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THE NUMBER OF SPANNING TREES
IN SOME CLASSES OF GRAPHS

M.H. SHIRDAREH HAGHIGHI AND KH. BIBAK

ABSTRACT. In this paper, using properties of Chebyshev
polynomials, we give explicit formulas for the number of span-
ning trees in some classes of graphs, including join of graphs,
Cartesian product of graphs and nearly regular graphs.

1. Introduction. We use the terminology of Bondy and Murty [4].
All graphs in this paper are finite, undirected, and simple (i.e., without
loops or multiple edges). We denote by 7(G) the number of spanning
trees of a graph G.

A famous and classical result on the study of 7(G) is the following
theorem, known as the Matriz Tree theorem [9]. But this theorem
is not feasible for large graphs. The Laplacian matriz (also called
Kirchhoff matriz) of a graph G is defined as L(G) = D(G) — A(G),
where D(G) and A(G) are the degree matrix and the adjacency matrix
of G, respectively.

Theorem 1.1. For every connected graph G, 7(G) is equal to any
cofactor of L(G).

The characteristic polynomial of a graph G is Pg(A) = det (A —
A(Q)). Also we define Cg () = det (A — L(Q@)).

The number of spanning trees of a connected graph G can be ex-
pressed in terms of the eigenvalues of L(G). Since, by the definition,
L(G) is a real symmetric matrix, it therefore has n non-negative real
eigenvalues, of which n is the number of vertices of G. In [1, Theorem
1], Anderson and Morley proved that the multiplicity of 0 as an eigen-
value of L(G) equals the number of components of G. Therefore, the
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Laplacian matrix of a connected graph G has 0 as an eigenvalue with
multiplicity one.

Theorem 1.2 [6]. Suppose G is a connected graph with n vertices.
Let \q,... , A\, be the eigenvalues of L(G), with \,, = 0. Then

_1 n—1 1
T(G) = %C’G(A)b\:o = EAl . ")\n71~

Example 1.3. Consider the path P, and the cycle C,. It is
known that the eigenvalues of L(P,) and L(C),) are 2 — 2cos (kw)/n
(0<k<mn-—1)and 2 —2cos(2km)/n (0 < k < n—1), respectively
(see, e.g., [2, 5]). On the other hand, we know that 7(P,) = 1 and
7(Cy) = n; therefore, by using Theorem 1.2, we obtain the well-known
identities:

n 2km o kr n
I I — 2 | | ; _
11 (2—2COST>TL :>k71S1n77F7 TLZQ

There are many ways of combining graphs to produce new graphs. We
now describe some binary operations defined on graphs.

The union of graphs G and H is the graph G U H with vertex set
V(G)UV(H) and edge set H(G)U E(H). If G and H are disjoint, we
refer to their union as a disjoint union, denoted by G + H. The join of
two graphs G and H, G V H, is obtained from the disjoint union of G
and H by additionally joining every vertex of G to every vertex of H.

The join W,, = C,, V K7 of a cycle C,, and a single vertex is referred
to as a wheel with n spokes. Similarly, the join F, = P, V K; of a path
P,, and a single vertex is called a fan.
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The Cartesian product of graphs G and H is the graph GoH whose
vertex set is V(G) x V(H) and whose edge set is the set of all
pairs (u1,v1)(uz,v2) such that either wjus € E(G) and vy = vy, or
v1vg € E(H) and u3 = ug. The notation used for the Cartesian product
reflects this fact. The Cartesian product P,,0PF, of two paths is the
(m x n)-grid. Also the Cartesian product P,OP, (n > 2) is called a
ladder, and P,0C,, (n > 3) is referred to as an n-prism.

In the next section, we review some properties of the well-known
Chebyshev polynomials and then state some theorems that allow us
to evaluate the number of spanning trees in join of graphs, Cartesian
product of graphs and nearly regular graphs. Recall that a graph G is
called nearly k-regular if all its vertices except one (referred to as an
exceptional vertex) have degree k.

2. Joins and Cartesian products. The starting point of our
calculations is the following theorem.

Theorem 2.1 [6]. Suppose G1, ..., Gy, are graphs of orderny, ..., ng,
respectively, and let n1 + --- + nx = n. For the disjoint union
Gy + -+ Gy and the join G1 V ---V Gy, we have:

k
Carpta,(N) = Hcc,,, ()

Ca,(A—n+mn;
Carvva, (A) = XA = n)*~ 1H A—n+n; )

Now, by applying Theorems 1.2 and 2.1 we evaluate the number
of spanning trees of the complete multipartite (or complete k-partite)
graph Ky, . n,., which is the main result of [11] and also studied in
[12].

Theorem 2.2. The number of spanning trees in the complete
multipartite graph Ky, ... n, of order n is equal to:

k
T(K”h--- nk) =nk2 H(n - ni)”"_l.

i=1
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Proof. Let N,, denote the empty graph of order m. Since N, is
the disjoint union of m copies of a single vertex, therefore Cp,, (A) =
A™. The complete multipartite graph K, . », is the join of graphs
Noyy oy Na, . Now, Theorem 2.1 implies that

k
Chtnyoong V) = AA =) T =)™t
i=1
Therefore, by Theorem 1.2,
(1t
T(K’ﬂl,m Jlk) = TC}(M,.. E (>\)|)\:0
(_1 n—1 k
= - (/\—’I’L)k71 H(A—n—i—m)”’ 1|,\:0
1=

Now, we review the properties of the Chebyshev polynomials (taken
from [8]) that help us to derive explicit formulas for the number of
spanning trees in some other classes of graphs.

The function cosnf is a Chebyshev polynomial function of cos#.
Specifically, for n > 0, cosnf = T,,(cos8), where T,, is the Chebyshev
polynomial of the first kind, defined by To(z) = 1, T1(x) = x, and for
n > 2,

T, (z) = 22T -1 (x) — Th—a(x).

If we change the initial conditions to be Up(x) = 1 and Uy (z) = 2z,
but keep the same recurrence

Un(z) = 220Up_1(x) — Up—2(x),

we get the Chebyshev polynomials of the second kind.

It is easy to show that, for all n > 0, T,,(1) = 1 and U,(1) = n + 1,
Tu(—1) = (—1)", Unl=1) = (=1)"(n + 1)
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Here we list a few intriguing identities satisfied by the Chebyshev
polynomials:

(3)

Ta(a) = 5((o + Vo~ 1)+ (o~ Va2 1)),
(4)

Tn(—z) = (=1)"Ta(x),
(5)

Un(2) = o= ((2+ 22 =1)" = (a—a2=1)"), | #£1,
(6)

Un(—z) = (=1)"Un(z),
(7)

- kmw

Un(x) = kl;ll <2x:|:2cos s 1),

(8)

Th(x) = Up(x) — 2Up_1(x).

The lemma below gives us the characteristic polynomial of the path
P,, and the cycle C,, in terms of Chebyshev polynomials.

Lemma 2.3 [6]. For the path P,, the cycle C,,, and the complete
graph K, , we have:

) Pr) = (3).
(10) Pe,(A) = (Tn(%) - 1),
(11) Pr,(A)=A—n+1A+1)""1

Suppose G is a k-regular graph of order n. It is easy to see that
Ca\) = (=1)"Pa(k—N).

Thus, by using the lemma above we can evaluate Cc, () and Ck,, (\).
The eigenvalues of L(P,), as we have mentioned, are 2 — 2 cos(kw)/n
(0 < k <n—1); then, by applying (7), Cp, () also follows.
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Lemma 2.4. For the path P,, the cycle Cy,, and the complete graph
K., we have:

(12) Cp,(\) = \U,, 1 (%)
(13) Con(N) =2 (Tn <¥) _ (-1)%),
(14) Cr, (N) = A\ —n)"" L,

Now, we calculate the number of spanning trees in some special
graphs.

Theorem 2.5.

2
(K V Py) = (m+n)""U,_, (%)

Proof. By Theorem 2.1 and Lemma 2.4:

A—m—2
Crmvp,(A) = XA —=m —n)"Up_4 (+>

Now applying Theorem 1.2 gives:

(_1)m+n—1 /

T(Kp V Pp) = Ck v P, (A)]a=0

m-+n
_1\ym+4+n—1 _ _
= (Gl i A=m—n)"U,_1 (;\ an 2>

m-+n

=(m+n)""U,_ (m—+2)

A=0

O
2

By similar calculations, we can enumerate the number of spanning
trees in some more cases:



THE NUMBER OF SPANNING TREES 1189

Theorem 2.6.

7(Co V Cr) = %<Tm<";2> —1> <Tn<mT+2> —1).

Proof. To prove the first formula, by Theorem 2.1 and Lemma 2.4,
we have:

e, O) = 5o m = (1, (A=) - (-1

Now applying Theorem 1.2 gives:

(_1)m+n—1 ,
T(Km V Cn) = W KmVCn ()\)|/\=O
( )ernfl
- —(A m—n)"
m + n )

(=)o)
-z (2 )

In order to prove the second formula, by Theorem 2.1 and Lemma 2.4,
again, we have:

2X(A—m —n A—n—2
Cp,ve,(A) = %Uml<#>

(5272 )
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Now applying Theorem 1.2 gives:

(_1)m+n71 ,
(P V Cp) = mtn Ch,.ve, M=o
B 2(—1)m+”_1()\—m—n)U A—n—2
T (m+n)(A—m) mel 2
() )
2 A=0
—ate () (n(57) )
m 2 2
The proofs of the other formulas are similar. O

By the same method, we get 7(K,, V K,,) = (m +n)™T=2 which is
nothing but Cayley’s formula.

Our machinery gives the formulas in the corollary below which have
also appeared in [3].

Corollary 2.7. The number of spanning trees of fan F, and wheel
W, are:

e () o (55

2 2

where F,, and L,, denote the Fibonacci and Lucas numbers, respectively.
That is, Fnio = Fuq1 + Fy, forn > 1 with Fi = F» = 1, and
Lyyo=Lpy1+ Ly, forn > 1 with Ly =1 and Ly = 3.
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Proof. By Theorem 2.6, we have:

Now, we study the number of spanning trees in Cartesian products
of graphs. The key theorem here is the following.

Theorem 2.8 [2]. The Laplacian eigenvalues of the Cartesian
product GO H, are precisely the numbers

Ai(G) + A (H),

fori=1,2,...,|V(G)| and j =1,2,...,|V(H)|.

Now we get the number of spanning trees of the complete prism
K,oP,,.

Theorem 2.9. For any m,n > 2,

n—1
F(KnQPy) = "2 <Um1 <” ; 2)) .

Proof. Since the eigenvalues of L(K,,) by Lemma 2.4 are 0,n,n, ... ,n,
and the eigenvalues of L(P,,) are 2 — 2cos(km)/m (0 < k < m —1),
therefore by Theorems 1.2 and 2.8,

1 m—1 kr m—1 kr n—1
T(KnDPm):%H (2—2(:05%)(1_[ (’I’L—FQ—QCOSE>) .

k=1 k=0
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By identity (1),

mt km
H 2—2cos— | =m.
m

k=1
Now, applying (7) implies the theorem. O

Similarly, we obtain the number of spanning trees of the (m x n)-grid
P,,0P,, and complete cyclic prism K,OC,.

Theorem 2.10.

m—1n—1

_ g(m=1)(n—1) Lo AT o T
T(PnoP,) =4 };[1 ]1;[1 (sm 2m—f—sm 5 )

m—1n—1 . .
Cm Cn _ 4(m71)(n71) 2 Z_’]T .2 ‘7_71—
7(Crr,0Cy) = mn Zl;[l H sin” — + sin )

j=1
m—1n—1 in -
7(PnoCy) = n4(m—1Dm-1) H (sin2 . + sin? %),

(KpnoK,) = m™ 20" 2(m 4 p)(m-D=1)

n—1 n—1
H(Kp0Cy) = ™2 (Tm(n—;Q) - 1) .

n

Proof. The eigenvalues of L(K,,), by Lemma 2.4, are 0,n,n,... ,n,
and the eigenvalues of L(P,,) and L(C,,) are 2 —2cos(kr/m) (0 < k <
m — 1) and 2 — 2 cos(2kw/m) (0 < k < m — 1), respectively. Therefore,
by direct application of Theorems 1.2 and 2.8 and identities (1) and
(2), the proofs of these formulas follow easily. o

The first and latter formulas also appeared in [10, 3], respectively.

We now derive the number of spanning trees of the ladder P,oP,,
and the n-prism P,0C,,, which was also proved in [3].

Corollary 2.11. The number of spanning trees of the ladder Poo P,
and the n-prism P,0C,, are:

(24 VB - - VAP

r(P0Cy) = n(T,(2) = 1) = Z((2+V3)" + (2= V3)" - 2).

T(Pgl:lpn) = Un—1(2)
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Proof. Using Theorem 2.10 we have:

n—1 .
_ 1 Lo Jm
_ 1 2 _
T(P,0P,) =4" 1_[1 <5 + sin %> =Un-1(2)
j=

B2 +Var - 2= VA,

H(P0Cy) = 7(K200,) = n(Ta(2) — 1)
- g((2+\/§)”+(2—\/§)" ~92). @

3. Nearly regular graphs. In this section, we prove a theorem
for enumerating the number of spanning trees in nearly regular graphs.
First, we present a theorem for k-regular graphs.

Theorem 3.1 [6]. Suppose G is a connected k-reqular graph with n
vertices. Let A\1,..., A, be the eigenvalues of G, with A\, = k. Then

n—1

(@) = - [Ttk = 2) = ~Pi(h)

i=1

Theorem 3.2. Suppose G is a connected nearly k-regular graph.
Then
7(G) = Pu(k),
where H is the subgraph of G obtained by removing the exceptional
verter.

Proof. By the matrix tree theorem, 7(G) is equal to any cofactor of
L(G). Now we take the cofactor of the diagonal element corresponding
to the exceptional vertex of G. Hence, the theorem follows. O

Example 3.3. A wheel W, is a nearly 3-regular graph. If we remove
the exceptional vertex (called the hub), we obtain the cycle C,. The
characteristic polynomial of the cycle C,, by Lemma 2.3, is

P (\) = 2<Tn (%) _ 1).
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Therefore, by Theorem 3.2,

as we already obtained.
Let G be a plane graph. Denote its dual by G*.

Lemma 3.4 [7, Lemma 14.3.3]. Let G be a connected plane graph.
Then the graphs G and G* have the same number of spanning trees.

Example 3.5. Consider the fan F,,. Replace any edge on the rim
by the path P41 (k > 1), and denote the graph obtained by F,, . The
dual F} ; is nearly (k4 2)-regular. If we remove the exceptional vertex
of Fo.k» then we obtain the path P,_1. The characteristic polynomial
of the path P, by Lemma 2.3 is

Pr.(\) = U, (%)

Consequently, by Theorem 3.2 and Lemma 3.4,

) k42
(Far) = 7(Fip) = Un_y <_2 )

Example 3.6. Consider the wheel W,,. Replace any edge on the
rim by the path Pyy; (k> 1), and denote the graph obtained by W, j.
The dual W7, is nearly (k + 2)-regular. If we remove the exceptional
vertex of W, then we obtain the cycle C,. Similar to the example

above,
2
(Wa) = 7(W7,) = 2<Tn (’“%) - 1).

Example 3.7. Place n k-gons in a row, such that each two
consecutive k-gons have a side in common. Denote this graph by G,, x.
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The dual G;, & is nearly k-regular. If we remove the exceptional vertex
of G}, 1, then we obtain the path P,. As above,

(Goi) = 7(G50) = U (5 )
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