the problem (1.1),
which will be used in Section 4 to obtain the L∞-norm estimates, by
applying the Liouville theorem based on the blow-up argument. Next,
in Section 5, we prove the existence of positive solutions for problem
(1.1) based upon the Krasnoselskii fixed point theorem on the cone.
Finally, in the Appendix (Sections 6 and 7), we give the detailed proof
of some estimates on the weak solutions, more specifically, the Cα

estimates and C1,α estimates, respectively.

2. Preliminaries. In this section, we introduce some preliminary
definitions on the space W 1,p(x)(Ω) and several preliminary lemmas,
which will be used in the following sections. Let Ω be an open subset
in RN and p(x) a bounded measurable function defined on RN which
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satisfies

1 < p− = inf
RN

p(x) ≤ sup
RN

p(x) = p+ < ∞, x ∈ RN .

The variable exponent Lebesgue space Lp(x) is defined by

Lp(x)(Ω) =

{
u | u : Ω → R is measurable,

∫
Ω

|u|p(x) dx < ∞
}

with the norm

‖u‖p(x) = inf

{
σ > 0 |

∫
Ω

∣∣∣∣uσ
∣∣∣∣p(x) dx ≤ 1

}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u | u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)

}
with the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x).

W
1,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(x)(Ω). More elementary
properties on the space W 1,p(x)(Ω) can be seen in [13].

On the space W 1,p(x)(Ω), the following lemma holds.

Lemma 2.1 [9, Lemma 2.5]. Let Ω be a domain, u ∈ W 1,p(x)(Ω),
p(x) a bounded measurable function on Ω which satisfies:

1 < p− ≤ p(x) ≤ p+ < ∞ and R−osc {p;ΩR} ≤ L,

where p−, p+ and L are positive constants,

osc {p; ΩR} = sup
ΩR

p(x)− inf
ΩR

p(x),

and ΩR = Ω ∩ BR for any ball BR with radius R. Then there exist
positive constants ε, R0 and C depending only upon N , p−, p+ and L,
such that
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1

RN

∫
BR

∣∣∣∣u− uR

R

∣∣∣∣p(x)dx ≤ C + C

(
1

RN

∫
BR

|∇u|p(x)/(1+ε)dx

)1+ε

for any BR ⊆ Ω with R ≤ R0 and
∫
BR

|∇u|p(x)dx ≤ 1.

The next three lemmas are taken from [15], and they will be used in
the next section to prove the Hölder continuity of the functions in the
class Bp(x)(Ω,M, γ, γ1, δ).

Lemma 2.2 [15, Chapter II, Lemma 3.9]. For any u ∈ W 1,1(Bρ)
and arbitrary numbers k and l with l > k, the following inequality holds:

(l − k)|Bl,ρ|1−(1/N) ≤ β(N)ρN

|Bρ \Bk,ρ|
∫
Bk,ρ\Bl,ρ

|∇u| dx

where Bk,ρ := {x ∈ Bρ | u(x) > k} and β(N) > 1 is a constant.

Lemma 2.3 [15, Chapter II, Lemma 4.7]. Suppose a sequence yh,
h = 0, 1, . . . , of nonnegative numbers satisfies the recursion relation

yh+1 ≤ cbhy1+ε
h , h = 0, 1, . . . ,

with some positive constants c, ε and b > 1. If y0 ≤ θ = c−1/εb−1/ε2 ,
then yh ≤ θb−h/ε, and consequently yh → 0 as h → ∞.

Lemma 2.4 [15, Chapter II, Lemma 4.8]. Suppose a function u is
measurable and bounded in some ball Bρ0 or Ωρ0 := Ω∩Bρ0 . Consider
balls Bρ and Bbρ which have a common center with Bρ0 , where b > 1
is a fixed constant, and suppose that for any 0 < ρ < b−1ρ0, at least
one of the following two inequalities holds

osc {u; Ωρ} ≤ c1ρ
ε, osc {u; Ωρ} ≤ θ{u; Ωbρ},

where c1, ε ≤ 1 and θ < 1 are positive constants. Then, for any ρ ≤ ρ0,
we have the following estimates

osc {u; Ωρ} ≤ cρ−α
0 ρα,

where α=min{ε,−logb θ}, c=bα max{c1ρε0, ω0} and ω0=osc {u; Ωρ0}.
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3. The Harnack inequality. Let Ω be an arbitrary domain in RN .
In this section, we are going to establish the Harnack inequality for the
weak solutions of the differential inequality with the form

(3.1) K1u
q(x) −K2

(|∇u|λ(x) + 1
)

≤ −Δp(x)u ≤ K2

(
uq(x) + |∇u|λ(x) + 1

)
, x ∈ Ω,

where K1 and K2 are positive constants. We say u is a weak solution
of the above inequality, if u ∈ C1(Ω) and for any η ∈ C∞

0 (Ω), η ≥ 0, it
follows∫

Ω

[
K1u

q(x) −K2

(|∇u|λ(x) + 1
)]

η(x) dx

≤
∫
Ω

|∇u|p(x)−2∇u∇η dx

≤ K2

∫
Ω

(
uq(x) + |∇u|λ(x) + 1

)
η dx.

Throughout this section (and the next section), we always suppose
that the functions p(x), q(x) and λ(x) satisfy the following assumption

(H1) p(x) ∈ C1(Ω), q(x) ∈ Cα0(Ω), λ(x) ∈ C(Ω), and

1 < p(x) < N,

p(x)− 1 < q(x) <
N(p(x)− 1)

N − p(x)
,

p(x)− 1 ≤ λ(x) <
p(x)q(x)

q(x) + 1
,

for any x ∈ Ω.

Lemma 3.1. Assume u ≥ 1 be a weak solution of (3.1). Let
B2R and BR be two concentric balls contained in Ω. Denote by p1
and q1 the minimum, p2 and q2 the maximum, of p(x) and q(x) on
B2R, respectively. Take R0 = R0(p, q) ≤ 1 small enough, such that
q1 > p2 − 1 for any R ≤ R0. Then there exists a positive constant C =
C(N, p, q, λ, γ), such that for any γ ∈ (0, q1) and μ ∈ (0, p1q1/(q1 + 1)),
the following holds:∫

BR

uγdx ≤ CRN−[γp2/(q1−p2+1)],
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and ∫
BR

|∇u|μdx ≤ CRN−[(q1+1)μ/(q1−p2+1)].

Proof. Thanks to the Hölder inequality, we need only to prove
the conclusions for the case that γ is close enough to q1. Take
η(x) ∈ C∞

0 (B2R) such that 0 ≤ η ≤ 1 on B2R, η ≡ 1 on BR and
|∇η| ≤ (C(N))/R on B2R. Let φ = ηαuβ be a test function with β < 0
which is close enough to 0 and α > 0 which is large enough. Then

(3.2) − β

∫
B2R

ηαuβ−1|∇u|pdx+K1

∫
B2R

ηαuq+βdx

≤
∫
B2R

(
K2η

αuβ |∇u|λ + αηα−1uβ |∇u|p−1|∇η|+K2η
αuβ

)
dx.

By the Young inequality, one can easily conclude that

K2η
αuβ|∇u|λ ≤ −β

3
ηαuβ−1|∇u|p + Cηαuβ+[λ/(p−λ)],

αηα−1uβ|∇u|p−1|∇η| ≤ −β

3
ηαuβ−1|∇u|p + Cηα−puβ+p−1|∇η|p.

Since u ≥ 1, putting the previous two inequalities into (3.2), then we
have

(3.3)

∫
B2R

ηαuβ−1|∇u|pdx+

∫
B2R

ηαuq+βdx

≤ C

∫
B2R

(
ηαuβ+[λ/(p−λ)] + ηα−puβ+p−1|∇η|p + ηαuβ

)
dx

≤ C

∫
B2R

(
ηαuβ+[λ/(p−λ)] + ηα−puβ+p−1|∇η|p) dx.

Using the Young inequality again, it follows that

ηαuβ+[λ/(p−λ)] ≤ ε

3
ηαuβ+q + Cηα,

ηα−puβ+p−1|∇η|p ≤ ε

3
ηαuβ+q + Cηα−[p(β+q)]/[q−p+1]

· |∇η|[p(β+q)]/[q−p+1].
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Taking appropriate ε in the previous two inequalities and putting them
into (3.3), then

(3.4)

∫
B2R

ηαuβ−1|∇u|pdx+

∫
B2R

ηαuβ+qdx

≤ C

∫
B2R

(
ηα + ηα−[p(β+q)]/[q−p+1]|∇η|[p(β+q)]/[q−p+1]

)
dx

≤ CRN−[(β+q1)p2]/[q1−p2+1].

Recalling that u ≥ 1, it follows from the above inequality that∫
BR

uβ+q1dx ≤
∫
B2R

ηαuβ+qdx ≤ CRN−[(β+q1)p2]/[q1−p2+1].

Setting β = γ − q1 in the previous inequality, then it yields∫
BR

uγ dx ≤ CRN−[γp2/(q1−p2+1)].

Since u ≥ 1 and R ≤ 1, it follows from the Young inequality and (3.4)
that ∫

B2R

ηαuβ−1|∇u|p1dx ≤
∫
B2R

ηαuβ−1(1 + |∇u|p) dx

≤ CRN−[(β+q1)p2/(q1−p2+1)].

For any s > μ/p1, which is close enough to μ/p1, by the Hölder
inequality, the previous inequality yields∫

BR

|∇u|μdx ≤
∫
B2R

ηαu−s|∇u|μusdx

≤
(∫

B2R

ηαu−(sp1/μ)|∇u|p1dx

)μ/p1

·
(∫

B2R

ηαu(sp1)/(p1−μ) dx

)(p1−μ)/p1

≤
(
CRN−[(q1+1−sp1/μ)p2]/[q1−p2+1]

)μ/p1

·
(
CRN−[sp1p2]/[(p1−μ)(q1−p2+1)]

)1−(μ/p1)

= CRN−[p2μ(q1+1)]/[p1(q1−p2+1)]

= CRN−[μ(q1+1)]/[q1−p2+1]R[(p1−p2)μ(q1+1)]/[p1(q1−p2+1)]

≤ CRN−[μ(q1+1)]/[q1−p2+1].
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In the last step of the above inequalities, we have used the fact that
R[(p1−p2)μ(q1+1)]/[p1(q1−p2+1)] ≤ C, which can be guaranteed by (H1).
The proof is complete.

The following lemma taken from [20] is used to link the integral
estimate on the positive and negative power in the Moser iteration
procedure.

Lemma 3.2 (Poincaré, John-Nirenberg). Let u ∈ W 1,p(BR), and
suppose that ∫

B

|∇u|pdx ≤ KrN−p

for every open ball B ⊆ BR. Then two positive constants p0 and C
exist depending only upon N , p and K, such that∫

BR

ep0udx ·
∫
BR

e−p0udx ≤ C|BR|2.

Now, we can state and prove the Harnack inequality.

Proposition 3.1. Assume u ≥ 1 is a weak solution of (3.1). Let
B4R, B2R and BR be concentric balls contained in Ω. Then positive
constants C = C(N, p, q, λ, γ) and R0 = R0(p, q) exist, such that for
any 0 < R < R0 the following hold:

(i) for any γ > 0, there exists a γ1 ∈ [(γ/2), γ], such that

sup
BR

u ≤ C

(
1

RN

∫
B2R

uγ1dx

)1/γ1

;

(ii) for any γ < 0, it follows that

inf
BR

u ≥ C

(
1

RN

∫
B2R

uγdx

)1/γ

.

Moreover, if, in addition, B8R ⊆ Ω, then

sup
BR

u ≤ C inf
BR

u.
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Proof. Take arbitrary x0 ∈ Ω and 0 < R ≤ 1 such that B4R :=
B4R(x0) ⊆ Ω, denote by p1 and q1 the minimum, p2 and q2 the
maximum of p(x) and q(x) on B2R(x0), respectively, and define

v(x) := u(Rx+ x0), x ∈ B4(0).

By simple calculations, we conclude that v(x) satisfies the following
inequality:

K1R
P vQ −K2

(
RP−Λ|∇v|Λ +RP

)−R| lnR∇p(Rx+ x0)||∇v|P−1

≤ −ΔP v ≤ K2

(
RP vQ +RP−Λ|∇v|Λ +RP

)
+R| lnR∇p(Rx+ x0)||∇v|P−1, x ∈ B4(0),

where
P (x) := p(Rx+ x0),

Q(x) := q(Rx+ x0),

Λ(x) := λ(Rx + x0), x ∈ B4(0).

Recalling that R ≤ 1 and p(x) ∈ C1(Ω), it follows that a positive
constant E = E(‖p‖C1) exists, such that R| lnR∇p(Rx+ x0)| ≤ E for
any x ∈ B4(0). Hence, we can rewrite the foregoing inequality as

(3.5) K1R
P vQ −K2

(
RP−Λ|∇v|Λ +RP

)− E|∇v|P−1

≤ −ΔP v

≤ K2

(
RP vQ +RP−Λ|∇v|Λ +RP

)
+ E|∇v|P−1, x ∈ B4(0).

Suppose that 1 ≤ r < ρ ≤ 2. Denote by Br and Bρ the balls Br(0)
and Bρ(0), respectively. Let η(x) ∈ C∞

0 (B2(0)) be the standard cut-off
function, such that 0 ≤ η(x) ≤ 1 on B2(0), η(x) ≡ 1 on Br, η ≡ 0 on
Bc

ρ and |∇η| ≤ 2/(ρ− r). Set K = max{K1,K2, E}. Taking φ = ηαvβ

as a test function for (3.5) with α > 0 large enough and β �= 0, we have

(3.6) |β|
∫
Bρ

ηαvβ−1|∇v|P dx

≤ K

∫
Bρ

ηαvβ
(
RP vQ +RP−Λ|∇v|Λ +RP + |∇v|P−1

)
dx

+ α

∫
Bρ

ηα−1vβ |∇v|P−1|∇η| dx.
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By the Young inequality, it follows that

KRP−Ληαvβ |∇v|Λ ≤ |β|
4
ηαvβ−1|∇v|P

+ C|β|−Λ/(P−Λ)RP ηαvβ+Λ/(P−Λ),

Eηαvβ |∇v|P−1 ≤ |β|
4
ηαvβ−1|∇v|P

+ C|β|1−P ηαvβ+P−1,

αηα−1vβ |∇v|P−1|∇η| ≤ |β|
4
ηαvβ−1|∇v|P

+ C|β|1−P ηα−P vβ+P−1|∇η|P .

Putting the previous three inequalities into (3.6), we obtain

(3.7)
|β|
4

∫
Bρ

ηαvβ−1|∇v|P dx

≤ C

∫
Bρ

ηαRP
(|β|−Λ/(P−Λ)vβ+[Λ/(P−Λ)] + vβ + vQ+β

)
dx

+ C

∫
Bρ

|β|1−P vβ+P−1
(
ηα−P |∇η|P + ηα

)
dx.

Note that P − 1 ≤ Λ/(P − Λ) ≤ Q, 0 ≤ η ≤ 1 and v ≥ 1. Then it
follows from (3.7) that
(3.8)∫

Bρ

ηαvβ−1|∇v|P dx ≤ C

∫
Bρ

ηαRP vQ+β
(|β|−P/(P−Λ) + |β|−1

)
dx

+ C

∫
Bρ

ηα−P |β|−P vβ+P−1
(|∇η|P + 1

)
dx.

Since 0 < P ≤ P/(P − Λ) < Q + 1 < q2 + 1, by the Young inequality,
this shows

|β|−P/(P−Λ) + |β|−1 ≤ 2|β|−(q2+1) + 2, |β|−P ≤ |β|−(q2+1) + 1,

and consequently, by recalling that v ≥ 1 and R ≤ 1, it follows from
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(3.8) that∫
Bρ

ηαvβ−1|∇v|P dx ≤ C
(|β|−(q2+1) + 1

)
·
[ ∫

Bρ

ηαRP vβ+Qdx

+

∫
Bρ

ηα−P vβ+P−1(|∇η|P + 1) dx

]
≤ C

(|β|−(q2+1) + 1
)

·
[
Rp1

∫
Bρ

vβ+q2dx

+ (ρ− r)−p2

∫
Bρ

vβ+p2−1dx

]
.

Using the Young inequality to the left side of the previous inequality,
we obtain
(3.9)∫

Bρ

ηαvβ−1|∇v|p1dx ≤
∫
Bρ

ηαvβ−1dx+

∫
Bρ

ηαvβ−1|∇v|P dx

≤ C
(|β|−(q2+1) + 1

)
·
[
Rp1

∫
Bρ

vβ+q2dx+ (ρ− r)−p2

∫
Bρ

vβ+p2−1dx

]
.

Let p1 +β− 1 = lp1. By utilizing the Hölder inequality, it follows from
(3.9) that
(3.10)∫

Bρ

ηαvβ−1|∇v|p1dx ≤ C(|β|−(q2+1) + 1)

·
[
Rp1

(∫
Bρ

vlp1tdx

)1/t(∫
Bρ

v(q2−p1+1)t′dx

)1/t′

+ (ρ− r)−p2

(∫
Bρ

vlp1tdx

)1/t

·
(∫

Bρ

v(p2−p1)t
′
dx

)1/t′]
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for any t > 1, where 1/t + 1/t′ = 1. Next, we estimate the terms
on the right side of inequality (3.10). Taking a positive constant
R1 = R1(p, q) ≤ 1, such that R1 is smaller than R0 in Lemma 3.1 and
q1 − p2 + 1 ≥ ε1 for any 0 < R ≤ R1, where ε1 is a positive constant
depending only upon p(x) and q(x). Note that (H1) guarantees the
existence of such a ε1. We now suppose that 0 < R ≤ R1. By using
(H1) again, we have

Rp1−p2 = R−osc{p;B2R} ≤ R−2‖∇p‖R = e−2‖∇p‖R lnR ≤ C,

Rq1−q2 = R−osc{q;B2R} ≤ R−2‖q‖Cα0 R = e−2‖q‖Cα0 R lnR ≤ C.

Applying Lemma 3.1, it follows that

Rp1

(∫
Bρ

v(q2−p1+1)t′dx

)1/t′

= Rp1

(
1

RN

∫
BρR

u(q2−p1+1)t′dx

)1/t′

≤ CRp1

(
1

RN

∫
B2R

u(q2−p1+1)t′dx

)1/t′

≤ CRp1−[(q2−p1+1)p2]/(q1−p2+1)

≤ CR[(p1−p2)(q1+1)]/[(q1−p2+1)]+[(q1−q2)/(q1−p2+1)]

≤ CR[(q1+1)/ε1](p1−p2)+[(q1−q2)/ε1] ≤ C,

and (∫
Bρ

v(p2−p1)t
′
dx

)1/t′

=

(
1

RN

∫
BρR

u(p2−p1)t
′
dx

)1/t′

≤ C

(
1

RN

∫
B2R

u(p2−p1)t
′
dx

)1/t′

≤ CR[(p1−p2)p2]/(q1−p2+1)

≤ CR[(p1−p2)p2/ε1] ≤ C,

provided

(3.11) 0 < (q2 − p1 + 1)t′ < q1 and 0 < (p2 − p1)t
′ < q1.



SOLUTIONS FOR THE p(x)-LAPLACIAN EQUATION 1687

Hence (3.10) can be simplified as follows
(3.12)∫

Bρ

ηαvβ−1|∇v|p1dx ≤ C(|β|−(q2+1) + 1)(ρ− r)−p2

(∫
Bρ

vlp1tdx

)1/t

.

Now we prove that condition (3.11) can be satisfied. In fact, we need
only verify that t exists, such that

0 < (q2 − p1 + 1)t′ ≤ q1 − ε0,

0 < (p2 − p1)t
′ ≤ q1 − ε0,

and

N

(N − p1)t
≥ 1 + ε0

for some suitable ε0 > 0, which is small enough and depends only upon
p(x) and q(x). Here 1/t+1/t′ = 1. Recalling that q(x) > p(x)− 1 and
p(x), q(x) are continuous on Ω, we can take a small positive constant
R0 = R0(p, q) < R1, such that p2−p1 ≤ ε0 ≤ q2−p1+1 and q2−q1 ≤ ε0
for any R ≤ R0. Consequently, the problem can be re-changed into
verifying the existence of t, such that

q1 − ε0
q1 − q2 + p1 − 1− ε0

≤ t ≤ N

(N − p1)(1 + ε0)
.

Since q2 − q1 ≤ ε0, it follows

q1 − ε0
q1 − q2 + p1 − 1− ε0

≤ q1 − ε0
p1 − 1− 2ε0

.

Consequently, if t exists such that

q1 − ε0
p1 − 1− 2ε0

≤ t ≤ N

(N − p1)(1 + ε0)
,

then (3.11) can be fulfilled. In fact, by the aid of the continuity of p(x)
and q(x) on Ω, we only need to let ε0 and R0 be small enough and
verify

q(x)

p(x)− 1
<

N

N − p(x)
, x ∈ Ω.
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And the last inequality is equivalent to

q(x) <
N(p(x)− 1)

N − p(x)
, x ∈ Ω,

which is included in (H1). Therefore, we can take t=N/[(N−p1)(1+ε0)],
such that (3.11) is fulfilled.

Next, we distinguish two cases, that is, β = 1 − p1 and β �= 1 − p1,
to prove the proposition.

Case I. β = 1− p1. Setting r = 1 and ρ = 2 in (3.12), then∫
B1(0)

|∇ ln v|p1dx ≤ C.

Utilizing the Hölder inequality applied to the previous inequality, it
yields ∫

B1(0)

|∇ ln v| dx ≤ C,

and consequently,

(3.13)

∫
BR(x0)

|∇ lnu| dx ≤ CRN−1.

If we assume in addition that B8R(x0) ⊆ Ω, then a point x ∈ B2R(x0)
and ι > 0 exist such that B = Bι(x) ⊆ B2R(x0). Obviously,
B4ι(x) ⊆ B8R(x0) ⊆ Ω. Noticing that (3.13) holds for any x0 ∈ Ω
and 0 < R ≤ R0 satisfies B4R(x0) ⊆ Ω, we have∫

B

|∇ lnu| dy =

∫
Bι(x)

|∇ lnu| dy ≤ CrN−1.

Applying Lemma 3.2 to the foregoing inequality, a positive constant γ0
exists, such that

(3.14)

∫
B2R(x0)

uγ0dx ·
∫
B2R(x0)

u−γ0dx ≤ CR2N ,

provided B8R(x0) ⊆ Ω.
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Case II. β �= 1 − p1 and β �= 0. Recalling that p1 + β − 1 = lp1 and
|∇η| ≤ [C(N)/(ρ− r)], it follows from the Hölder inequality that

(3.15)

∫
Bρ

|∇(ηα/p1vl)|p1dx

=

∫
Bρ

∣∣∣∣ αp1 η(α/p1)−1vl∇η + lηα/p1vl−1∇v

∣∣∣∣p1

dx

≤ C

[ ∫
Bρ

ηα−p1vlp1 |∇η|p1dx+ |l|p1

∫
Bρ

ηαvβ−1|∇v|p1dx

]

≤ C

[
(ρ− r)−p1

(∫
Bρ

vlp1tdx

)1/t

+ |l|p1

∫
Bρ

ηαvβ−1|∇v|p1dx

]
for any t > 1. Putting (3.12) into (3.15), then it follows from the
Sobolev embedding theorem that
(3.16)(∫

Br

vlp
∗
1dx

)p1/p
∗
1

≤
(∫

Bρ

|ηα/p1vl|p∗
1dx

)p1/p
∗
1

≤ C

∫
Bρ

|∇(ηα/p1vl)|p1dx

≤ C
[
(ρ− r)−p1 + |l|p1(|β|−(q2+1) + 1)(ρ− r)−p2

]
·
(∫

Bρ

vlp1tdx

)1/t

≤ C(1 + |β|−(q2+1))(1 + |l|p1)(ρ− r)−p2

·
(∫

Bρ

vlp1tdx

)1/t

,

where t = N/[(N − p1)(1 + ε0)]. In order to prove the proposition, we
need to consider the cases γ > 0 and γ < 0, respectively.

Subcase II-1. γ > 0. Let γ1 ∈ [(γ/2), γ] and for any n ∈ N, denote
(3.17)

rn = 1 +
1

2n−1
, βn =

γ1(N − p1)

N
(1 + ε0)

n − p1 + 1,

ln =

(
γ1
p1

− γ1
N

)
(1 + ε0)

n, an = γ1(1 + ε0)
n−1.
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From the expression of βn, we can denote it by βn(p1, γ1). Taking
l = ln, β = βn, ρ = rn and rn = rn+1 in (3.16), it yields

(3.18)

(∫
Brn+1

(0)

van+1dx

)p1/p
∗
1

≤ C(1 + |βn|−(q2+1))(1 + |ln|p1)2p2(n+1)

(∫
Brn (0)

vandx

)1/t

,

where t = N/[(N − p1)(1 + ε0)]. From the expression of βn, one can
easily conclude that there is a positive integer N∗ = N∗(N, p, q, γ),
such that βn(p1, γ1) > 0 for any n ≥ N∗. Noticing that βn is strictly
increase with respect to n, hence we have

min
n∈N

|βn(p1, γ1)| = min
1≤n≤N∗

|βn(p1, γ1)|.

Denote δ1 = minΩ(p(x)− 1) and δ2 = minΩ(N − p(x)). Recalling that

1 < p(x) < N on Ω, one obtains δ1, δ2 > 0 and 1+ δ1 ≤ p(x) ≤ N − δ2
for any x ∈ Ω. Denote G = [1 + δ1, N − δ2] × [(γ/2), γ]. We consider
the functions βn(x, y) on G, 1 ≤ n ≤ N∗. Clearly,

βn(x, y) =
(1 + ε0)

n

N
y(N − x)− x+ 1.

Denote by On (1 ≤ n ≤ N∗) the set which consists of all (x, y) ∈ G
with βn(x, y) = 0. Then one has

On =

{
(x, y) ∈ G

∣∣∣ y =
N(x− 1)

N − x

(
1

1 + ε0

)n}
.

For any 1 ≤ n ≤ N∗, define

An =

{
(x, y) ∈ R2

∣∣∣ ∣∣∣∣y − N(x− 1)

N − x

(
1

1 + ε0

)n∣∣∣∣ < γ

8N∗

}
.

Obviously, by the definition of On and An, it follows that On ⊆ An

and An is an open set. Set

A =
⋃

1≤n≤N∗
An and S = G \A.
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Then S is a compact subset of G, and S∩On = ∅ for any 1 ≤ n ≤ N∗.
Thus, by the definition of On, one obtains |βn(x, y)| �= 0 on S, 1 ≤ n ≤
N∗. Consequently, by the continuity of βn(x, y), Cn = Cn(N, p, q, γ)
exists such that |βn(x, y)| ≥ Cn on S, 1 ≤ n ≤ N∗. Recalling the
definition of N∗ and denoting C0 = min{C1, C2, . . . , CN∗}, we have

min
n∈N

|βn(x, y)| = min
1≤n≤N∗

|βn(x, y)| ≥ C0, (x, y) ∈ S.

By the definition of S, for any x ∈ [1 + δ1, N − δ2], one has S ∩ ({x} ×
[(γ/2), γ]) �= ∅. Note that p1 ∈ [1 + δ1, N − δ2]. Thus, there exists a
γ1 ∈ [(γ/2), γ], such that (p1, γ1) ∈ S, and consequently

min
n∈N

|βn(p1, γ1)| = min
1≤n≤N∗

|βn(p1, γ1)| ≥ C0,

which implies that γ1 ∈ [(γ/2), γ] and a positive constant C0 =
C0(N, p, q, γ) exist such that

(3.19) min
n∈N

|βn(p1, γ1)| = min
n∈N

∣∣∣∣γ1(N − p1)

N
(1 + ε0)

n − p1 + 1

∣∣∣∣ ≥ C0.

Combining (3.19) with (3.18), it follows that
(3.20)(∫

Brn+1
(0)

van+1dx

)p1/p
∗
1

≤ C(1 + |ln|p1)2p2(n+1)

(∫
Brn(0)

vandx

)1/t

with t = N/[(N − p1)(1 + ε0)]. Denote zn = (
∫
Brn (0)

vandx)1/an .

Then, by using the Young inequality and noticing that 1 < p < N ,
(3.20) can be rewritten as

(zn+1)
[p1an+1]/p

∗
1≤C(1+ |ln|p1)2p2(n+1)zan/t

n ≤C(1+ |ln|N )2N(n+1)zan/t
n .

Recalling that an = γ1(1+ε0)
n−1, ln = [(γ1/p1)−(γ1/N)](1+ε0)

n and
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t = N/[(N − p1)(1 + ε0)], it follows from the above inequality that

zn+1 ≤ zn(2
nNC)[N(1+ε0)

−n]/[γ1(N−p1)]

·
[
1 +

(
γ1
p1

− γ1
N

)N

(1 + ε0)
nN

][N(1+ε0)
−n]/[γ1(N−p1)]

≤ znC
2nN2/[γδ2(1+ε0)

n]
[
1 + γN(1 + ε0)

nN
]2N/[γδ2(1+ε0)

n]

≤ znC
2nN2/[γδ2(1+ε0)

n](1 + γN)2N/[γδ2(1+ε0)
n]

· (1 + ε0)
2nN2/[γδ2(1+ε0)

n]

≤ znC
2nN2/[γδ2(1+ε0)

n](1 + γ)2nN
2/[γδ2(1+ε0)

n]

· (1 + ε0)
2nN2/[γδ2(1+ε0)

n]

= C
n(1+ε0)

−n

∗ zn

for all n ∈ N, where C∗ = [C(1 + γ)(1 + ε0)]
2N2/(γδ2) and δ2 =

minΩ(N − p(x)). Iterating the previous inequality, we then obtain

zn+1 ≤ C

∑n

k=1
k(1+ε0)

−k

∗ z1

for all n ∈ N. It’s easy to conclude that

∞∑
k=1

k(1 + ε0)
−k < ∞.

Combining the above two inequalities and letting n → ∞, there exists
a positive constant C(N, p, q, γ), such that

sup
B1(0)

v ≤ C

(∫
B2(0)

vγ1dx

)1/γ1

,

and consequently

sup
BR(x0)

u ≤ C

(
1

RN

∫
B2R(x0)

uγ1dx

)1/γ1

.(3.21)

Subcase II-2. γ < 0. Let an, βn and ln be the same notations in
Subcase II-1 with the symbol γ1 replaced by γ in the expressions. Note
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that in this case (3.18) still holds. Moreover, since γ < 0, estimate
(3.19) can be easily proved by the expression of βn, and consequently,
(3.20) holds. The rest of the proof is similar to that of subcase II-1,
except that the directions of the inequalities are opposite. Therefore,
we obtain

(3.22) inf
BR(x0)

u ≥ C

(
1

RN

∫
B2R(x0)

uγdx

)1/γ

, γ < 0.

Finally, assuming in addition that B8R(x0) ⊆ Ω with some fixed
x0 ∈ Ω and combining (3.14) with (3.21) and (3.22), we have

sup
BR(x0)

u ≤ C inf
BR(x0)

u.

The proof is complete.

Proposition 3.1 together with Lemma 3.1 implies the following corol-
lary.

Corollary 3.1. Suppose that all the conditions in Proposition 3.1
hold. Then two positive constants R0 and C exist such that, for any
R ≤ R0, x ∈ Ω and B4R(x) ⊆ Ω, it follows that

u(x) ≤ CR−p(x)/[q(x)−p(x)+1].

Proof. Let R0 be the smaller one of that in Lemma 3.1 and Propo-
sition 3.1. Take arbitrary x ∈ Ω, such that B4R(x) ⊆ Ω with R ≤ R0.
By Proposition 3.1, one obtains

u(x) ≤ C

(
1

RN

∫
B2R(x)

uγdy

)1/γ

, γ > 0.

Choosing γ which is close enough to 0 and using Lemma 3.1, we
conclude that(

1

RN

∫
B2R(x)

uγdy

)1/γ

≤ CR−p2/(q1−p2+1),
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where p2 = max
B4R(x)

p(y) and q1 = min
B4R(x)

q(y). Combining the

previous two inequalities, we have

u(x) ≤ CR−p2/(q1−p2+1) = CR−p(x)/[q(x)−p(x)+1]+ε(x),

where ε(x) = p(x)/[q(x)− p(x) + 1] − p2/(q1 − p2 + 1). By simple
calculations, we conclude that

ε(x) =
p(x)− p2

q(x)− p(x) + 1
+

p2[(q1 − q(x)) + (p(x) − p2)]

(q(x) − p(x) + 1)(q1 − p2 + 1)
.

Using condition (H1), one can easily conclude that

Rε(x) ≤ R−C(osc {p;B4R}+osc {q;B4R})

≤ R−C(‖∇p‖+‖q‖Cα0 )R

= e−C(‖∇p‖+‖q‖Cα0 )R lnR

≤ C,

and consequently,

u(x) ≤ CR−p(x)/[q(x)−p(x)+1].

The proof is complete.

4. The L∞ estimate. In this section, we focus on obtaining the
L∞ estimate on positive solutions of problem (1.1). Combining the
results obtained in the previous section with the global C1,α estimates
on bounded weak solutions, together with a Liouville type result in
[24], we can derive the a priori estimates by the blow-up argument.

We first state the following assumptions on functions f and g, and
the domain Ω:

(H2) For any (x, z, ξ) ∈ Ω×R+ ×RN ,

f(x, z, ξ) = zq(x) + g(x, z, ξ), g(x, z, ξ) ≥ 0,

K ′
1z

κ(x) −K ′
2

(|ξ|λ(x) + 1
) ≤ g(x, z, ξ) ≤ K ′

2

(
zκ(x) + |ξ|λ(x) + 1

)
,

where K ′
1 and K ′

2 are positive constants, p(x), q(x) and λ(x) satisfy
(H1) in Section 3, and κ(x) ∈ C(Ω) satisfies
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0 ≤ κ(x) < q(x),

for all x ∈ Ω.

(H3) Let r0 and c0 be positive constants. For any x ∈ ∂Ω, r ≥ r0
and a function h : RN−1 → R exist with h(0) = 0, ∇h(0) = 0 and
‖h‖C1,α0 ≤ c0, such that Ωr(x) := Ω ∩Br(x) can be represented as{

y ∈ RN
∣∣∣ h(ŷ) < yN <

√
r2 − |ŷ|2

}
,

where ŷ = (y1, . . . , yN−1) ∈ RN−1 for any y = (y1, . . . , yN) ∈ RN and
yi, 1 ≤ i ≤ N , is the rectangular coordinate under some basis which
may be different from the original basis e1, e2, . . . , eN .

In fact, we perhaps encounter the case that Ω satisfies assump-
tion (H3) only on the part of the boundary, that is, instead of (H3), we
give the following assumption:

(H3′) There is a subset Σ ⊂ ∂Ω, such that the statements in (H3)
hold true for all x ∈ Σ.

In order to gain the L∞ estimate on positive solutions of problem
(1.1), we can firstly consider the global C1,α estimates on bounded
weak solutions of a class of elliptic equations satisfying some structure
conditions. Assume that

(A1) p : RN → R is a bounded Hölder continuous function, that is,
positive constants L0 and α0 exist such that

|p(x1)− p(x2)| ≤ L0|x1 − x2|α0 ,

1 < p− ≤ p(x) ≤ p+ < ∞,

x1, x2, x ∈ RN ,

where p− and p+ are positive constants.

(A2) Let A : Ω×[−M,M ]×RN → RN and B : Ω×[−M,M ]×RN →
R. For any (x, u) ∈ Ω× [−M,M ], A(x, u, ·) ∈ C1(RN \ {0};RN), and
for any x, x1, x2 ∈ Ω, u, u1, u2 ∈ [−M,M ], η ∈ RN \ {0} and ξ ∈ RN ,
the following conditions are satisfied:

A(x, u, 0) = 0,

ξTAη(x, u, η)ξ ≥ λ|η|p(x)−2|ξ|2,
|Aη(x, u, η)| ≤ Λ|η|p(x)−2,
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|A(x1, u1, η)−A(x2, u2, η)|
≤ Λ (|x1 − x2|α0 + |u1 − u2|α0)

(
|η|p(x1)−1 + |η|p(x2)−1

)
,

where λ, Λ and α0 are positive constants,

Aη(x, u, η) :=

(
∂Ai

∂xj
(x, u, η)

)
N×N

,

and |E| := (
∑

ij |eij |2)1/2 for any matrix E = (eij)N×N .

(A3) Two positive constants ρ0 and θ0 ∈ (0, 1) exist such that, for
any ball Bρ with center on ∂Ω and radius ρ ≤ ρ0, the following holds

|Ωρ| ≤ (1 − θ0)|Bρ|,

where |E| denotes the Lebesgue measure of E.

We obtain the following two propositions. Their proofs are very
lengthy, but the methods we used are classical; hence, we omit them
here and give the proofs in Section 7.

Proposition 4.1. Let Ω be a domain in RN and u a bounded weak
solution with maxΩ |u(x)| ≤ M , of the problem{−divA(x, u,∇u) = B(x, u,∇u) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.

Assume that (H3), (A1) and (A2) hold true. Then positive constants
α ∈ (0, 1), R0 and C exist depending only upon N , M , p−, p+, λ, Λ,
L0, α0, r0 and c0, such that

osc {∇u; ΩR(x)} ≤ CRα, x ∈ Ω, R ≤ R0

and
|∇u(x)| ≤ C, x ∈ Ω,

where p−, p+ L0 and α0 are the constants in (A1), and λ, Λ, r0 and
c0 are the constants stated in (A2).

Proposition 4.2. Ω and u are defined as in Proposition 4.1.
Assume (H3′), (A1), (A2) and (A3) hold true. Then positive constants
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α ∈ (0, 1), R0 and C exist depending only upon N , M , p−, p+, λ, Λ,
L0, α0, r0, c0 and θ0 (θ0 is the constant stated in (A3)), such that

osc {∇u; ΩR(x)} ≤ CRα, x ∈ Ω2R0 ∪ (Σ3R0 ∩Ω), R ≤ R0

and
|∇u(x)| ≤ C, x ∈ Ω2R0 ∪ (Σ3R0 ∩ Ω),

where Ω2R0 = {x ∈ Ω | d(x, ∂Ω) ≥ 2R0} and Σ3R0 = {x ∈ RN |
d(x,Σ) < 3R0}.

We also need the following Liouville-type result, which is a special
case of Theorem 1.1 in [24].

Lemma 4.1 [24]. Let p and q be two positive constants satisfying
p ∈ (1, N) and q ∈ (p−1, p∗−1), where p∗ = Np/(N − p) is the Sobolev
critical exponent. Then the problem{−Δpu = uq x ∈ H,

u(x) = 0 x ∈ ∂H

has no positive solution, where H is a half space of RN .

Now we can state and prove the a priori estimates on positive
solutions for problem (1.1), namely, we can prove the following result.

Lemma 4.2. Suppose (H1) (H3) hold true. Then, for any C1

positive solution u of problem (1.1), we have

‖u‖ ≤ C,

where C is a positive constant and ‖ · ‖ denotes the uniform norm.

Proof. Suppose, by contradiction, that a sequence {un} exists such
that un is a C1 positive solution of problem (1.1) and ‖un‖ → ∞. Take
xn ∈ Ω such that un(xn) = ‖un‖ = sn. Denote dn = d(xn, ∂Ω) and
define

ũn(x) := un(x) + 1, for all x ∈ Ω.
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Then ũn ≥ 1 and this satisfies

−Δp(x)ũn = (ũn − 1)q(x) + g(x, ũn − 1,∇ũn), x ∈ Ω.

With the aid of (H1) and (H2), one can easily conclude that positive

constants K̃1 and K̃2 exist, such that

K̃1ũ
q(x)
n − K̃2

(|∇ũn|λ(x) + 1
)

≤ −Δp(x)ũn ≤ K̃2

(
ũq(x)
n + |∇ũn|λ(x) + 1

)
.

Applying Corollary 3.1 to the above inequality, a positive constant C
exists such that

(4.1) sn ≤ ũn(xn) ≤ Cd−p(xn)/[q(xn)−p(xn)+1]
n ,

and consequently, it follows that dn → 0 as n → ∞. Let

vn(x) = s−1
n un(y), y = δnx+ xn, x ∈ Ωn,

where δn = s
−[q(xn)−p(xn)+1]/p(xn)
n and

Ωn = {x ∈ RN | δnx+ xn ∈ Ω}.

Obviously δn → 0 as n → ∞. Define pn(x) := p(δnx + xn) for
any x ∈ Ωn. qn(x), λn(x) and κn(x) are similarly defined. Then
p(xn) = pn(0), q(xn) = qn(0), λ(xn) = λn(0) and κ(xn) = κn(0). By
simple calculations, we conclude that vn satisfies

(4.2)

{
−Δpn(x)vn = s

ln(x)
n v

qn(x)
n + gn(x, vn,∇vn) x ∈ Ωn,

vn(x) = 0 x ∈ ∂Ωn,

where

ln(x) =
pn(x)

pn(0)
[qn(x) − qn(0)]− qn(x) + 1

pn(0)
[pn(x)− pn(0)], x ∈ Ωn,

and

gn(x, z, ξ) = δpn(x)
n s1−pn(x)

n g(δnx+ xn, snz, snδ
−1
n ξ)
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+ δn(ln sn − ln δn)|ξ|pn(x)−2ξ · ∇p(δnx+ xn)

= gn,1(x, z, ξ) + gn,2(x, z, ξ)

for any (x, z, ξ) ∈ Ωn ×R+ ×RN .

Next, we do the a priori estimates on vn. We first estimate gn,1 and

gn,2. Recalling that p(x) ∈ C1(Ω) and δn = s
−[qn(0)−pn(0)+1]/pn(0)
n , it

follows that a positive constant C exists such that

(4.3)

|gn,2(x, z, ξ)| = qn(0) + 1

pn(0)
s−[qn(0)−pn(0)+1]/pn(0)
n (ln sn)

· |∇p(δnx+ xn)||ξ|pn(x)−1

≤ Cs1−[(qn(0)+1)/pn(0)]
n (ln sn)|ξ|pn(x)−1

for any (x, z, ξ) ∈ Ωn ×R+ ×RN . Since p(x) and q(x) are continuous
and q(x) > p(x) − 1 on Ω, a ε0(p, q) > 0 exists such that q(x) + 1 ≥
(1 + ε0)p(x) for any x ∈ Ω. Recalling that sn → ∞ as n → ∞, a
positive constant C exists such that

(4.4) s1−[(qn(0)+1)/pn(0)]
n ln sn = s1−[(q(xn)+1)/p(xn)]

n ln sn ≤ s−ε0
n ln sn.

Combining the previous two inequalities, we can estimate that

|gn,2(x, z, ξ)| ≤ C|ξ|pn(x)−1

for any (x, z, ξ) ∈ Ωn ×R+×RN . Now we estimate gn,1(x, z, ξ). Since
g(x, z, ξ) satisfies (H2), a C > 0 exists such that

(4.5)

|gn,1(x, z, ξ)| = δpn(x)
n s1−pn(x)

n |g(δnx+ xn, snz, snδ
−1
n ξ)|

≤ C
(
δpn(x)
n sκn(x)−pn(x)+1

n zqn(x) + δpn(x)
n s1−pn(x)

n

+ δpn(x)−λn(x)
n sλn(x)−pn(x)+1

n |ξ|λn(x)
)

≤ Cδpn(x)
n sκn(x)−pn(x)+1

n (zqn(x) + 1)

+ Cδpn(x)−λn(x)
n sλn(x)−pn(x)+1

n |ξ|λn(x)

= Cα1(x)(z
qn(x) + 1) + Cα2(x)|ξ|λn(x)

for any (x, z, ξ) ∈ Ωn ×R+ ×RN . Denote δ̂n = max{δn, dn} and

Ω′
n = {x ∈ RN | there exists a y ∈ B√

δ̂n
(xn) ∩Ω,

such that y = δnx+ xn},
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Ω′′
n = {x ∈ RN | there exists a y ∈ B

1/2
√

δ̂n
(xn) ∩ Ω,

such that y = δnx+ xn}.
Obviously Ω′′

n ⊆ Ω′
n. Noticing that dn, δn → 0 as n → ∞, it follows

that δ̂n → 0 as n → ∞. To estimate gn,1, we only need to estimate
α1(x) and α2(x). By condition (H1), one obtains

ε1 = min
x∈Ω

(q(x) − κ(x)) > 0, ε2 = min
Ω

(
p(x)q(x)

q(x) + 1
− λ(x)

)
> 0.

Recalling that δn = s
−[qn(0)−pn(0)+1]/pn(0)
n , and by using condition (H1),

it follows that, for any x ∈ Ω′
n,

α1(x) = δpn(x)
n sκn(x)−pn(x)+1

n

= sκn(x)+1−[(qn(0)+1)/pn(0)]pn(x)
n

= sκn(x)−qn(0)−[(qn(0)+1)/pn(0)](pn(x)−pn(0))
n

≤ s−ε1+qn(x)−qn(0)−[(qn(0)+1)/pn(0)](pn(x)−pn(0))
n

= s−ε1+q(δnx+xn)−q(xn)−[(q(xn)+1)/p(xn)](p(δnx+xn)−p(xn))
n

≤ s−ε1+|δnx|α0+C|δnx|
n

≤ s−ε1+Cδ̂
(α0/2)
n

n ,

and

α2(x)

= δpn(x)−λn(x)
n sλn(x)−pn(x)+1

n

= s1+[(qn(0)+1)/pn(0)](λn(x)−pn(x))
n

≤ s[(pn(x)qn(x))/((qn(x)+1))−pn(x)][(qn(0)+1)/pn(0)]+1−[ε2(qn(0)+1)/pn(0)]
n

= s[pn(0)(qn(x)+1)−pn(x)(qn(0)+1)]/[pn(0)(qn(x)+1)]−[ε2(qn(0)+1)/pn(0)]
n

= s[(qn(x)−qn(0))/(qn(x)+1)]−[(pn(x)−pn(0))(qn(0)+1)]/[pn(0)(qn(x)+1)]−[ε2(qn(0)+1)/pn(0)]
n

≤ sC(|δnx|α0/2+|δnx|−ε2)
n

≤ sC(δ̂
α0/2
n −ε2)

n .

Recalling that δ̂n → 0, it follows from the above two inequalities and
(4.1) that

(4.6) lim
n→∞ sup

x∈Ω′
n

α1(x) = lim
n→∞ sup

Ω′
n

α12(x) = 0.
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Putting (4.6) into (4.5), we can estimate that

|gn,1(x, z, ξ)| ≤ C(|z|qn(x) + |ξ|λn(x) + 1)

for any (x, z, ξ) ∈ Ω′
n ×R+ ×RN . Therefore, by applying the Young

inequality and the fact that pn(x)− 1 ≤ λn(x) ≤ pn(x) on Ω′
n, we have

(4.7)

|gn(x, z, ξ)| ≤ |gn,1(x, z, ξ)|+ |gn,2(x, z, ξ)|
≤ C(|z|qn(x) + |ξ|pn(x)−1 + |ξ|λn(x) + 1)

≤ C(|z|qn(x) + |ξ|λn(x) + 1)

≤ C(|z|qn(x) + |ξ|pn(x) + 1)

for any (x, z, ξ) ∈ Ω′
n ×R+ ×RN . We now estimate the term s

ln(x)
n .

For any x ∈ Ω′
n, one has

(4.8)

|ln(x)| ≤
∣∣∣∣pn(x)pn(0)

∣∣∣∣|qn(x) − qn(0)|+
∣∣∣∣qn(x) + 1

pn(0)

∣∣∣∣|pn(x) − pn(0)|
≤ C(|qn(x) − qn(0)|+ |pn(x)− pn(0)|)
= C(|q(δnx+ xn)− q(xn)|+ |p(δnx+ xn)− p(xn)|)
≤ C(δ̂α0/2

n + δ̂n) ≤ C1δ̂
α0/2
n ,

and consequently,

−C1δ̂
α0/2
n ≤ ln(x) ≤ C1δ̂

α0/2
n .

By (4.1) and the definitions of δn and δ̂n, two positive constants C2

and σ exist such that
sn ≤ C2δ̂

−σ
n .

Combining the previous two inequalities, then

C−C1 δ̂
α0/2
n

2 δ̂C1σδ̂
α0/2
n

n ≤ sln(x)n ≤ CC1 δ̂
α0/2
n

2 δ̂−C1σδ̂
α0/2
n

n , x ∈ Ω′
n.

Recalling that δ̂n → 0, the foregoing inequality implies that

lim
n→∞C−C1δ̂

α0/2
n

2 δ̂C1σδ̂
α0/2
n

n = lim
n→∞CC1δ̂

α0/2
n

2 δ̂−C1σδ̂
α0/2
n

n = 1.
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Consequently, it follows from the previous two inequalities that

(4.9) lim
n→∞ sup

x∈Ω′
n

|sln(x)n − 1| = 0.

Combining (4.7) with (4.9) and noticing that vn ≤ 1, we conclude that

(4.10) |sln(x)n vqn(x)n + gn(x, vn,∇vn)|
≤ C(vqn(x)

n + |∇vn|pn(x) + 1)

≤ C(|∇vn|pn(x) + 1), x ∈ Ω′
n.

Recalling that δ̂n → 0, by the definition of Ω′
n, we claim that Ω′

n

satisfies assumption (H3′) with Ω replaced by Ω′
n and Σ by Σn :=

∂Ω′′
n ∩ ∂Ωn, and here the constants α0, r0 and c0 are all independent

of n. For this purpose, we take arbitrary y0 ∈ Σn and ρ ≤ r0; then,
by the definition of Ωn and Ω′′

n, we have x0 = δny0 + xn ∈ ∂Ω and

|δny0| ≤
√
δ̂n/2. Moreover, the following holds:

(4.11) Bρ(y0) ∩ Ω′
n = Bρ(y0) ∩ Ωn,

for n, which is large enough. Obviously Bρ(y0)∩Ω′
n ⊆ Bρ(y0)∩Ωn. In

order to verify (4.11), we only need to verify thatBρ(y0)∩Ωn ⊆ Bρ(y0)∩
Ω′

n. Taking arbitrary y ∈ Bρ(y0)∩Ωn and denoting x = δny+xn, then

by the definition of Ωn and Ω′
n, it suffices to verify that |x−xn| <

√
δ̂n

or δn|y| <
√
δ̂n. Noticing that for large n we have δnr0 ≤

√
δ̂n/4, and

recalling that |δny0| ≤
√
δ̂n/2, it follows that

δn|y| ≤ δn|y0|+ δn|y − y0| ≤
√
δ̂n

2
+ δnr0 ≤ 3

√
δ̂n

4
<

√
δ̂n,

and consequently, (4.11) holds for large n. On account of (4.11), to
verify Ω′

n satisfies assumption (H3′) on Σn, we only need to verify that
Ωn satisfies assumption (H3). In fact, by (H3), a Hermite matrix K
and a function h ∈ C1,α0(RN−1;R) exist, with h(0) = 0, ∇h(0) = 0
and ‖h‖C1,α0 ≤ c0, such that

T
(
Ω ∩Br(x0)

)
= V

:=
{
z ∈ RN | h(ẑ) < zN <

√
r2 − |ẑ|2

}
, 0 < r ≤ r0,
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where T is given by

z = T (x) := K (x− x0) , x ∈ Ω ∩Br(x0).

Define a mapping L : Ω ∩Br(x0) → L(Ω ∩Br(x0)), such that

y = Lx = δ−1
n (x − xn), x ∈ Ω ∩Br(x0).

Obviously, L is bijective and, by the definition of Ωn, we conclude

L
(
Ω ∩Br(x0)

)
= Ωn ∩Bδ−1

n r(y0).

Define a mapping T̃ : Ωn ∩Bδ−1
n r(y0) → T̃ (Ωn ∩Bδ−1

n r(y0)), such that

y′ = T̃ y := K(y − y0).

Then T̃ = δ−1
n T ◦ L−1, and consequently T (Bδ−1

n r(y0) ∩ Ωn) = δ−1
n V ,

namely,

T̃
(
Bδ−1

n r(y0) ∩ Ωn

)
=
{
y′ ∈ RN | δ−1

n h(δnŷ′) < y′N

<

√
(δ−1

n r)2 − |ŷ′|2
}
, 0 < r ≤ r0.

or

T̃
(
Br(y0) ∩ Ωn

)
=

{
y′ ∈ RN | δ−1

n h(δnŷ′) < y′N <

√
r2 − |ŷ′|2

}
,

0 < r ≤ δ−1
n r0.

Recalling that K is a Hermite matrix and δn → 0 as n → ∞, from the
above formula and the definition of T̃ , we can see that Ωn∩Br(y0) can
be represented as{

y′ ∈ RN | δ−1
n h(δnŷ′) < y′N <

√
r2 − |ŷ′|2

}
, 0 < r ≤ r0.

Thus, the remainder to be verified is that, for large n,

‖hn(y)‖C1,α0 = ‖δ−1
n h(δny)‖C1,α0 ≤ c0,
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which is clear from the properties of h.

On account of the previous statements and (4.10), we can use Propo-
sition 4.2 to conclude that constants C, α ∈ (0, 1) and R0 exist such
that, for n which is large enough, the following hold:

|∇vn(x)| ≤ C, x ∈ Ω′′
n,

and

|∇vn(x) −∇v(y)| ≤ C|x− y|α, x, y ∈ Ω′′
n, |x− y| ≤ R0.

Finally, by the limitation process, we can obtain the a priori estimates
on u. Take x̃n ∈ ∂Ω such that |x̃n − xn| = dn. By the mean value
theorem, we obtain

1 = un(xn)− un(x̃n) = vn(0)− vn(δ
−1
n (x̃n − xn))

≤ δ−1
n ‖∇vn‖|x̃n − xn| ≤ Cδ−1

n dn.

Combining (4.1) with the previous inequality, two positive constants
C3 and C4 exist such that

C3 ≤ δ−1
n dn ≤ C4.

Using the same argument as that of subcase I-2 in the proof of The-
orem 1.2 in [24], ε > 0, subsequences of {Ω′′

n} and subsequences of
{vn} exist, which are denoted by {Ω′′

n} and {vn}, respectively, and
v ∈ C1,α/2(RN

ε ), such that

lim
n→∞Ω′′

n = RN
ε := {(y1, y2, . . . , yN) ∈ RN | yN > −ε}.

With some appropriate rotation,

v(y) = 0, y ∈ ∂RN
ε , v(0) = 1,

and

(4.12) lim
n→∞ vn(y) = v(y)
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uniformly on any compact subset of RN
ε in C1,α/2-topology. Recalling

that |∇vn(x)| ≤ C, for any x ∈ Ω′
n and combining (4.3) with (4.4),

together with (4.5), one obtains

|gn(x, vn,∇vn)| ≤ |gn,1(x, vn,∇vn)|+ |gn,2(x, vn,∇vn)|
≤ C(s−ε0

n ln sn + α1(x) + α2(x)).

Since sn → ∞ and

lim
n→∞ sup

Ω′
n

α1(x) = lim
n→∞ sup

Ω′
n

α2(x) = 0,

it follows from the previous inequality that

(4.13) lim
n→∞ sup

x∈Ω′
n

|gn(x, vn(x),∇vn(x))| = 0.

Note that dn → 0. A subsequence of {xn} exists, still denoted by {xn},
and x0 ∈ ∂Ω, such that xn → x0. Combining (4.9) (4.13), and recalling
that vn is the solution of problem (4.2), we can see that v satisfies{−Δp(x0)v = vq(x0) x ∈ RN

ε ,

v(x) = 0 x ∈ ∂RN
ε .

By the strong maximum principle, v > 0 in RN
ε . Thus, v is a positive

solution for the above problem, which is a contradiction to Lemma 4.1.
This contradiction provides the a priori estimates on u. The proof is
complete.

5. The existence. In this section, we will prove the existence
of positive solutions for problem (1.1) based on the a priori estimates
obtained in Section 4 and the Krasnoselskii fixed point theorem on the
cone raised in [14], which also can be found in [4].

As preparation, we need a nonexistence result for the following
problem with large μ > 0.

(5.1)

{−Δp(x)u = f(x, u,∇u) + μ x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.
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Lemma 5.1. Problem (5.1) has no positive solution for μ ≥ μ0 with
some suitable μ0 > 0.

Proof. Let u be a positive solution for problem (5.1) with μ ≥ 2.
Recalling that f(x, u,∇u) = uq(x) + g(x, u,∇u) and g(x, u,∇u) ≥ 0, it
follows that

−Δp(x)u ≥ uq(x) + μ, x ∈ Ω.

Define ũ(x) := u(x) + 1 for any x ∈ Ω. Note that (u + 1)q(x) ≤
2q(x)(uq(x)+1) ≤ M(uq(x)+1), whereM = maxΩ 2q(x). Then ũ satisfies

−Δp(x)ũ ≥ M−1ũq(x) + μ− 1 ≥ M−1ũq(x) + 1, x ∈ Ω.

Taking a fixed point x0 ∈ Ω and 0 < R0 ≤ 1, such that B2R0 :=
B2R0(x0) ⊆ Ω and recalling that p(x) and q(x) are continuous on Ω and
p(x)−1 < q(x), we can let R0 = R0(p, q), which is small enough, be such
that q1 > p2−1+ε0 for some small positive constant ε0 = ε0(p, q), where
p2 = maxB2R0

p(x) and q1 = minB2R0
q(x). Recalling that p(x) < N

on Ω, it follows that

(q1 + 1)(p2 − 1)

q1 − p2 + 1
= p2 − 1 +

p2(p2 − 1)

q1 − p2 + 1

≤ p2 − 1 +
p2(p2 − 1)

ε0

≤ (N − 1)(N + ε0)

ε0

≤ N2 − 1

ε0
.

By Lemma 3.1, a C0 exists such that∫
BR0 (x0)

|∇u|p2−1dx =

∫
BR0(x0)

|∇ũ|p2−1dx

≤ C0R
N−[(q1+1)(p2−1)]/(q1−p2+1)
0

≤ C0R
N−[(N2−1)/ε0]
0 .

Let e(x) be the unique solution of the problem{−Δp(x)e = 1 x ∈ Ω,

e(x) = 0 x ∈ ∂Ω.
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Then e ∈ C1(Ω) and, for any k > 0, ke(x) satisfies

−Δp(x)(ke) = kp(x)−1 − kp(x)−1 ln k(∇p(x) · ∇e)|∇e|p(x)−2.

Taking C > 0 such that maxx∈Ω |∇p(x)||∇e|p(x)−1 ≤ C, it follows from
the previous equation that

−Δp(x)(ke) ≤ kp(x)−1 + Ckp(x)−1| ln k|.

Choosing k > 0, which is small enough, such that for any x ∈ Ω,

kp(x)−1 + Ckp(x)−1| ln k| ≤ 2 ≤ μ.

By the comparison theorem, one has

ke ≤ u, x ∈ Ω.

Let η be a standard cut-off function onBR0 . Taking φ = (ηe)
p(x)

/up(x)−1

as a test function, then we obtain

∫
BR0(x0)

|∇u|p(x)−2∇u∇
(
(ηe)p(x)

up(x)−1

)
dx

=

∫
BR0 (x0)

(
uq(x) + g(x, u,∇u) + μ

) (ηe)p(x)
up(x)−1

dx.

Recalling g(x, u,∇u) ≥ 0 and considering ln(ηe) as 0 on the points
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where η(x)e(x) = 0, it follows from the previous inequality that

(5.2)

∫
BR0(x0)

uq(x) + μ

up(x)−1
(ηe)pdx

≤
∫
BR0(x0)

|∇u|p(x)−2∇u∇
(
(ηe)p(x)

up(x)−1

)
dx

=

∫
BR0(x0)

[
p(x)

(
ηe

u

)p(x)−1

|∇u|p(x)−2∇u∇(ηe)

− (
p(x)− 1

)(ηe

u

)p(x)

|∇u|p(x)

+
(ηe)p(x)

up(x)−1

(
ln(ηe)− lnu

)|∇u|p(x)−2∇u∇p(x)

]
dx

≤
∫
BR0(x0)

[
p(x)

(
ηe

u

)p(x)−1

|∇u|p(x)−1|∇(ηe)|

− (
p(x) − 1

)(ηe

u

)p(x)

|∇u|p(x)

+
(ηe)p(x)

up(x)−1

(| ln(ηe)|+ | lnu|)|∇u|p(x)−1|∇p(x)|
]
dx.

In fact, since p(x) > 1 on Ω, it’s reasonable for us to deal with ln(ηe)
like this. By the Young inequality, we have

(5.3) p(x)

(
ηe

u

)p(x)−1

|∇u|p(x)−1|∇(ηe)|

≤ (p(x)− 1)|∇u|p(x)
(
ηe

u

)p(x)

+ |∇(ηe)|p(x).

Putting (5.3) into (5.2), we conclude

(5.4)

∫
BR0(x0)

uq(x) + μ

up(x)−1
(ηe)p(x)dx

≤
∫
BR0(x0)

(
|∇(ηe)|p(x) + (ηe)p(x)

up(x)−1

(| ln(ηe)|+ | lnu|)
· |∇u|p(x)−1|∇p(x)|

)
dx.



SOLUTIONS FOR THE p(x)-LAPLACIAN EQUATION 1709

Recalling that ke ≤ u, it follows that a positive constant C exists, such
that

(5.5)

∣∣∣∣ (ηe)p(x)up(x)−1
ln(ηe)

∣∣∣∣ ≤ (
e

u

)p(x)−1

|(ηe) ln(ηe)|

≤ kp(x)−1|(ηe) ln(ηe)| ≤ C, if ηe �= 0,

and
(5.6)∣∣∣∣ (ηe)p(x)up(x)−1

lnu

∣∣∣∣ ≤ (
e

u

)p(x)−1

sup
u∈(0,1]

|e lnu|+ ep(x) sup
u∈[1,∞)

lnu

up(x)−1

≤ k−p(x) sup
u∈(0,1]

|u lnu|+ ep(x) sup
u∈[1,∞)

lnu

up(x)−1
≤ C.

Denote

l(μ) = min
x∈BR0
t>0

tq(x) + μ

tp(x)−1
.

Then l(μ) → ∞ as μ → ∞. Putting (5.5) and (5.6) into (5.4), we
obtain

l(μ)

∫
BR0(x0)

(ηe)p(x)dx≤
∫
BR0 (x0)

|∇(ηe)|p(x)dx+C

∫
BR0(x0)

|∇u|p(x)−1dx.

It follows from the Young inequality that∫
BR0(x0)

|∇u|p(x)−1dx ≤ CRN
0 +

∫
BR0(x0)

|∇u|p2−1dx

≤ CRN
0 + C0R

N−[(N2−1)/ε0]
0 .

Combining the foregoing two inequalities, we can see that l(μ) is
bounded. Recalling that l(μ) → ∞ as μ → ∞, a suitable positive
constant μ0 exists such that μ < μ0. The proof is complete.

The following Krasnoselskii fixed point theorem on the cone is raised
in [14], see also in [4].
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Lemma 5.2. Let C be a cone in a Banach space and K : C → C a
compact operator, such that K(0) = 0. Assume that an r > 0 exists,
verifying:

(A) u �= tK(u) for all ‖u‖ = r, t ∈ [0, 1].

Assume also that a compact homotopy H : [0, 1] · C → C and R > r
exist such that:

(B1) K(u) = H(0, u) for all u ∈ C.

(B2) H(t, u) �= u for any ‖u‖ = R, t ∈ [0, 1].

(B3) H(1, u) �= u for any ‖u‖ ≤ R.

Let D = {u ∈ C : r < ‖u‖ < R}. Then, K has a fixed point in D.

Now, we can state and prove our main result.

Theorem 5.1. Suppose that (H1) (H3) hold true with |ξ|λ(x) + 1
replaced by |ξ|λ(x) in (H2). Denote by p− and p+ the minimum and
maximum of p(x) on Ω, respectively. The minimum and maximum
of q(x), λ(x) and κ(x) are denoted by similar symbols. Assume that
λ− > p+−1, κ− > p+−1 and q− > p+−1. Then, at least one positive
solution for problem (1.1) exists.

Proof. We use Lemma 5.2 to prove our result. Denote

C = {u ∈ C1,α(Ω) | u(x) ≥ 0 on Ω}.

Then C is a cone in C1,α(Ω). Define a mapping K : C → C, such
that for any u ∈ C, K(u) denotes the unique solution of the following
problem {−Δp(x)K(u) = f(x, u,∇u) x ∈ Ω,

K(u)(x) = 0 x ∈ ∂Ω.

By the strong maximum principle in [11] and the C1,α estimates in [5],
the definition of K is reasonable, and in addition, K is compact. Note
that f(x, 0, 0) ≡ 0 in Ω. Thus, K(0) = 0.

We now verify the conditions stated in Lemma 5.2. We first verify
item (A). Let 0 < r < 1 be small enough. Suppose ‖u‖C1,α = r and
u = tK(u) for some t ∈ [0, 1]. Obviously, t �= 0. By the definition of
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K(u), it follows that

−Δp(x)
u

t
= f(x, u,∇u), x ∈ Ω.

Taking u as a test function for the above equation, then we have∫
Ω

t1−p(x)|∇u|p(x)dx =

∫
Ω

f(x, u,∇u)u dx.

On one hand, recalling that t ∈ (0, 1], it follows that∫
Ω

t1−p(x)|∇u|p(x)dx ≥
∫
Ω

|∇u|p(x)dx.

On the other hand, by condition (H2), a C > 0 exists such that∫
Ω

f(x, u,∇u)u dx ≤ C

∫
Ω

(
uq(x)+1 + uκ(x)+1 + |∇u|λ(x)u) dx.

Combining the previous three inequalities, we have∫
Ω

|∇u|p(x)dx ≤ C

∫
Ω

(
uq(x)+1 + uκ(x)+1 + |∇u|λ(x)u) dx.

Recalling that 0 < r < 1, it follows that |u(x)| < 1 and |∇u(x)| < 1 on
Ω. Consequently, we obtain∫

Ω

|∇u|p+dx ≤
∫
Ω

|∇u|p(x)dx,

and∫
Ω

(
uq(x)+1 + uκ(x)+1 + |∇u|λ(x)u)

≤
∫
Ω

(
uq−+1 + uκ−+1 + |∇u|λ−u

)
dx.

Combining the previous three inequalities, it follows that∫
Ω

|∇u|p+dx ≤
∫
Ω

(
uq−+1 + uκ−+1 + |∇u|λ−u

)
dx.
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Denote a = (
∫
Ω
|∇u|p+dx)1/p+ . Combining the Hölder inequality with

the Sobolev embedding theorem, we deduce∫
Ω

(
uq−+1 + uκ−+1 + |∇u|λ1u

)
dx

≤ Caq−+1 + Caκ−+1 + Caλ−

(∫
Ω

up+/(p+−λ−)dx

)(p+−λ−)/p+

≤ C
(
aq−+1 + aκ−+1 + aλ−+1

)
.

Therefore, it follows from the previous two inequalities that

ap+ ≤ C
(
aq−+1 + aκ−+1 + aλ−+1

)
,

or
aq−−p++1 + aκ−−p++1 + aλ−−p++1 ≥ C0

for some constant C0 > 0. Note that q− > p+ − 1, κ− > p+ − 1 and
λ− > p+ − 1. It follows from the above inequality that a constant
ε0 > 0 exists such that

a =

(∫
Ω

|∇u|p+dx

)1/p+

≥ ε0.

Consequently, 0 < r0 < 1 exists such that

max
x∈Ω

|∇u(x)| ≥
(

1

|Ω|
∫
Ω

|∇u|p+dx

)1/p+

≥ r0,

and hence,
‖u‖C1,α ≥ r0.

So, if we take r = r0/2, then u �= tK(u) for any ‖u‖C1,α = r and
t ∈ [0, 1]. Item (A) is verified.

Next, we verify (B1) (B3). Let μ0 be the same constant in Lemma 5.1
and the homotopy H : [0, 1]×C → C. For any (t, u) ∈ [0, 1]×C, H(t, u)
denotes the unique solution of the problem

(5.7)

{−Δp(x)H(t, u) = f(x, u,∇u) + μ0t x ∈ Ω,

H(t, u)(x) = 0 x ∈ ∂Ω.
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By the strong maximum principle in [11] and the C1,α estimates in
[5], the definition of H is reasonable, and H is compact. Obviously,
K(u) = H(0, u) for any u ∈ C. Thus, (B1) is verified. By condition

(H2), two positive constants K̃1 and K̃2 exist such that

K̃1u
q(x) − K̃2

(|∇u|λ(x) + 1
) ≤ f(x, u,∇u) + μ0t

≤ K̃2

(
uq(x) + |∇u|λ(x) + 1

)
.

Thus, we can apply Lemma 4.2 to problem (5.7) with H(t, u) replaced
by u, and consequently, a positive constant C exists, such that ‖u‖ ≤ C
for any fixed point of H(t, u), where ‖ · ‖ stands for the uniform norm.
Then, by the C1,α estimate in [5], a constant R > 0 exists such that
‖u‖C1,α < R for any fixed point of H(t, u). Thus, (B2) is verified, while
(B3) is the direct corollary of Lemma 5.1.

By Lemma 5.2, a fixed point u for K(u) in C satisfies r ≤ ‖u‖C1,α ≤
R. By the definition of K, u is a solution of problem (1.1). Utilizing
the strong maximum principle in [11], we know that u is a positive
solution of problem (1.1). The proof is complete.

APPENDIX

6. Global Cα estimates. The appendices are employed to prove
Propositions 4.1 and 4.2 stated in Section 4, in other words, we do
the global C1,α estimates on the bounded weak solutions for elliptic
equations of the form

(6.1)

{−divA(x, u,∇u) = B(x, u,∇u) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.

Obviously, the global C1,α estimates are based on the global Cα

estimates. In this section, we concentrate on doing the global Cα

estimates, while the global C1,α estimates and the proof of Propositions
4.1 and 4.2 are given in Section 7.

Since the weak solution we considered here and in Section 7 is
bounded, without loss of generality, we can suppose that

max
x∈Ω

|u(x)| ≤ M, M > 0.
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Assume that

(A2′) A : Ω × [−M,M ] × RN → RN and B : Ω × [−M,M ] → R.
A(x, u, η) and B(x, u, η) are measurable in x and continuous in (u, η).
Positive constants λ∗ and Λ∗ exist such that

A(x, u, η)η ≥ λ∗|η|p(x), |A(x, u, η)| ≤ Λ∗|η|p(x)−1

and
|B(x, u, η)| ≤ Λ∗(1 + |η|p(x)),

for any (x, u, η) ∈ Ω× [−M,M ]×RN .

Throughout this appendix, we always suppose (A1), (A2′) and (A3)
hold true.

The global Cα estimates are based on the Hölder continuity of
functions in the class Bp(x)(Ω,M, γ, γ1, δ), which was introduced

in [10]. Bp(x)(Ω,M, γ, γ1, δ) is the natural generalization of class

Bp(Ω,M, γ, γ1, δ), which was introduced in [15]. The approach we
used here is similar to that in [10, 15]. In fact, the interior Cα esti-
mates can be deduced from the results stated in [10]. However, the
boundary estimates were not considered there.

Definition 6.1 [10]. Let M,γ, γ1 and δ be positive constants
with δ ≤ 2. We will say that a function u(x) belongs to class
Bp(x)(Ω,M, γ, γ1, δ) if u ∈ W 1,p(x)(Ω), maxΩ |u(x)| ≤ M , and the
functions w(x) = ±u(x) satisfy the inequality
(6.2)∫

Bk,r

|∇w|p(x)dx ≤ γ

∫
Bk,ρ

∣∣∣∣w(x) − k

ρ− r

∣∣∣∣p(x)dx+ γ1|Bk,ρ|, 0 < r < ρ

for arbitrary Bρ ⊆ Ω and such that k

(6.3) k ≥ max
Bρ

w(x) − δM,

where Bk,ρ := {x ∈ Bρ | w(x) > k}.

Definition 6.2 [10]. We will say that function u belongs to
Bp(x)(Ω,M, γ, γ1, δ) if u ∈ Bp(x)(Ω,M, γ, γ1, δ) and, in addition, the
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following holds:∫
Ωk,r

|∇w|p(x)dx ≤ γ

∫
Ωk,ρ

∣∣∣∣w(x) − k

ρ− r

∣∣∣∣p(x)dx+ γ1|Ωk,ρ|, 0 < r < ρ

for arbitrary ball Bρ with center on ∂Ω and k such that

k ≥ max

{
max
Ωρ

w(x) − δM,max
Sρ

w

}
,

where Ωρ := Bρ ∩ Ω, Sρ := ∂Ω ∩Bρ and Ωk,ρ := {x ∈ Ωρ | w(x) > k}.

The following lemma is taken from [10], which states the interior
estimates on functions in the class Bp(x)(Ω,M, γ, γ1, δ).

Lemma 6.1. Let Ω be a domain in RN , BR and BR/4 concentric
balls contained in Ω. Then a positive constant R0 = R0(M,L0, α0)
and an integer s = s(N, p+, γ) ≥ 2 exist such that, for any function
u ∈ Bp(x)(Ω,M, γ, γ1, δ), at least one of the following two inequalities
holds:

osc {u;BR} ≤ τ−12s
γ + γ1 + 1

γ
R,

osc {u;BR/4} ≤ (1− τ2−s)osc {u;BR},
for any R ≤ R0, where τ = min{(1/2), (δ/2)}.

Similarly to Lemma 6.1, we can obtain global estimates on functions
in the class Bp(x)(Ω,M, γ, γ1, δ). In fact, we have the following lemma.

Lemma 6.2. Let Ω be a domain in RN and satisfy (A3). Let u be
a function of class Bp(x)(Ω,M, γ, γ1, δ). Suppose that, for any ball Bρ

with center on ∂Ω and ρ ≤ ρ0, the following holds:

(6.4) osc {u;Sρ} ≤ Kρε, ε > 0.

Let BR and BR/4 be two concentric balls with center on ∂Ω and R ≤ ρ0.
Then a positive constant R0 = R0(M,L0, α0) ≤ ρ0 and an integer
s = s(N, p+, γ, θ0) ≥ 2 exist, such that at least one of the following two
inequalities hold:

(6.5)
osc {u; ΩR} ≤ max

{
2K, τ−12sρ1−ε

0

γ + γ1 + 1

γ

}
Rε,

osc {u; ΩR/4} ≤ (1− τ2−s)osc {u; ΩR},
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for any R ≤ R0, where τ = min{(1/2), (δ/2)}.
The proof of Lemma 6.2 is based on the following Lemmas 6.3 and

6.4.

Lemma 6.3. Let Ω ⊆ RN be a domain, w(x) ∈ W 1,p(x)(Ω) a
bounded measurable function with maxx∈Ω |w(x)| ≤ M , M ≥ 1. BR,
BR/2 and BR/4 are concentric balls contained in Ω. Suppose that, for
any balls Br and Bρ, which have the common center with BR, and
R/4 ≤ r < ρ ≤ R, the following inequality holds:
(6.6)∫

Bk,r\Bl,r

|∇w|p(x)dx ≤ γ

∫
Bk,ρ

∣∣∣∣w − k

ρ− r

∣∣∣∣p(x)dx + γ1|Bk,ρ|, l ≥ k ≥ k′,

where k′ ≥ −M is a fixed constant, which satisfies |Bk′,R/2| ≤ (1 −
δ0)|BR/2|, and γ ≥ 1, γ1 and δ0 < 1 are positive constants. Denote
ω = maxBR w(x) − k′. Then a positive constant R0 = R0(M,L0, α0)
and an integer s = s(N, p+, γ, δ0) ≥ 2 exist, such that

ω ≤ 2s max

{
max
BR

w(x) −max
BR/4

w(x),
γ + γ1 + 1

γ
R

}
,

for any R ≤ R0.

Proof. Denote p∗− = minBR p(x) and p∗+ = maxBR p(x). By (A1), a
positive constant R0 = (M,L0, α0) exists such that

(6.7) R−(p∗
+−p∗

−) ≤ 2, (2M)p
∗
+−p∗

− ≤ 2,

provided R ≤ R0. We complete the proof in the following three steps.

Step 1. A positive constant θ = θ(N, p+, γ) < 1 exists, such that, for
any k0 ≥ k′, if

(6.8) |Bk0,R/2| ≤ θRN ,

then at least one of the following inequalities holds

max
BR/4

w(x) ≤ 1

2

(
max
BR

w(x) + k0
)
,

max
BR

w(x) ≤ k0 +
γ + γ1 + 1

γ
R.
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Denote H = maxBR w(x)− k0. Obviously H ≤ 2M . We assume that

max
BR

w(x) > k0 +
γ + γ1 + 1

γ
R,

namely, H > [(γ + γ1 + 1)/γ]R. Set

ρj =
R

4
+

R

2j+2
, kj = k0 +

H

2
− H

2j+1
,

yj = R−N |Bkj ,ρj |, Dj+1 = Bkj ,ρj+1 \Bkj+1,ρj+1 , j = 0, 1, . . . .

Obviously kj ≥ k0 ≥ k′. Taking l = kj+1, k = kj , r = ρj+1 and ρ = ρj
in (6.6), then one obtains∫

Dj+1

|∇w|p(x)dx ≤ γ

∫
Bkj ,ρj

(
2j+3

R

)p(x)

|w − kj |p(x)dx+ γ1|Bkj ,ρj |,

j = 0, 1, . . . .

It follows from the Young inequality and the inequality above that∫
Dj+1

|∇w|p∗
−dx ≤ (γ + γ1 + 1)|Bkj ,ρj |

+ γ2(j+3)p∗
+R−p∗

+

∫
Bkj,ρj

|w − kj |p∗
+dx

≤ (γ + γ1 + 1)|Bkj ,ρj |+ γ2(j+3)p∗
+R−p∗

+Hp∗
+ |Bkj ,ρj |.

Recalling that H > [(γ + γ1 + 1)/γ]R and p∗+ > 1, one has γ+γ1+1 <

γHp∗
+R−p∗

+ , and consequently, it follows from the previous inequality,
that ∫

Dj+1

|∇w|p∗
−dx ≤ 2(j+4)p∗

+γR−p∗
+Hp∗

+ |Bkj ,ρj |

= 2(j+4)p∗
+γRN−p∗

+Hp∗
+yj .

Applying the Hölder inequality to the left side of the above inequality
and recalling (6.7) and γ ≥ 1, one obtains
(6.9)∫

Dj+1

|∇w| dx ≤
(∫

Dj+1

|∇w|p∗
−dx

)1/p∗
−
|Dj+1|1−1/p∗

−

≤(yjR
N)1−1/p∗

−2(j+4)p∗
+/p∗

−γ1/p∗
−R(N−p∗

+)/p∗
−Hp∗

+/p∗
−y

1/p∗
−

j

=RN−p∗
+/p∗

−2(j+4)p∗
+/p∗

−γ1/p∗
−Hp∗

+/p∗
−yj

≤RN−12(j+5)p+γHp∗
+/p∗

−yj, j = 0, 1, 2, . . . .
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Recalling that kj ≥ k0, R/4 < ρj+1 ≤ R/2, j = 0, 1, . . . , it follows from
(6.8) and Lemma 2.2 that

(6.10)

∫
Dj+1

|∇w| dx

≥ (kj+1 − kj)|Bkj+1,ρj+1 |1−1/N |Bρj+1 \Bkj ,ρj+1 |β(N)−1ρ−N
j+1

≥ H

2j+2
(RNyj+1)

1−1/N (4−NσN − θ)β(N)−1

=
4−NσN − θ

2j+2β(N)
HRN−1y

1−1/N
j+1 ,

where σN is the volume of the unit ball in RN . Combining (6.7) and
(6.9) with (6.10), and recalling H ≤ 2M , one has

yj+1 ≤ cbjy1+ε
j , j = 0, 1, . . . ,

where

c =

(
β(N)26(p++1)γ

4−NσN − θ

)N/(N−1)

, b = 2N(p++1)/(N−1), ε =
1

N − 1
.

By Lemma 2.3, if

y0 = R−N |Bk0,R/2| ≤ c−1/εb−1/ε2

=

(
4−NσN − θ

β(N)26(p++1)γ

)N−1

2−N(N−1)(p++1),

namely,

|Bk0,R/2| ≤ c−1/εb−1/ε2 =

(
4−NσN − θ

β(N)26(p++1)γ

)N−1

2−N(N−1)(p++1)RN ,

then
yj −→ 0 as j → ∞.

Take

θ = min

{
1

2
4−NσN ,

(
4−NσN

2β(N)24(p++1)

)N−1

2−N(N2−1)

}
.
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Then yj → 0 as j → ∞ provided |Bk0,R/2| ≤ θRN . By the definition
of yj, we conclude that

|Bk0+H/2,R/4| = lim
j→∞

|Bkj ,ρj | = lim
j→∞

RNyj = 0,

and therefore

max
BR/4

w(x) ≤ k0 +
H

2
,

namely,

max
BR/4

w(x) ≤ 1

2

(
max
BR

w(x) + k0
)
.

Thus, we complete Step 1.

Step 2. For any θ > 0, there exists an integer s = s(N, p−, p+, θ, γ, δ0)
≥ 2, such that if ω > 2s[(γ + γ1 + 1)/γ]R, then (6.8) holds for

k0 = max
BR

w(x) − 2−(s−1)ω.

Let s ≥ 2 be an integer, which will be determined later. Suppose
that ω > 2s[(γ + γ1 + 1)/γ]R. Denote
(6.11)
kj = max

BR

w(x) − 2−jω, Dj = Bkj ,R/2 \Bkj+1,R/2, j = 0, 1, . . . .

Taking r = R/2, ρ = R, k = kj and l = kj+1 in (6.6), j = 0, 1, . . . , s−2,
then we conclude∫

Dj

|∇w|p(x)dx ≤ γ

∫
Bkj ,R

(
2

R

)p(x)

|w − kj |p(x)dx+ γ1|Bkj ,R|.

Combining the above inequality with the Young inequality and recalling
that ω > 2s[(γ + γ1 + 1)/γ]R and p∗+ > 1, we have
(6.12)∫

Dj

|∇w|p∗
−dx ≤ (γ + γ1 + 1)|Bkj ,R|

+ γ

(
2

R

)p∗
+
∫
Bkj ,R

|w − kj |p∗
+dx

≤ (γ + γ1 + 1)|Bkj ,R|+ 2(1−j)p∗
+γ(ωR−1)p

∗
+ |Bkj ,R|

≤ γ2(2−j)p∗
+(ωR−1)p

∗
+ |Bkj ,R|, j = 0, 1, . . . , s− 2.
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By the Hölder inequality, it follows from Lemma 2.2 that

(6.13) (kj+1 − kj)|Bkj+1,R/2|1−1/N

≤ β(N)(R/2)N

|BR/2 \Bkj ,R/2|
∫
Bkj,R/2\Bkj+1 ,R/2

|∇w| dx

≤ β(N)

δ0σN

∫
Dj

|∇w| dx

≤ β(N)

δ0σN

(∫
Dj

|∇w|p∗
−dx

)1/p∗
−
|Dj |1−1/p∗

− , j = 0, 1, · · · , s− 2.

Putting (6.12) into (6.13) and recalling that |Bkj+1,R/2| ≥ |Bks−1,R/2|,
j = 0, 1, . . . , s − 2 and ω ≤ 2M , M ≥ 1, γ ≥ 1, p− > 1 and
R−(p∗

+−p∗
−) ≤ 2, we have

|Bks−1,R/2|1−1/N

≤ β(N)

δ0σN
γ1/p∗

−2(1+2p∗
+/p∗

−)−j(p∗
+−p∗

−)/p∗
−ω1/p∗

−−1R(N−p∗
+)/p∗

− |Dj |1−1/p∗
−

≤ 23+2p+β(N)γ

δ0σN
R(N−p∗

−)/p∗
− |Dj|1−1/p∗

− .

Summing up the previous inequalities with j = 0, 1, . . . , s − 2, and
noticing that

s−2∑
j=0

|Dj |1−1/p∗
− ≤

( s−2∑
j=0

|Dj |
)1−1/p∗

−
(s− 1)1/p

∗
−

= |Bk0,R/2 \Bks−1,R/2|1−1/p∗
−(s− 1)1/p

∗
−

≤ (σNRN )1−1/p∗
−(s− 1)1/p− ,

then we conclude that

|Bks−1,R/2| ≤
(

8 · 4p+β(N)γ

(s− 1)1−1/p−δ0σ
1/p+

N

)N/(N−1)

RN .

By the aid of the above estimates, we can choose the integer s with

s ≥
(

8 · 4P+β(N)γ

θ(N−1)/N δ0σ
1/p+

N

)p−/(p−−1)

+ 1,
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such that
|Bks−1,R/2| ≤ θRN .

Hence, we complete Step 2.

Step 3. Let θ and s be the constants stated in Step 1 and Step 2.
Denote k0 = maxBR w− 2−(s−1)ω. From Step 2, we know that at least
one of the following inequalities holds

ω ≤ 2s
γ + γ1 + 1

γ
R, |Bk0,R/2| ≤ θRN .

If the first one holds, then the conclusion is valid. Otherwise, by Step 1,
at least one of the following inequalities holds

max
BR/4

w(x) ≤ 1

2

(
max
BR

w(x) + k0
)
, max

BR

w(x) ≤ k0 +
γ + γ1 + 1

γ
R,

from which the conclusion follows immediately. The proof is com-
plete.

Lemma 6.4. Let Ω be a domain and satisfy (A3). Let w(x) ∈
W 1,p(x)(Ω) be a bounded measurable function with maxΩ |w(x)| ≤ M ,
M ≥ 1. BR, BR/2 and BR/4 are concentric balls with center on ∂Ω.
Suppose that for any balls Br and Bρ which have the common center
with BR, and R/4 ≤ r < ρ ≤ R, the following inequality holds:

(6.14)

∫
Ωk,r\Ωl,r

|∇w|p(x)dx ≤ γ

∫
Ωk,ρ

∣∣∣w − k

ρ− r

∣∣∣p(x)dx+ γ1|Ωk,ρ|,

l ≥ k ≥ k′,

where k′ is a fixed constant, which satisfies maxSR w(x) ≤ k′ ≤
maxΩR w(x), γ ≥ 1 and γ1 are both positive constants. Denote ω =
maxBR w(x) − k′. Then a positive constant R0 = R0(M,L0, α0) ≤ ρ0
and an integer exist s = s(N, p−, p+, γ, θ0) ≥ 2, such that

ω ≤ 2s max

{
max
BR

w(x) −max
BR/4

w(x),
γ + γ1 + 1

γ
R

}
,

for any R ≤ R0.
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Proof. Define

ŵ(x) =

{
max{w(x), k′} x ∈ ΩR,

k′ x ∈ BR \ ΩR.

Noticing that k′ ≥ maxSR w, one has ŵ ∈ W 1,p(x)(BR). By the aid of
(6.14), for any k ≥ k′, it follows

(6.15)

∫
Bk,r\Bl,r

|∇ŵ|p(x)dx =

∫
Ωk,r\Ωl,r

|∇w|p(x)dx

≤ γ

∫
Ωk,ρ

∣∣∣∣w − k

ρ− r

∣∣∣∣p(x)dx+ γ1|Ωk,ρ|

≤ γ

∫
Bk,ρ

∣∣∣∣ ŵ − k

ρ− r

∣∣∣∣p(x)dx+ γ1|Bk,r|,

where Bk,ρ := {x ∈ Bρ | ŵ(x) > k}. On account of (A3), the following
holds

(6.16) |Bk′,R/2| = |Ωk′,R/2| ≤ (1− θ0)|BR/2|.

Combining (6.15) with (6.16), we infer that ŵ satisfies all the conditions
in Lemma 6.3, and consequently, it follows from Lemma 6.3 that
a positive constant R0 = R0(M,L0, α0) ≤ ρ0 and an integer s =
s(N, p−, p+, γ, θ0) ≥ 2 exist such that

max
BR

ŵ(x) − k′ ≤ 2s max

{
max
BR

ŵ(x)−max
BR/4

ŵ(x),
γ + γ1 + 1

γ
R

}
,

for any R ≤ R0. Recalling that maxSR w(x) ≤ k′ ≤ maxΩR w(x), the
above inequality implies that at least one of the following inequalities
holds

max
BR

w(x) − k′ ≤ 2s
γ + γ1 + 1

γ
R,

(6.17)

max
BR

w(x) − k′ ≤ 2s
(
max
ΩR

w(x) −max
{
max
ΩR/4

w(x), k′
})

.

(6.18)
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If (6.17) is valid, then the proof is completed. We now assume that
(6.18) holds. If maxΩR/4

w ≥ k′, then it follows from (6.18) that

(6.19) max
ΩR

w(x) − k′ ≤ 2s
(
max
ΩR

w(x) −max
ΩR/4

w(x)
)
.

If maxΩR/4
w < k′, then obviously we have

max
ΩR

w(x) − k′ ≤ max
ΩR

w(x) −max
ΩR/4

w(x) ≤ 2s
(
max
ΩR

w(x) −max
ΩR/4

w(x)
)
,

which implies that (6.19) still holds. Combining (6.17) with (6.19), we
complete the proof.

Now, we can give the proof of Lemma 6.2 as follows:

Proof of Lemma 6.2. Suppose BR and BR/4 are two concentric
balls with centers on ∂Ω and R ≤ ρ0. Set τ = min{1/2, δ/2}. If
osc {u; ΩR} ≤ KRε, then (6.5) holds. If osc {u; ΩR} > KRε, then
osc {u; ΩR} > osc{u; SR}, and thus at least one the following two
inequalities holds:

max
SR

u(x) < max
ΩR

u(x)− 1

2
osc {u; ΩR},

max
SR

(−u(x)) < max
ΩR

(−u(x)) − 1

2
osc {u; ΩR}.

Let w be u or −u, such that

max
SR

w(x) < max
ΩR

w(x) − 1

2
osc {w; ΩR},

and consequently

max
ΩR

w(x) − τosc {w; ΩR} > max
SR

w(x).

Set k′ = maxΩR w(x)−τosc {w; ΩR}. Recalling that τ = min{1/2, δ/2},
this yields

max
ΩR

w(x) ≥ k′ ≥ max
{
max
SR

w(x),max
ΩR

w(x) − δM
}
.
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By the definition of Bp(x)(Ω,M, γ, γ1, δ), w satisfies all the conditions in
Lemma 6.4. By Lemma 6.4, a positive constant R0 = R0(M,L0, α0) ≤
ρ0 and an integer s = s(N, p−, p+, γ, θ0) ≥ 2 exist such that

max
ΩR

w(x) − k′ ≤ 2s max

{
max
ΩR

w(x) −max
ΩR/4

w(x),
γ + γ1 + 1

γ
R

}
,

for any R ≤ R0, which implies that at least one of the following two
inequalities holds (recalling that k′ = maxΩR w(x) − τosc {w; ΩR})

osc {w; ΩR} ≤ τ−12s
(
max
ΩR

w(x) −max
ΩR/4

w(x)
)
,

(6.20)

osc {w; ΩR} ≤ τ−12s
γ + γ1 + 1

γ
R ≤ τ−12sρ1−ε

0

γ + γ1 + 1

γ
R.

(6.21)

If (6.20) is valid, then it follows that

τ−12sosc {w; ΩR/4} ≤ (τ−12s − 1) osc {w; ΩR}
+ τ−12s

(
min
ΩR

w(x) − min
ΩR/4

w(x)
)
,

and consequently, noticing that minΩR w(x) ≤ minΩR/4
w(x), we con-

clude that
osc {u; ΩR/4} ≤ (1 − τ2−s) osc {u; ΩR},

which together with (6.20) and (6.21) implies the conclusion of Lemma
6.2.

Combining Lemma 6.1 with Lemma 6.2, we have the following propo-
sition, which states the Hölder continuity of functions in the class
Bp(x)(Ω,M, γ, γ1, δ).

Proposition 6.1. Let Ω be a domain and satisfy (A3). Suppose that
u ∈ Bp(x)(Ω,M, γ, γ1, δ) and for any ball BR with center on ∂Ω and
R ≤ ρ0, the following holds:

osc {u;SR} ≤ KRε, ε > 0.
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Then a positive constant R0 = R0(M,L0, α0) ≤ ρ0 and an integer
s = s(N,P−, p+, γ, θ0) exist such that, for any R ≤ R0/24 and x0 ∈ Ω,
the following holds:

osc {u; ΩR(x0)} ≤ cR−α
0 Rα,

where α = min{ε,− log24(1 − τ2−s)}, τ = min{1/2, δ/2}, c =
(24)α max{c∗Rε

0, 2M} and

c∗ = 5ε max

{
2K, 4τ−12sρ1−ε

0

γ + γ1 + 1

γ

}
.

Proof. Let R0 and s be the larger of those in Lemmas 6.1 and 6.2,
respectively. Take arbitrary x0 ∈ Ω and R ≤ R0/24. We first conclude
that at least one of the following two inequalities holds

osc {u; ΩR(x0)} ≤ 5ε max

{
2K, 4τ−12sρ1−ε

0

γ + γ1 + 1

γ

}
Rε,

(6.22)

osc {u; ΩR(x0)} ≤ (1− τ2−s) osc {u; Ω24R(x0)}.
(6.23)

In fact, set d = d(x0, ∂Ω). If d ≥ 4R, then B4R(x0) ⊆ Ω, and it follows
from Lemma 6.1 that at least one of the following inequalities holds:

osc {u;B4R(x0)} ≤ 4τ−12s
γ + γ1 + 1

γ
R ≤ 4τ−12sρ1−ε

0

γ + γ1 + 1

γ
Rε,

(6.24)

osc {u;BR(x0)} ≤ (1− τ2−s) osc {u;B4R(x0)}.
(6.25)

If d < 4R, taking y0 ∈ ∂Ω with |x0 − y0| = d, then ΩR(x0) ⊆ ΩR+d(y0)
and Ω4(R+d)(x0) ⊆ Ω(4R+5d)(y0) ⊆ Ω24R(x0). By using Lemma 6.2, at
least one of the following inequalities holds:

osc {u; ΩR+d(y0)} ≤ max

{
2K, τ−12sρ1−ε

0

γ + γ1 + 1

γ

}
(R + d)ε,

osc {u; ΩR+d(y0)} ≤ (1− τ2−s) osc
{
u; Ω4(R+d)(y0)

}
,
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and consequently, at least one of the following inequalities holds:

osc {u; ΩR(x0)} ≤ 5εmax

{
2K, τ−12sρ1−ε

0

γ + γ1 + 1

γ

}
Rε,

(6.26)

osc {u; ΩR(x0)} ≤ (1− τ2−s) osc {u; Ω24R(x0)}.
(6.27)

Combining (6.24) (6.27), we obtain (6.22) and (6.23). Set

c∗ = 5ε max

{
2K, 4τ−12sρ1−ε

0

γ + γ1 + 1

γ

}
.

Then, by Lemma 2.4, the following holds:

osc {u; ΩR(x0)} ≤ cR−α
0 Rα,

where α = min{ε,− log24(1 − τ2−s)} and c = (24)α max{c∗Rε
0, 2M}.

The proof is complete.

By applying Proposition 6.1, we can obtain the global Cα estimates
on the bounded weak solutions for problem (6.1).

Proposition 6.2. Let Ω be a domain in RN and satisfy (A3). Then
positive constants R∗ = R∗(M,L0, α0) ≤ ρ0, α

∗ = α∗(N,M, p−, p+, λ∗,
Λ∗, θ0) and c∗ = c∗(N,M, p−, p+, λ∗, Λ∗, θ0) exist such that, for any
bounded weak solution u of (6.1) and R ≤ R∗, the following holds:

osc {u; ΩR} ≤ c∗Rα∗
.

Proof. By Theorem 4.2 in [9], positive constants γ, γ1 and δ
exist depending only upon λ∗,Λ∗,Λ, p−, p+ and M , such that u ∈
Bp(x)(Ω̄,M, γ, γ1, δ). By using Proposition 6.1 for u, we can obtain
the conclusion. The proof is complete.

7. Global C1,α estimates. In this appendix, we give the proof of
Propositions 4.1 and 4.2, in another words, we establish the global C1,α

estimates on bounded weak solutions of problem (6.1). The interior
C1,α estimates can be deduced from the results stated in [5]; therefore
we only need to consider boundary C1,α estimates.
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As was mentioned in Section 6, here we always suppose that u is a
bounded weak solution of problem (6.1). Let the domain Ω be satisfied
by condition (H3). And, throughout this appendix, we always suppose
that (A1) (A3) hold true. As we can see from (A2), a direct calculation
shows that (A2′) also holds with some positive constants λ∗ and Λ∗;
thus, without loss of generality, we always suppose that (A2′) holds
throughout this appendix.

The following lemma is taken from [21].

Lemma 7.1 [21]. Suppose that A(x, z, η) satisfies assumptions (A2).
Then we have

(7.1) (A(x, u, η)−A(x, u, η′))(η − η′)

≥
{
λ0|η − η′|p(x) p(x) ≥ 2,

λ0(|η|2 + |η′|2)[p(x)−2]/2|η − η′|2 p(x) < 2,

where λ0 is a constant depending only upon N , p−, p+, λ and Λ.

As the first step of proving the boundary C1,α estimates, we translate
problem (6.1) into a new problem, which is defined on hemisphere
B+

r (0) and is equipped with a structure similar to (A2) by using
condition (H3).

For this purpose, we take arbitrary x0 ∈ ∂Ω, and without loss of
generality, via translation transformation, we can assume that x0 = 0.
On account of (H3), positive constants r0, c0, α0 ∈ (0, 1) and function
h ∈ C1,α0(RN−1) exist with h(0) = 0, ∇h(0) = 0 and ‖h‖C1,α0 ≤ c0,
such that Ωr0(0) := Ω ∩Br0(x0) = Ω ∩Br0(0) can be represented as{

y ∈ RN | h(ŷ) < yN <
√
r20 − |ŷ|2

}
,

under some rectangular coordinates systems in RN centered at 0 in
a basis f1, . . . , fN , which may be different from the original basis
e1, . . . , eN , where yi, i = 1, . . . , N are the coordinates corresponding
to f1, . . . , fN . Noticing that (H3) still holds if we replace r0 by any
positive constant r′0 ≤ r0, recalling that ∇h(0) = 0, so without loss of
generality, we can assume that r0 is small enough such that

(7.2) |∇h(y1, . . . , yN−1)| < 1

2
, (y1, . . . , yN−1) ∈ Br0(0),
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where Br0 is a ball in RN−1. For any point P ∈ RN , we denote
by (x1, . . . , xN ) and (y1, . . . , yN) the coordinates of point P in the
rectangular coordinate systems centered at 0 in the bases e1, . . . , eN
and f1, . . . , fN , respectively. Then the following holds:

(7.3) (y1, . . . , yN )T = K(x1, . . . , xN )T ,

where K = (fiej)N×N . It’s easy to see that K is a Hermite matrix,
namely

(7.4) KKT = KTK = I,

where I is the unit matrix of orderN×N . We denote Ur0 = K(Ωr0(0)),
then

Ur0 =
{
(y1, . . . , yN) | h(y1, . . . , yN−1) < yN

<
√

r20 − ((y1)2 + · · ·+ (yN−1)2)
}
.

Define a mapping Φ0 : Ur0 → Φ0(Ur0), y �→ z = Φ0(y) as follows

(7.5) zi = yi, i = 1, . . . , N − 1, zN = yN − h(y1, · · · , yN−1).

Denote V0 := Φ0(Ur0), then

(7.6) V0 =
{
(z1, . . . , zN) | 0 < zN <

√
r20 − ((z1)2 + · · ·+ (zN−1)2)

− h(z1, . . . , zN−1)
}
.

Obviously Φ0 is a reversible mapping, and its inverse mapping is
denoted by Ψ0. Then for any z ∈ V0, y = Ψ0(z) can be represented as

(7.7) yi = zi, i = 1, . . . , N − 1, yN = zN + h(z1, . . . , zN−1).

Define a mapping Φ : Ωr0 → V0 such that

(7.8) Φ(x) = Φ0(Kx), x ∈ Ωr0 ,

and its inverse mapping is denoted by Ψ. Then by (7.4), one obtains

(7.9) Ψ : V0 −→ Ωr0 , Ψ(z) = KT (Ψ0(z)), z ∈ V0.
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For any (z, v, η) ∈ V0 × [−M,M ]×RN , define

Ã(z, v, η) = Φ′(Ψ(z))A(Ψ(z), v,Φ′(Ψ(z))T η),(7.10)

B̃(z, v, η) = B(Ψ(z), v,Φ′(Ψ(z))T η).(7.11)

On account of the assumptions on A(x, u, η) and B(x, u, η), we can

infer that Ã and B̃ have the same continuity as A and B, respectively.
For any (z, v) ∈ V0 × [−M,M ] and η ∈ RN \ {0}, we denote

Ãη(z, v, η) :=

(
∂Ãi

∂ηj
(z, v, η)

)
N×N

.

By (A2), we can see that Ã(z, v, η) and B̃(z, v, η) satisfy assump-
tion (A2) with the constants λ and Λ being replaced by some other
constants. In fact, we have the following lemma.

Lemma 7.2. Let mappings K, Φ0, Ψ0, Φ and Ψ be defined by (7.3),

(7.5), (7.7) (7.9), respectively. Assume Ã(z, v, η) and B̃(z, v, η) are
given by (7.10) and (7.11), respectively. Define p̃(z) = p(Ψ(z)) for any
z ∈ V0. Then positive constants λ1, Λ1 and L1 exist depending only
upon λ, Λ, λ∗, Λ∗, c0, α0, L0 and p+, such that for any z1, z2, z ∈ V0,
v1, v2, v ∈ [−M,M ], η ∈ RN \ {0} and ξ ∈ RN , the following hold:

ξT Ãη(z, v, η)ξ ≥ λ1|η|p̃(z)−2|ξ|2,(7.12)

Ã(z, v, η)η ≥ λ1|η|p̃(z),(7.13)

|Ãη(z, η)| ≤ Λ1|η|p̃(z)−2,(7.14)

|Ã(z, v, η)| ≤ Λ1|η|p̃(z)−1,(7.15)

|B̃(z, v, η)| ≤ Λ1(1 + |η|p̃(z)),(7.16)

|Ã(z1, v1, η)− Ã(z2, v2, η)| ≤ Λ1(|z1 − z2|α0 + |v1 − v2|α0)

(7.17)

· (|η|p̃(z1)−1 + |η|p̃(z2)−1),

|p̃(z1)− p̃(z2)| ≤ L1|z1 − z2|α0 , 1 < p− ≤ p̃(z) ≤ p+ < ∞,
(7.18)

where η can be equal to 0 in (7.13) and (7.15) (7.17).
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Proof. A direct calculation shows that

Ãη(z, v, η) = Φ′(Ψ(z))Aη(Ψ(z), v,Φ′(Ψ(z))T η)Φ′(Ψ(z))T ,

(7.19)

Φ′(Ψ(z)) = Φ′
0(KΨ(z))K.

(7.20)

By the aid of the definition of Φ0, it follows that

Φ′
0(y) =

(
IN−1 0
−∇h 1

)
,

∇h =

(
∂h(y1, . . . , yN−1)

∂y1
, . . . ,

∂h(y1, . . . , yN−1)

∂yN−1

)
,

for any y = (y1, . . . , yN) ∈ Ur0 . For any y ∈ Ur0 and η ∈ RN , one has

Φ′
0(y)η = η − (0, . . . , 0,∇hη̂)T , Φ′

0(y)
T η = η − ηN (∇h, 0)T ,

where η̂ = (η1, . . . , ηN−1), and consequently it follows from (7.2) and
(7.20) that

(7.21)
1

2
|η| ≤ |Φ′(Ψ(z))η| ≤ 3

2
|η|, 1

2
|η| ≤ |Φ′(Ψ(z))T η| ≤ 3

2
|η|,

for any z ∈ V0. Here we used the fact that |Kη| = |η| for any η ∈ RN .
For any ξ ∈ RN , (z, v) ∈ V0 × [−M,M ] and η ∈ RN \ {0}, it follows
from (A2), (A2′), (7.19) and (7.21) that

ξT Ãη(z, v, η)ξ = (Φ′(Ψ(z))T ξ)TAη(Ψ(z), v,Φ′(Ψ(z))T η)(Φ′(Ψ(z))T ξ)

≥ λ|Φ′(Ψ(z))T η|p(Ψ(z))−2|Φ′(Ψ(z))T ξ|2

≥′ λ
∣∣∣∣12η

∣∣∣∣p(Ψ(z))−2∣∣∣∣12ξ
∣∣∣∣2 ≥ 2−p+λ|η|p̃(z)−2 |ξ|2 ,

and
Ã(z, v, η)η = A(Ψ(z), v,Φ′(Ψ(z))T η)(Φ′(Ψ(z))T η)

≥ λ∗|Φ′(Ψ(z))T η|p(Ψ(z)) ≥ 2−p+λ∗|η|p̃(z).
And thus (7.12) and (7.13) hold, provided λ1 ≤ 2−p+ min{λ, λ∗}.



SOLUTIONS FOR THE p(x)-LAPLACIAN EQUATION 1731

For any (z, v) ∈ V0× [−M,M ] and η ∈ RN \ {0}, by (A2), (7.19) and
(7.21), one has

|Ãη(z, v, η)| = |Φ′(Ψ(z))Aη(Ψ(z), v,Φ′(Ψ(z))T η)Φ′(Ψ(z))T |
≤ 3

2
|Aη(Ψ(z), v,Φ′(Ψ(z))T η)Φ′(Ψ(z))T |

=
3

2
|Φ′(Ψ(z))Aη(Ψ(z), v,Φ′Ψ(z))T η)T |

≤ 9

4
|Aη(Ψ(z), v,Φ′(Ψ(z))T η)|

≤ 9

4
Λ

∣∣∣∣32η
∣∣∣∣p(Ψ(z))−2

≤
(
3

2

)p+

Λ|η|p̃(z)−2,

which implies (7.14) provided Λ1 ≥ (3/2)p+Λ.

For any (z, v, η) ∈ V0 × [−M,M ]×RN , combining (A2′) with (7.21),
then we have

|B̃(z, v, η)| = |B(Ψ(z), v,Φ′(Ψ(z))T η)|

≤ Λ

(
1 +

∣∣∣∣32η
∣∣∣∣p(Ψ(z)))

≤
(
3

2

)p+

Λ
(
1 + |η|p̃(z)

)
,

and

|Ã(z, v, η)| = |Φ′(Ψ(z))A(Ψ(z), v,Φ′(Ψ(z))T η)|
≤ 3

2
|A(Ψ(z), v,Φ′(Ψ(z))T η)

≤ 3

2
Λ∗
∣∣∣∣32η

∣∣∣∣p(Ψ(z))−1

≤
(
3

2

)p+

Λ∗|η|p̃(z)−1.

Therefore, (7.15) and (7.16) hold provided Λ1≥max{(3/2)p+Λ,(3/2)p+Λ∗}.
Let z1, z2 ∈ V0, v1, v2 ∈ [−M,M ] and η ∈ RN . We denote xi = Ψ(zi)
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and yi = Kxi, i = 1, 2. Recalling that ‖h‖C1,α0 ≤ c0, we have

|Φ′(x1)− Φ′(x2)| = |(Φ′
0(y1)− Φ′

0(y2))K|
= |(Φ′

0(y1)− Φ′
0(y2))|

= |∇h(ŷ1)−∇h(ŷ2)|
≤ c0|ŷ1 − ŷ2|α0

≤ c0|y1 − y2|α0

= c0|x1 − x2|α0 ,

and

(7.22)

|x1 − x2| = |Ψ(z1)−Ψ(z2)|
= |KT (Ψ0(z1)−Ψ0(z2))|
= |Ψ0(z1)−Ψ0(z2)|
≤ |z1 − z2|+ |h(ẑ1)− h(ẑ2)|
≤ (c0 + 1)|z1 − z2|,

where η̂ = (η1, . . . , ηN−1)T for any η ∈ RN , and consequently, by (A1),
(A2), (7.21) and the mean value theorem, we conclude

|p̃(z1)− p̃(z2)| = |p(Ψ(z1))− p(Ψ(z2))|
≤ L0|Ψ(z1)−Ψ(z2)|α0

≤ L0(c0 + 1)α0 |z1 − z2|α0 ,

and

|Ã(z1,v1, η)− Ã(z2, v2, η)|
= |Φ′(x1)A(x1, v1,Φ

′(x1)
T η)− Φ′(x2)A(x2, v2,Φ

′(x2)
T η)|

≤ ∣∣Φ′(x1)
(
A(x1, v1,Φ

′(x1)
T η)−A(x1, v1,Φ

′(x2)
T η)

)∣∣
+
∣∣Φ′(x1)

(
A(x1, v1,Φ

′(x2)
T η)−A(x2, v2,Φ

′(x2)
T η)

)∣∣
+
∣∣(Φ′(x1)− Φ′(x2)

)
A(x2, v2,Φ

′(x2)
T η)|

≤ 3

2
c0|x1 − x2|α0

∣∣Aη

(
x1, v1, (θΦ

′(x1) + (1 − θ)Φ′(x2))η
)∣∣|η|

+
3

2
Λ(|x1 − x2|α0 + |v1 − v2|α0)

·
(∣∣∣∣32η

∣∣∣∣p(x1)−2

+

∣∣∣∣32η
∣∣∣∣p(x2)−1)∣∣∣∣32η

∣∣∣∣
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+ c0Λ|x1 − x2|α0

∣∣∣∣32η
∣∣∣∣p(x2)−2

|η|

≤ 3

(
3

2

)p+

(c0 + 1)Λ(|x1 − x2|α0 + |v1 − v2|α0)

· (|η|p(x1)−2 + |η|p(x2)−1
)|η|

≤ 3

(
3

2

)p+

(c0 + 1)1+α0Λ(|z1 − z2|α0 + |v1 − v2|α0)

· (|η|p̃(z1)−2 + |η|p̃(z2)−1
)|η|.

Thus (7.17) and (7.18) are obtained if we take Λ1 ≥ 3(3/2)p+(c0 +
1)1+α0 and L1 = L0(1 + c0)

α0 .

Combining the previous proof and taking

L1 = L0(1 + c0)
α0 ,

λ1 = 2−p+ min{λ, λ∗},

Λ1 =

(
3

2

)p+

max{Λ,Λ∗, 3(c0 + 1)1+α0},

then (7.12) (7.18) hold, and the proof is complete.

Lemma 7.3. Let V0 be given by (7.6). Then a positive constant
r1 ≤ 1 exists, such that

B+
r1(0) :=

{
(z1, . . . , zN) |

N∑
i=1

(zi)2 < r21 , z
N > 0

}
⊆ V0.

Proof. For any z = (z1, . . ., zN )T ∈ RN , we denote ẑ = (z1, . . ., zN−1)T

∈ RN−1. For any z ∈ RN with |ẑ| < 2/
√
13r0, recalling that h(0) = 0,

we infer from (7.2) that√
r20 − |ẑ|2 − h(ẑ) >

3√
13

r0 − |h(ẑ)− h(0)| ≥ 3√
13

r0 − 1

2
|ẑ| > 2√

13
r0.

For any z ∈ B+

2/
√
13r0

(0), it is obvious that |ẑ| < 2/
√
13r0 and

zN < 2/
√
13r0, and consequently, it follows from the above inequality

that

0 < zN <
2√
13

r0 <
√
r20 − |ẑ|2 − h(ẑ),
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which implies that (recalling (7.6))

B+

2/
√
13r0

(0) ⊆
{
z ∈ RN | 0< zN <

√
r20−|ẑ|2−h(ẑ), |ẑ| < 2√

13
r0

}
⊆ V0.

Let r1 = 2/
√
13r0. The proof is complete.

For any bounded weak solution u of problem (6.1), we define a new
function

(7.23) v(z) = u(Ψ(z)), z ∈ V0.

Then, it’s easy to see that v is a bounded weak solution for the problem

(7.24) −divÃ(z, v,∇v) = B̃(z, v,∇v), z ∈ V0.

Moreover, by Proposition 6.2, it follows from (7.22) that

(7.25) |v(z1)− v(z2)| ≤ c∗|Ψ(z1)−Ψ(z2)|α∗ ≤ c∗(1+ c0)
α∗ |z1 − z2|α∗

,

for any z1, z2 ∈ V0, such that |z1 − z2| ≤ R∗/(c0 + 1).

By the definition of v, we can see that one can firstly obtain the
estimate on v to derive the boundary C1,α estimates on u. For this
purpose, we use a similar argument used in [5, 16]. Let r1 be the

constant in Lemma 7.3. For any z0 ∈ B+
r1/2

(0) and 0 < R < r1/2,

select z∗0 ∈ BR(z0) ∩B+
r1(0), such that

p̃(z∗0) = p+(z0;R) = max
{
p̃(z) | z ∈ BR(z0) ∩B+

r1(0)
}
,

and define
A(η) = Ã(z∗0 , v(z

∗
0), η), η ∈ RN .

We introduce two auxiliary functions w1 and w2 as follows: if B2R(z0) ⊆
B+

r1(0), we consider the boundary value problem

(7.26)

{−divA(∇w1) = 0 z ∈ BR(z0),

w1(z) = v(z) z ∈ ∂BR(z0),

and if z0 ∈ B0
r1/2

(0) := Br1/2(0) ∩ {z ∈ RN | zN = 0}, we consider the
boundary value problem

(7.27)

{−divA(∇w2) = 0 z ∈ B+
R (z0),

w2(z) = v(z) z ∈ ∂B+
R(z0).
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Then we have the following two lemmas, which state the properties
of w1 and w2. As we will see later, these properties will be frequently
mentioned to study the properties of v.

Lemma 7.4. There is a unique solution w1 ∈ W 1,p+(z0;R)(BR(z0))∩
L∞(BR(z0)) of problem (7.26), such that

sup
BR/2(z0)

|∇w1|p+(z0;R) ≤ CR−N

∫
BR(z0)

|∇w1|p+(z0;R)dz,

(7.28)

osc {∇w1;Br(z0)} ≤ C

(
r

ρ

)σ

osc {∇w1;Bρ(z0)} , 0 < r < ρ ≤ R,

(7.29)

∫
BR(z0)

|∇w1|p+(z0;R)dz ≤ C

∫
BR(z0)

(1 + |∇v|p+(z0;R)) dz,

(7.30)

sup
BR(z0)

|w1 − v| ≤ osc {v;BR(z0)} ,
(7.31)

where σ ∈ (0, 1) and C are positive constants depending only upon N ,
λ1, Λ1 and p+.

Proof. The existence and uniqueness of the solution of problem (7.26)
can be obtained by using the standard argument on strongly monotonic
functionals. The strongly monotonic functional considered here is given

by T : W
1,p+(z0;R)
0 (BR(z0)) → W−1,(p+(z0;R))′(BR(z0)),

T (w)(η) :=

∫
BR(x0)

A(∇w +∇v)∇η dx, η, w ∈ W
1,p+(z0;R)
0 (BR(z0)),

where (p+(z0;R))′ = p+(z0;R)/[p+(z0;R)− 1]. Let w1 be the unique
weak solution of problem (7.26). Then, by the weak comparison
principle, we infer that −‖v‖ ≤ w1(x) ≤ ‖v‖ for any x ∈ BR(z0),
and thus w1 ∈ L∞(BR(z0)). Set

Aε(η) = A(η) + εη, η ∈ RN .
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Let vε be the unique weak solution of the problem{−divAε(∇wε) = 0 x ∈ BR(z0),

wε(x) = v(x) x ∈ ∂BR(z0).

By using the global C1,α estimates in [16], positive constants α ∈ (0, 1)
and C exist such that

‖wε‖C1,α(BR(z0))
≤ C.

By utilizing the Arzela-Ascoli theorem, a function w0 ∈ C1,α/2(BR(z0))
and a subsequence of {vε} exist such that

wε −→ w0, in C1,α/2(BR(z0)).

One can easily conclude that w0 is a weak solution of problem (7.26).
Thus, it follows from the uniqueness of solutions for problem (7.26)
that w1 = w0.

Set
Fε(t) = λ1t

p+(z0;R)−2 + ε, t > 0.

Then, for any 0 < t ≤ s,

(7.32) Fε(t) ≥ min{42−p+ , 1}Fε(4t), Fε(t)t ≤ Fε(s)s, Fε(t) ≥ ε.

Let Λ = Λ1/λ1. By (7.12), (7.14) and (7.15), the following hold:

(7.33)
ξTAεη(η)ξ ≥ Fε(|η|)|ξ|2, |Aεη(η)| ≤ ΛFε(|η|),

|Aε(η)| ≤ ΛFε(|η|)|η|,

for all η ∈ RN \ {0} and ξ ∈ RN . Combining (7.32) with (7.33), we
can apply Lemma 1 in [16] to obtain that positive constants σ ∈ (0, 1)
and C exist depending only upon N , p+ and Λ, such that

osc {∇wε;Br(z0)} ≤ C

(
r

ρ

)σ

osc {∇wε;Bρ(z0)} , 0 < r < ρ ≤ R,

sup
BR/2(z0)

|∇wε|2Fε(|∇wε|) ≤ CR−N

∫
BR(z0)

Fε(|∇wε|)|∇wε|2dx.
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Letting ε → 0 in the above two inequalities, and recalling that wε → w1

in C1,α/2(BR(z0)), we obtain (7.28) and (7.29). Taking w1 − v as a
test function, by simply calculating, we deduce (7.30), while (7.31) can
easily be deduced by the weak maximum principle for (7.26). Thus,
the proof is complete.

Remark 7.1. Lemma 7.4 has been essentially proved in [16], where
the constant C also depends upon p+(z0;R). Here we show that the
constant C can be taken independent of p+(z0;R), but of p+ the super
bound of p(x). This fact is necessary for us to obtain the interior or
global C1,α estimates.

Lemma 7.5. Problem (7.27) has a unique solution w2 ∈ W 1,p+(z0;R)

(B+
R (z0)) ∩ L∞(B+

R (z0)) such that

osc
{∇w2;B

+
r (z0)

} ≤ C

(
r

R

)σ

sup
B+

R
(z0)

|∇w2|, 0 < r ≤ R,

(7.34)

sup
B+

R/2
(z0)

|∇w2| ≤ C

(
1

RN

∫
B+

R
(z0)

|∇w2|p+(z0;R)dz

)1/p+(z0;R)

,

(7.35)

∫
B+

R
(z0)

|∇w2|p+(z0;R)dz ≤ C

∫
B+

R
(z0)

(1 + |∇v|p+(z0;R)) dz,

(7.36)

sup
B+

R
(z0)

|w2 − v| ≤ osc
{
v;B+

R (z0)
}
,

(7.37)

where C and σ ∈ (0, 1) are positive constants depending only upon N ,
Λ1, λ1 and p+.

Proof. The proof of the existence and uniqueness of the solution of
problem (7.27) is similar to that in Lemma 7.4, thus we omit it here.
For ε > 0, set

Aε(η) = A(η) + εη, η ∈ RN .
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Let wε be the unique solution of the boundary value problem{−divAε(∇wε) = 0 z ∈ B+
R (z0),

wε(z) = v(z) z ∈ ∂B+
R(z0).

Using the same argument in Lemma 7.4, it follows from the global C1,α

estimates in [16], the uniqueness of the solutions for problem (7.27) and
the Arzela-Ascoli theorem that a subsequence of {wε} exists such that

wε −→ w2, in C1,α/2(B+
R (z0)).

Define a function Fε(t) = λ1t
p+(z0;R)−2 + ε for any t > 0, and set

Λ = Λ1/λ1, where λ1 and Λ1 are the positive constants in Lemma 7.2.
By the aid of (7.12) (7.15), one can verify that

(7.38)
ξTAεη(η)ξ ≥ F ε(|η|)|ξ|2, |Aεη(η)| ≤ ΛFε(|η|),

|Aε(η)| ≤ Λ|η|Fε(|η|),

for any η ∈ RN \ {0} and ξ ∈ RN . In addition,

(7.39) Fε ≥ min{42−p+ , 1}Fε(4t), Fε(t)t ≤ Fε(s)s, Fε(t) ≥ ε,

for any 0 < t ≤ s. Combining (7.38) with (7.39), we can use Lemma 2
and Lemma 4 in [16] to deduce that positive constants σ and C exist
depending upon N , p+ and Λ, such that

sup
B+

R/2
(z0)

|∇wε| ≤ C osc

{
wε

R
;B+

3R/4(z0)

}

and

osc
{∇wε;B

+
r (z0)

} ≤ C

(
r

R

)σ

sup
B+

R
(z0)

|∇wε|, 0 < r ≤ R,

Letting ε → 0 in the above inequalities, then

(7.40) sup
B+

R/2
(z0)

|∇w2| ≤ C osc

{
w2

R
;B+

3R/4(z0)

}
,
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and

osc
{∇w2;B

+
r (z0)

} ≤ C

(
r

R

)σ

sup
B+

R
(z0)

|∇w2|,

and thus (7.34) holds. Recalling that v(z) = 0 on B0
R(z0) and applying

the local maximum principle (see Corollary 1.1 in [22]) to w2, a positive
constant C exists depending only upon N , λ1, Λ1 and p+, such that

osc
{
w2;B

+
3R/4(z0)

}
≤ C

(
1

RN

∫
B+

R
(z0)

|w2|p+(z0;R)dx

)1/p+(z0;R)

,

which implies that

osc
{
w2;B

+
3R/4(z0)

}
≤ CR

(
1

RN

∫
B+

R
(z0)

|∇w2|p+(z0;R)dx

)1/p+(z0;R)

by Poincaré’s inequality. Combining (7.40) with the above inequality,
we obtain (7.35). Taking w2−v as a test function, by simply calculating,
we deduce (7.36), while (7.37) can easily be deduced by the weak
comparison principle for (7.27). Thus, the proof is complete.

To study further the properties of v, we also need higher integrability
on v stated in the following lemma which will be frequently used later.

Lemma 7.6. Let v be defined by (7.23). Then, positive constants

R̂ ≤ r1, ĉ and δ̂ exist depending only upon N , M , p−, p+, λ1, Λ1, L0,
c0, α0, α

∗ and c∗, such that

(i) For any concentric balls B2R and BR contained in B+
r1(0), one

has
(7.41)(

1

RN

∫
BR

|∇v|p̃(z)(1+δ)dz

)1/(1+δ)

≤ ĉ

(
1 +

1

RN

∫
B2R

|∇v|p̃(z)dz
)

and ∫
B2R

|∇v|p̃(z)dz ≤ 1,

provided R ∈ (0, R̂] and δ ∈ (0, δ̂];
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(ii) For any z∗ ∈ B0
r1(0) := Br1(0) ∩ {z ∈ RN |zN = 0} and R > 0,

with B+
2R(z) ⊆ B+

r1(0), one obtains

(7.42)

(
1

RN

∫
B+

R
(z∗)

|∇v|p̃(z)(1+δ)dz

)1/(1+δ)

≤ ĉ

(
1 +

1

RN

∫
B+

2R
(z∗)

|∇v|p̃(z)dz
)

and ∫
B+

2R
(z∗)

|∇v|p̃(z)dz ≤ 1,

provided R ∈ (0, R̂] and δ ∈ (0, δ̂].

Proof. Let R∗, c∗ and α∗ be the constants in Proposition 6.2. We first
prove part (i). Let B2R and BR be concentric balls contained in B+

r1(0)
with center z∗ and radius R ≤ R∗/2(1 + c0). Then, for any z1, z2 ∈
B2R, it follows from (7.22) that |Ψ(z1)−Ψ(z2)| ≤ (1+c0)|z1−z2| ≤ R∗,
and consequently by the definition of v and Proposition 6.2, one obtains

(7.43)

|v(z1)− v(z2)| = |u(Ψ(z1))− u(Ψ(z2))|
≤ c∗|Ψ(z1)−Ψ(z2)|α∗

≤ c∗(c0 + 1)α
∗ |z1 − z2|α∗

,

provided |z1 − z2| ≤ R∗/(1 + c0). Note that v satisfies equation (7.24).
Take ξ ∈ C∞

0 (B2R), such that 0 ≤ ξ ≤ 1, ξ = 1 on BR and |∇ξ| ≤ 4/R.
Taking ϕ = ξp+(v − k) as a test function with k = [1/|B2R|]

∫
B2R

v dx,

then by (7.13), (7.15) and (7.16), one has

(7.44) λ1

∫
B2R

|∇v|p̃(z)ξp+dz

≤ Λ1

∫
B2R

(1 + |∇v|p̃(z))|v − k|ξp+dz

+ p+Λ1

∫
B2R

ξp+−1|v − k||∇v|p̃(z)−1|∇ξ| dz.

By the Young inequality, for any 0 < ε < 1, recalling that p̃(z) > 1,
the following holds:

ξp+−1|v−k|∇v|p̃(z)−1|∇ξ|≤ εξp+ |∇v|p̃(z)+ε−p+ξp+−p̃(z)|v−k|p̃(z)|∇ξ|p̃(z).



SOLUTIONS FOR THE p(x)-LAPLACIAN EQUATION 1741

Taking R ≤ min{[1/(c0 + 1)](λ1/4Λ1c
∗)1/α

∗
, R∗/[2(1 + c0)]}, putting

the above inequality with ε = λ1/(4p+Λ1) into (7.44), recalling that
|∇ξ| ≤ 4/R and (7.43), one obtains

λ1

2

∫
B2R

|∇v|p̃(z)ξp+dz≤ λ1

4
|B2R|+λ

−p+

1 (4p+Λ1)
1+p+

∫
B2R

∣∣∣∣v − k

R

∣∣∣∣p̃(z)dz,
or
(7.45)∫
B2R

|∇v|p̃(z)ξp+dz ≤
(
1

2
+2 (4p+)

1+p+

)(
|B2R|+

∫
B2R

∣∣∣∣v − k

R

∣∣∣∣p̃(z)dz).
By applying Proposition 6.2 and (7.43), the above inequality implies
that a positive constant R1 = R1(N, p+, c0, c

∗, α∗) ≤ min{[1/(c0 + 1)]
(λ1/4Λ1c

∗)1/α
∗
, R∗/[2(1 + c0)]} exists such that∫

B2R

|∇v|p̃(z)dz ≤ 1, R ≤ R1.

Hence, we can use Lemma 2.1 to conclude that positive constants σ,
R2 and c2 exist depending only upon N , L0, α0, c0, p− and p+ such
that
(7.46)

1

RN

∫
B2R

∣∣∣∣v − k

R

∣∣∣∣p̃(z)dz ≤ c2 + c2

(
1

RN

∫
B2R

|∇v|p̃(z)/(1+σ)dz

)1+σ

,

for any R ≤ R2. By utilizing (7.45) and (7.46), we deduce the Gehting
type inequality

(7.47)
1

RN

∫
BR

|∇v|p̃(z)dz ≤ c3 + c3

(
1

RN

∫
B2R

|∇v|p̃(z)/(1+σ)dz

)1+σ

,

for any R ≤ min{R1, R2}, which implies (7.41) (see [12, Chapter 5,
Proposition 1.1]).

Now we prove part (ii). Take arbitrary z∗ ∈ B0
r1(0) and R ≤

R∗/(2(1 + c0)), such that B+
2R(z

∗) ⊆ B+
r1(0). Noticing that v(z) = 0 on

B0
r1(0), (7.43) yields |v(z)| ≤ c∗(1 + c0)

α∗
(2R)α

∗
for any z ∈ B+

2R(z
∗).
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Taking ϕ = ξp+v as a test function and recalling the argument of the
proof of part (i), we then have

(7.48)

∫
B+

2R
(z∗)

|∇v|p̃(z)ξp+dz

≤
(
1

2
+ 2 (4p+)

1+p+

)(
|B+

2R(z
∗)|+

∫
B+

2R
(z∗)

∣∣∣∣ vR
∣∣∣∣p̃(z)dz),

and ∫
B+

2R
(z∗)

|∇v|p̃(z)dx ≤ 1,

for any R ≤ R1. For convenience, we temporarily denote p∗− and p∗+
the minimum and the maximum values of p̃(z) on B+

2R(z
∗), respectively.

Without loss of generality, we suppose that R1 is small enough, such
that δ := (p∗+p∗− −N(p∗+ − p∗−))/(Np∗+) > 1 + σ with some positive
constant σ depending only upon N , p− and p+. Then it is easy to
conclude that

(7.49)
Np∗+

N + p∗+
≤ p̃(z)

1 + δ
, z ∈ B+

2R(z
∗).

Consequently, it follows from the Young inequality that

(7.50)

∫
B+

2R
(z∗)

|∇v|p̃(z)/(1+δ)dz ≤ |B+
2R(z

∗)|+
∫
B+

2R
(z∗)

|∇v|p̃(z)dz

≤ 1 + 2NσN ,

for all R ≤ min{R1, 1}. Combining (7.49) with (7.50), recalling
that δ = [p∗+p

∗
− −N(p∗+ − p∗−)]/Np∗+, and noticing that 1 + δ ≤

(N + p∗+)/N , it follows from the Sobolev embedding theorem, the
Young inequality and the Hölder inequality that

1

RN

∫
B+

2R
(z∗)

∣∣∣∣ vR
∣∣∣∣p̃(z)dz

(7.51)

≤ 2NσN +
1

RN

∫
B+

2R
(z∗)

∣∣∣∣ vR
∣∣∣∣p

∗
+

dz
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≤ 2NσN + C

[
1

RN

∫
B+

2R
(z∗)

|∇v|Np∗
+/(N+p∗

+)dz

](N+p∗
+)/N

≤ 2NσN + C

[
1

RN

∫
B+

2R
(z∗)

(
1 + |∇v|p̃(z)/(1+δ)

)
dz

](N+p∗
+)/N

≤ C + CR−(N+p∗
+)

[ ∫
B+

2R
(z∗)

|∇v|p̃(z)/(1+δ)dz

](N+p∗
+)/N

≤ C + CR−(N+p∗
+)

[ ∫
B+

2R
(z∗)

|∇v|p̃(z)/(1+δ)dz

]1+δ

· (1 + 2NσN )(N+p∗
+)/N−(1+δ)

≤ C + CR−(p∗
+−p∗

−)(N+p∗
+)/p∗

+

[
1

RN

∫
B+

2R
(z∗)

|∇v|p̃(z)/(1+δ)

]1+δ

≤ C + C

[
1

RN

∫
B+

2R
(z∗)

|∇v|p̃(z)/(1+δ)

]1+δ

≤ C + C

[
1

RN

∫
B+

2R
(z∗)

|∇v|p̃(z)/(1+σ)

]1+σ

,

for all R ≤ {R1, 1}, where C = C(N,L0, α0, c0, p−, p+). Combining
(7.48) with (7.51), we obtain the Gehting type inequality∫

B+
2R

(z∗)
|∇v|p̃(z)dz ≤ C + C

(
1

RN

∫
B+

2R
(z∗)

|∇v|p̃(z)/(1+σ)

)1+σ

,

for all R ≤ {R1, 1}, where C = C(N,L0, α0, c0, p−, p+), which implies
(7.42) (see [12, Chapter 5, Proposition 1.1]).

It is easy to see that the constants R̂, ĉ and δ̂ depend only upon N ,
M , L0, p−, p+, λ1, Λ1, α0, c0 and α∗. The proof is complete.

Combining Lemma 7.4 with Lemma 7.5, together with Lemma 7.6,
we have the following lemma, which states the “gap” between v and
w1 or w2.

Lemma 7.7. Let z∗ ∈ B+
r1(0), w1 and w2 be the solutions of problems

(7.26) and (7.27) with z0 being replaced by z∗, respectively (of course,
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in the meantime, A is defined by A(η) = A(z∗∗, v(z∗∗), η), where z∗∗

is the point where p̃(z) gets its maximum value on BR(z∗) ∩B+
r1(0).)

We denote p∗+ = p̃(z∗∗) = max{p̃(z); z ∈ BR(z∗) ∩B+
r1(0)}. Then two

positive constants R0 and C exist depending only upon N , M , p−, p+,
λ1, Λ1, L0, α0, c0, c

∗ and α∗, such that for any R ≤ R0, the following
two hold:

(i) Let BR and B2R be two concentric balls contained in B+
r1(0) with

center at z∗. Then one obtains
(7.52)∫

BR(z∗)
|∇v −∇w1|p∗

+dz ≤ CRα∗α0/2

∫
B2R(z∗)

(
1 + |∇v|p̃(z)

)
dz;

(ii) Let z∗ ∈ B0
r1(0) and R > 0, such that B+

2R(z
∗) ⊆ B+

r1(0). Then
(7.53)∫

B+
R
(z∗)

|∇v −∇w2|p∗
+dz ≤ CRα∗α0/2

∫
B+

2R
(z∗)

(
1 + |∇v|p̃(z)

)
dz.

Proof. We only prove part (i), since part (ii) can be proved analo-
gously. Denote

I =

∫
BR(z∗)

(
A(∇v)−A(∇w1)

)
(∇v −∇w1) dx.

Since v satisfies (7.24) and w1 is the solution of (7.26) with z0 being
replaced by z∗, we have

I =

∫
BR(z∗)

A(∇v)(∇v −∇w1) dz

=

∫
BR(z∗)

(
A(∇v)− Ã(z, v,∇v)

)
(∇v −∇w1) dz

+

∫
BR(z∗)

B̃(z, v,∇v)(v − w1) dz

:= I1 + I2.

Let R̂ and δ̂ be the constants stated in Lemma 7.6 and let R∗, c∗

and α∗ be the constants stated in Proposition 6.2. Denote p∗− =
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min
BR(z∗) p̃(z). Using condition (7.18), a positive constant R1 =

R1(L1, α0, δ̂) exists such that

(7.54) δ =
p∗+ − p∗−

p∗−
≤ δ̂, p∗+ ≤ p̃(z)(1 + δ), z ∈ BR(z

∗),

provided R ≤ R1. Set R0 = min{R∗, R̂, R1}. Then
∫
B2R(z∗) |∇v|p̃(z)dz

≤ 1 (see Lemma 7.6) and R−δ ≤ C(L1, α0), provided R ≤ R0. By
Proposition 6.2, Lemma 7.4 and Lemma 7.6, it follows from (7.17),
(7.43), (7.54) and the Young inequality that, for any R ≤ R0, one has

I1 ≤ C(Rα0 +Rα0α
∗
)

(7.55)

∫
BR(z∗)

(|∇v|p∗
+−1 + |∇v|p̃(z)−1)(|∇v| + |∇w1|) dz

≤ CRα0α
∗
∫
BR(z∗)

(1 + |∇v|p∗
+−1)(|∇v|+ |∇w1|) dx

≤ CRα0α
∗
∫
BR(z∗)

(1 + |∇v|p∗
+ + |∇w1|p∗

+) dz

≤ CRα0α
∗
∫
BR(z∗)

(1 + |∇v|p∗
+) dz

≤ CRα0α
∗
∫
BR(z∗)

(1 + |∇v|p̃(z)(1+δ)) dz

≤ CRα0α
∗
[
|BR(z

∗)|+RN

(
1 +

1

RN

∫
B2R(z∗)

|∇v|p̃(z)dz
)1+δ]

≤ CRα0α
∗
(
|BR(z

∗)|+R−δN

∫
B2R(z∗)

|∇v|p̃(z)dz
)

≤ CRα0α
∗
∫
B2R(z∗)

(1 + |∇v|p̃(z)) dz,

where C depends upon N , M , p−, p+, λ1, Λ1, L0, α0, c0, c
∗ and α∗.

Combining (7.16) with Lemma 7.4, together with Proposition 6.2, it
follows that

I2 ≤ Cosc {v;BR(z
∗)}

∫
BR(z∗)

(
1 + |∇v|p̃(z)

)
dz

≤ CRα∗
∫
B2R(z∗)

(
1 + |∇v|p̃(z)

)
dz,
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where C = C(N, λ1,Λ2, p+). So we obtain that

(7.56) I ≤ CRα∗α0

∫
B2R(z∗)

(1 + |∇v|p̃(z)) dz,

where C depends upon N , M , p−, p+, λ1, Λ1, L0, α0, c0, c
∗ and α∗.

If p∗+ ≥ 2, we deduce (7.52) immediately from (7.1) and (7.56). If
p∗+ < 2, then by using the similar argument of (7.55), it follows from
(7.1), (7.56) and Lemma 7.6 that

∫
BR(z∗)

|∇v −∇w1|p∗
+dz

≤
[ ∫

BR(z∗)
(|∇v|2 + |∇w1|2)(p∗

+−2)/2|∇v −∇w1|2dz
]1/2

·
[ ∫

BR(z∗)
(|∇v|2 + |∇w1|2)(2−p∗

+)/2|∇v −∇w1|2p∗
+−2dz

]1/2
≤ C

(
I

λ0

)1/2[ ∫
BR(z∗)

(|∇v|p∗
+ + |∇w1|p∗

+)

]1/2
≤ C

(
I

λ0

)1/2[ ∫
B2R(z∗)

(1 + |∇v|p̃(z)) dz
]1/2

≤ CRα∗α0/2

∫
B2R(z∗)

(
1 + |∇v|p̃(z)

)
dz,

and consequently we also obtain (7.52). It’s easy to see that C depends
only upon N , M , p−, p+, λ1, Λ1, L0, α0, c0, c

∗ and α∗.

Using the properties of w1 and w2 (namely, Lemmas 7.4 and 7.5) and
the “gap” between v and w1 or w2 (namely, Lemma 7.7), we have the
following lemma.

Lemma 7.8. We denote by p∗+(z; r) the maximum value of p̃ on

Br(z) ∩B+
r1(0). Then a positive constant R0 exists depending only upon

N , M , p−, p+, λ1, Λ1, L0, α0, c0, c
∗ and α∗, such that for all R ≤ R0

and τ ∈ (0, N), it follows:
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(i) Let B2R, BR and Bρ be concentric balls contained in B+
r1(0) with

center at z∗. Then

(7.57)

∫
Bρ(z∗)

|∇v|p∗
+(z∗;ρ)dz

≤ Cτ

(
ρ

R

)N−τ[ ∫
B2R(z∗)

|∇v|p∗
+(z∗;2R)dz +RN

]
, 0 < ρ ≤ 2R,

where Cτ is a constant depending only upon N , M , p−, p+, λ1, Λ1,
L0, α0, c0, c

∗, α∗ and τ ;

(ii) Let z∗ ∈ B0
r1(0) and R > 0 be such that B+

2R(z
∗) ⊆ B+

r1(0). Then

(7.58)

∫
B+

ρ (z∗)
|∇v|p∗

+(z∗;ρ)dz

≤ Cτ

(
ρ

R

)N−τ[ ∫
B+

2R
(z∗)

|∇v|p∗
+(z∗;2R)dz +RN

]
, 0 < ρ ≤ 2R,

where Cτ is a constant depending only upon N , M , p−, p+, λ1, Λ1,
L0, α0, c0, c

∗, α∗ and τ .

Proof. We only need to prove the conclusion for the case ρ ≤ R/2.
Let B2R, BR and Bρ be concentric balls contained in B+

r1(0) with
ρ ≤ R ≤ R0, where R0 is the constant stated in Lemma 7.7. Let
w1 be the unique solution for problem (7.26) with z0 being replaced by
z∗ (see Lemma 7.7 for the exact meaning.) Then, by using Lemma 7.4,
part (i) of Lemma 7.7 and the Young inequality, we conclude that

∫
Bρ(z∗)

|∇v|p∗
+(z∗;ρ)dz

(7.59)

≤ C

∫
Bρ(z∗)

|∇v −∇w1|p∗
+(z∗;ρ)dz

+ C

∫
Bρ(z∗)

|∇w1|p∗
+(z∗;ρ)dz

≤ CRN + C

∫
BR(z∗)

|∇v −∇w1|p∗
+(z∗;R)dz
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+ CρN sup
Bρ(z∗)

|∇w1|p∗
+(z∗;R)

≤ CRN + CRα∗α0/2

∫
B2R(z∗)

|∇v|p̃(z)dz

+ C

(
ρ

R

)N ∫
BR(z∗)

|∇v|p∗
+(z∗;R)dz

≤ C

(
Rα∗α0/2 +

(
ρ

R

)N)∫
B2R(z∗)

|∇u|p∗
+(z∗;2R)dx

+ CRN .

Applying Lemma 3.2 in [24] to (7.59), we obtain (7.57). Hence, we
complete the proof of part (i). While the proof of part (ii) is similar to
that of part (i), the differences are these: the function w1 is replaced
by w2, which is the unique solution of problem (7.27) with z0 being
replaced by z∗; we use Lemma 7.5 and part (ii) of Lemma 7.7 instead
of Lemma 7.4 and part (i) of Lemma 7.7, respectively. The proof is
complete.

By Lemma 7.8, we obtain the following corollary.

Corollary 7.1. We denote by p∗+(z; r) the maximum value of p̃ on

Br(z) ∩B+
r1(0). Then a positive constant R0 ≤ r1/4 exists depending

only upon N , M , p−, p+, λ1, Λ1, L0, α0, c0, c
∗ and α∗, such that for

all z∗ ∈ B+
r1/2

(0), ρ ≤ R0 and τ ∈ (0, N), it follows that∫
Bρ(z∗)∩B+

r1
(0)

|∇v|p∗
+(z∗;ρ)dz ≤ Cτρ

N−τ ,

where Cτ is a constant depending only upon N , M , p−, p+, λ1, Λ1,
L0, α0, c0, c

∗, α∗, r1 and τ .

Proof. Take arbitrary z∗ ∈ B+
r1/2

(0) and ρ ≤ R0, where R0 will be

determined later. On account of the property of p̃(z) and Lemma 7.6,

ĉ > 0, δ̂ > 0 and R̂ depending only upon N , M , p−, p+, λ1, Λ1, L0, c0,

α0, α
∗ and c∗, such that for any z̃ ∈ B0

r1/2
(0) and R ≤ R̂/2, it follows

that
p∗+(z̃; 2R) ≤ p̃(z)(1 + δ̂), z ∈ B+

2R(z̃),
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and, by the Young inequality,

(7.60)

∫
B+

2R
(z̃)

|∇v|p∗
+(z̃;2R)dz ≤ |B2R|+

∫
B+

2R
(z̃)

|∇v|p̃(z)(1+δ̂)dz

≤ |B
R̂
|+

∫
B+

R̂

(z̃)

|∇v|p̃(z)(1+δ̂)dz

≤ σN R̂N + [ĉ(1 + R̂−N )]1+δ̂R̂N = c1.

Denote d = dist (z∗, B0
r1(0)) < r1/2, where B0

r1(0) = Br1(0) ∩ {z ∈
RN | zN = 0}. Take z∗1 ∈ B0

r1/2
, such that |z∗1 − z1| = d.

If ρ ≥ d, then by Lemma 7.8, for any τ ∈ (0, N), two positive

constants R1 ≤ R̂/2 and C∗
τ exist such that, for any ρ ≤ R1, it follows

from (7.60) that∫
Bρ(z∗)∩B+

r1/2
(0)

|∇v|p∗
+(z∗;ρ)dz

≤
∫
B+

ρ+d
(z∗

1 )

|∇v|p∗
+(z∗;ρ)dz

≤
∫
B+

ρ+d
(z∗

1 )

(
1 + |∇v|p∗

+(z∗
1 ;ρ+d)

)
dz

≤ C∗
τ

(
ρ+ d

R1

)N−τ[∫
B+

2R1
(z∗

1 )

|∇v|p∗
+(z∗

1 ;2R1)dz + RN
1

]
+ σN (ρ+ d)N

≤ [
C∗

τ (c1 +RN
1 )Rτ−N

1 2N−τ + σN2NRτ
1

]
ρN−τ

= C1τρ
N−τ .

If ρ ≤ d, then by Lemma 7.8, for any τ ∈ (0, N), two positive

constants R2 ≤ R̂/2 and C∗∗
τ exist such that, for any ρ ≤ R2, it follows

from the Young inequality and (7.60) that∫
Bρ(z∗)∩B+

r1/2
(0)

|∇v|p∗
+(z∗;ρ)dz

=

∫
Bρ(z∗)

|∇v|p∗
+(z∗;ρ)dz
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≤ C∗∗
τ

(
ρ

d

)N−τ[ ∫
Bd(z∗)

|∇v|p∗
+(z∗;d)dz + dN

]
≤ C∗∗

τ

(
ρ

d

)N−τ[ ∫
B+

2d
(z∗

1 )

|∇v|p∗
+(z∗

1 ;2d)dz + dN
]

≤ C∗∗
τ

(
ρ

d

)N−τ[
dN +

(
2d

R2

)N−τ

·
(∫

B+
2R2

(z∗
1 )

|∇v|p∗
+(z∗

1 ;2R2)dz +RN
2

)]
≤ C∗∗

τ

[
dτ + 2N−τRτ−N

2 (c1 +RN
2 )
]
ρN−τ

≤ C∗∗
τ

[(
r1
2

)τ

+ 2N−τRτ−N
2 (c1 +RN

2 )

]
ρN−τ

= C2τρ
N−τ .

Taking R0 = min{R1, R2} and Cτ = max{C1τ , C2τ}, then the proof is
complete.

Now we can state and prove the boundary C1,α estimates on v,
namely, we have the following proposition.

Proposition 7.1. Positive constants β, C and R0 exist depending
only upon N , M , p−, p+, λ1, Λ1, L0, α0, c0, c

∗, α∗ and r1 such that,

for any z∗ ∈ B+
r1/2

(0) and ρ ≤ R0, the following holds:∫
Bρ(z∗)∩B+

r1
(0)

|∇v − {∇v}ρ| dx ≤ CρN+β/p+ ,

where

{∇v}ρ =
1

|Bρ(z∗) ∩B+
r1(0)|

∫
Bρ(z∗)∩B+

r1
(0)

∇v dz,

and consequently,

osc
{∇v;Bρ(z

∗) ∩B+
r1(0)

} ≤ Cρβ/p+ ,

and
|∇v(z)| ≤ C, z ∈ B+

r1/2
(0).
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Proof. For any z ∈ B+
r1(0), we denote by p∗+(z; r) the maximum

value of p̃ on Br(z) ∩B+
r1(0). Take arbitrary z∗ ∈ B+

r1/2
(0) and

ρ ≤ R0. Denote d = dist (z∗, B0
r1(0)) and take z∗1 ∈ B0

r1(0) such that
d = |z∗− z∗1 |, where B0

r1(0) := {z ∈ RN | zN = 0}∩Br1(0). We denote

δ = p− − 1,

ε =
α∗α0σ(1 + δ)

4N + 4σ(1 + δ) + 2α∗α0
,

τ =
εσ(1 + δ)

N + σ(1 + δ)
,

θ =
(N + ε)[N + σ(1 + δ) + α∗α0/2]

[N + σ(1 + δ)](N − τ + α∗α0/2)
,

μ =
N + σ(1 + δ)

N + σ(1 + δ) + α∗α0/2
,

where α∗ and σ are the positive constants stated in Proposition 6.2 and
Lemma 7.4 or Lemma 7.5, respectively. Obviously, we have 0 < μ < 1.
In addition, one obtains

0 < θ = (N+(1/2)α∗α0)[N+σ(1+δ)]−(1/4)α∗α0σ(1+δ)
(N+(1/2)α∗α0)[N+σ(1+δ)]−(1/4)α∗α0σ(1+δ)[σ(1+δ)/N+σ(1+δ)+α∗α0]

< 1.

Moreover, we have

(7.61) θ[N+σ(1+δ)]−θμ[τ+σ(1+δ)] = θμ

(
N+

α∗α0

2
−τ

)
= N+ε,

and

(7.62) N + σ(1 + δ)− θ[τ + σ(1 + δ)] > N, θ

(
N+

α∗α0

2
−τ

)
> N.

There is no difficulty in verifying (7.61) and the second inequality in
(7.62), so we only verify the first inequality in (7.62). For this purpose,
we note that the inequality is equivalent to the following{

[N + σ(1 + δ)]2 + ε

[
N + σ(1 + δ) +

1

2
α∗α0

]
+

1

2
α∗α0

}
τ

< σ(1 + δ)

{
1

2
α∗α0σ(1 + δ)− ε

[
N + σ(1 + δ) +

1

2
α∗α0

]}
.
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Note that ε[N + σ(1 + δ) + (1/2)α∗α0] = (1/4)α∗α0σ(1 + δ) and the
above inequality is equivalent to{

[N + σ(1 + δ)]2 +
1

4
α∗α0[2N + σ(1 + δ)]

}
τ <

1

4
α∗α0[σ(1 + δ)]2,

which can be deduced by

4[N + σ(1 + δ)]

[
N + σ(1 + δ) +

1

2
α∗α0

]
τ ≤ α∗α0[σ(1 + δ)]2.

Recalling the value of ε, we can take τ = [εσ(1 + δ)]/[N + σ(1 + δ)],
such that the above inequality holds, and consequently, the first in-
equality in (7.62) holds. We denote

N+ β=min{N+σ(1+δ)−θ[τ+σ(1+δ)], θ(N+α∗α0/2−τ), N+ε} ,

then 0 < β ≤ ε. Set

R = ρθ, r = Rμ = ρθμ.

Obviously, a positive constant R1 exists such that

2ρ ≤ R, ρ+ 2R ≤ r

2
,

for any ρ ≤ R1 = R1(N, p−, p+, λ1,Λ1, α
∗, α0). On account of this, we

suppose that R0 ≤ R1.

We continue the proof in two different cases: 2R ≤ d and 2R > d.

Case 1. 2R ≤ d. We denote by w1 the solution of problem (7.26)
with z0 replaced by z∗ (see Lemma 7.7 for the exact meaning). By
Lemma 7.4, Lemma 7.7 and Corollary 7.1, for any τ ∈ (0, N), an R2

exists depending only upon N , M , p−, p+, λ1, Λ1, L0, α0, c0, c
∗, α∗

and r1, such that∫
Bρ(z∗)∩B+

r1
(0)

|∇v − {∇v}ρ|p∗
+(z∗;R)dz

=

∫
Bρ(z∗)

|∇v − {∇v}ρ|p∗
+(z∗;R)dz
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≤ C

∫
Bρ(z∗)

|∇w1 − {∇w1}ρ|p∗
+(z∗;R)dz

+ C

∫
Bρ(z∗)

|∇v −∇w1|p∗
+(z∗;R)dz

≤ CρN
(
ρ

R

)σp∗
+(z∗;R) (

osc
{∇w1;BR/2(z

∗)
})p∗

+(z∗;R)

+ C

∫
BR(z∗)

|∇v −∇w1|p∗
+(z∗;R)dz

≤ C

(
ρ

R

)N+σp∗
+(z∗;R) ∫

BR(z∗)
|∇v|p∗

+(z∗;R)dz

+ CRα∗α0/2

∫
B2R(z∗)

(1 + |∇v|p∗
+(z∗;2R))dz

≤ Cτ

(
ρ

R

)N+σ(1+δ)

RN−τ

+ CτR
N+α∗α0/2−τ

= Cτρ
N+σ(1+δ)−θ[τ+σ(1+δ)]

+ Cτρ
θ(N+α∗α0/2−τ)

≤ Cτρ
N+β ,

for any ρ ≤ R2, where Cτ is a positive constant depending only upon
N , M , p−, p+, λ1, Λ1, L0, α0, c0, c

∗, α∗, r1 and τ .

Case 2. 2R > d. We denote by w2 the solution of problem (7.27)
with R and z0 replaced by r and z∗1 , respectively. We temporarily
denote {∇v}ρ+d = 1/|B+

ρ+d(z
∗
1)|

∫
B+

ρ+d
(z∗

1 )
∇v dz. Then, it follows from

Lemma 7.5, Lemma 7.7 and Corollary 7.1 that, for any τ ∈ (0, N), an
R3 exists depending only upon N , M , p−, p+, λ1, Λ1, L0, α0, c0, c

∗,
α∗ and r1, such that∫

Bρ(z∗)∩B+
r1

(0)

|∇v − {∇v}ρ|p∗
+(z∗

1 ;r)dz

≤
∫
B+

ρ+d
(z∗

1 )

|∇v − {∇v}ρ+d|p∗
+(z∗

1 ;r)dz

≤ C

∫
B+

ρ+d
(z∗

1 )

|∇w2 − {∇w2}ρ+d|p∗
+(z∗

1 ;r)dz
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+ C

∫
B+

ρ+d
(z∗

1 )

|∇v −∇w2|p∗
+(z∗

1 ;r)dz

≤ C(ρ+ d)N
(
ρ+ d

r

)σp∗
+(z∗

1 ;r)

·
(
osc

{
∇w2;B

+
r/2(z

∗
1)
})p∗

+(z∗
1 ;r)

+ C

∫
B+

r (z∗
1 )

|∇v −∇w2|p∗
+(z∗

1 ;r)dz

≤ C

(
ρ+ d

r

)N+σp∗
+(z∗

1 ;r)
∫
B+

r (z∗
1 )

|∇v|p∗
+(z∗

1 ;r)dz

+ Crα
∗α0/2

∫
B+

2r(z
∗
1 )

(1 + |∇v|p∗
+(z∗

1 ;2r)) dz

≤ Cτ

(
R

r

)N+σ(1+δ)

rN−τ + Cτ r
N+α∗α0/2−τ

= Cτρ
θ[N+σ(1+δ)]−θμ[τ+σ(1+δ)]

+ Cτρ
θμ(N+α∗α0/2−τ)

= Cτρ
N+ε ≤ Cτρ

N+β,

for any ρ ≤ R3, where Cτ is a positive constant depending only upon
N , M , p−, p+, λ1, Λ1, L0, α0, c0, c

∗, α∗, τ and r1.

Combining the above two cases, setting p∗+ = p∗+(z∗;R) or p∗+ =
p∗+(z

∗
1 ; r), it follows from the Hölder inequality that∫
Bρ(z∗)∩B+

r1
(0)

|∇v − {∇v}ρ|dz

≤ Cρ(1−1/p∗
+)N

(∫
Bρ(z∗)∩B+

r1
(0)

|∇v − {∇v}ρ|p∗
+

)1/p∗
+

≤ CρN+β/p∗
+ ≤ CρN+β/p+ ,

for all ρ ≤ R0 = min{R1, R2, R3} and C depending only upon N , M ,
p−, p+, λ1, Λ1, L0, α0, c0, c

∗, α∗ and r1. The above inequality implies
that

osc
{∇v;Bρ(z

∗) ∩B+
r1(0)

} ≤ Cρβ/p+ ,
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which together with the interpolation theorem leads to

|∇v(z)| ≤ C, z ∈ B+
r1/2

(0).

The proof is complete.

Combining Proposition 7.1 with the interior C1,α estimates, we can
obtain the global C1,α estimates, namely, we can give the proof of
Proposition 4.1 as follows:

Proof of Proposition 4.1. Let r1 be the constant stated in Lemma 7.3.
Take arbitrary x1, x2 ∈ Ω, such that |x1 − x2| ≤ (1/9)r1. Without loss
of generality, we suppose that d(x1, ∂Ω) ≥ d(x2, ∂Ω). Take x0

1 ∈ ∂Ω,
such that |x1 − x0

1| = d(x1, ∂Ω). We consider the following two cases:
d(x1, ∂Ω) ≤ (2/9)r1 and d(x1, ∂Ω) > (2/9)r1.

Case I. d(x1, ∂Ω) ≤ (2/9)r1. It follows that

|x0
1 − x2| ≤ |x0

1 − x1|+ |x1 − x2| ≤ 1

3
r1 ≤ 1

3
r0.

Thus, we have x1, x2 ∈ Br0(x
0
1) ∩ Ω. Let h be the function stated in

(H3), and let Φ0, Ψ0, Φ and Ψ be defined by (7.5) (7.9) with 0 replaced
by x0

1, respectively. By (7.21), it follows that

|Φ(x1)− Φ(x0
1)| ≤ |Φ′(ξ)(x1 − x0

1)| ≤
3

2
|x1 − x0

1| ≤
r1
3
,

|Φ(x2)− Φ(x0
1)| ≤ |Φ′(ζ)(x2 − x0

1)| ≤
3

2
|x2 − x0

1| ≤
r1
2
.

Define a function v(z) = u(Ψ(z)), for any z ∈ V0. Denote z1 = Φ(x1),
z2 = Φ(x2), z0 = Φ(x0

1), y1 = Kx1 and y2 = Kx2. On account of
the above two inequalities and Lemma 7.3, we have z1, z2 ∈ B+

r1/2
(z0).

Obviously,

u(x) = v(Φ(x)), ∇u(x) = ∇v(Φ(x))Φ′(x).

Then, it follows from Proposition 7.1 and (7.21) that

|∇u(xi)| = |∇v(Φ(xi))Φ
′(xi)| ≤ 3

2
|∇v(Φ(xi))| ≤ C, i = 1, 2,
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and
|∇u(x1)−∇u(x2)| = |∇v(z1)Φ

′(x1)−∇v(z2)Φ
′(x2)|

≤ |(∇v(z1)−∇v(z2))Φ
′(x1)|

+ |∇v(z2)||Φ′(x1)− Φ′(x2)|
≤ C|∇v(z1)−∇v(z2)|
+ C|∇h(ŷ1)−∇h(ŷ2)|

≤ C|z1 − z2|β/p+ + C|y1 − y2|α0

≤ C|x1 − x2|α1 ,

where α1 = min{α0, β/p+}.
Case II. d(x1, ∂Ω) > (2/9)r1. Take x0

i ∈ ∂Ω, such that |xi − x0
i | =

d(xi, ∂Ω), i = 1, 2. Then one obtains

|x2 − x0
2| ≥ |x1 − x0

2| − |x1 − x2| ≥ d(x1, ∂Ω)− |x1 − x2| ≥ r1
9
.

Set x∗ = (x1 + x2)/2, d = r1/18. Consider the ball Bd(x∗). For
arbitrary x ∈ Bd(x∗), choosing x0 ∈ ∂Ω, such that d(x, ∂Ω) = |x− x0|,
then one has

|x− x0| ≥ |x1 − x0| − |x− x1| ≥ d(x1, ∂Ω)− r1
9

>
r1
9
.

On account of this, we can use Theorem 1.1 in [5] to conclude that
positive constants C and α2 ∈ (0, 1) exist depending only upon N , M ,
p−, p+, λ, Λ, L0, α0 and r1, such that

|∇u(x1)−∇u(x2)| ≤ C|x1 − x2|α2 ,

and consequently, it follows from the interpolation theorem that

|∇u(x1)| ≤ C.

Taking R0 = r1/9, α = min{α1, α2}, then the conclusion follows by
combining Case I with Case II. The proof is complete.

We can use a similar method to prove Proposition 4.2, and there is
no essential difference between the proof of Proposition 4.1 and that of
Proposition 4.2. Thus, we omit it here.
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