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POSITIVE SOLUTIONS OF A SYSTEM OF
COUPLED SECOND ORDER EQUATIONS

WITH THREE POINT BOUNDARY CONDITIONS

JOHN R. GRAEF AND TOUFIK MOUSSAOUI

ABSTRACT. The aim of this paper is to present some exis-
tence results for a system of two coupled second order differen-
tial equations with three point nonlocal boundary conditions.
The main tool used in the proofs is Guo-Krasnosel’skii’s fixed
point theorem. An example is included to illustrate the re-
sults.

1. Introduction. In this paper we are concerned with the existence
of positive solutions of the system

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

−u′′ = λ1 a1(t)f1 (u, v) t ∈ (0, 1),

−v′′ = λ2 a2(t)f2 (u, v) t ∈ (0, 1),

u(0) = β1u(η), u(1) = α1u(η),

v(0) = β2v(η), v(1) = α2v(η),

where λ1, λ2 > 0 are positive parameters, α1, α2 > 0, β1, β2 > 0,
0 < η < 1 and αiη < 1 for i = 1, 2. By a positive solution to problem
(1.1), we mean a vector-valued function (u, v) ∈ C1([0, 1],R2) :=
C1([0, 1],R)×C1([0, 1],R) satisfying (1.1), with u, v ≥ 0 and u+v > 0
in [0, 1].

The study of the existence of positive solutions of nonlinear differen-
tial equations under a variety of boundary conditions has generated a
great deal of interest in the last several years. This is due in part to
the fact that such boundary value problems (bvps) arise in applications
(e.g., population dynamics, heat transfer) where only positive solutions
have meaning. For example, Ma [13] considered the problem{

u′′ + λa(t)f(u) = 0 t ∈ (0, 1),

u(0) = βu(η), u(1) = αu(η),
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where 0 < η < 1 and 0 < α < 1/η, and gave intervals on λ in which
this problem had at least one positive solution u(t). When β = 0,
this problem was studied by Ma [14] and Raffoul [16]. For what has
become the standard reference on such problems, we refer the reader
to the monograph by Agarwal, O’Regan and Wong [1].

More recently, interest in obtaining the existence of positive solutions
for systems has grown, and we cite as recent references the papers of
Benchohra et al. [2], Henderson and Ntouyas [4, 5, 6], Henderson,
Ntouyas and Purnaras [7], Henderson and Wang [8, 9], Hu and Wang
[10], Liu, Liu and Wu [11], Ma [15], Wang [17] and Zhou and Xu [18].
For example, Henderson et al. [8] considered the four-point problem

⎧⎪⎪⎨
⎪⎪⎩

u′′ + λa(t)f(v) = 0 t ∈ (0, 1),

v′′ + μb(t)g(u) = 0 t ∈ (0, 1),

u(0) = αu(ξ), u(1) = βu(η),

v(0) = αv(ξ), v(1) = βv(η),

with 0 < ξ < η < 1 and 0 ≤ α, β < 1. They too obtained the existence
of at least one positive solution (u(t), v(t)) of this system.

Our interest here is to extend the results of Ma [13] to systems of the
form (1.1).

We make the following assumptions.

(H1) a1, a2 ∈ C([0, 1], [0,+∞)) and there exists x0, x
′
0 ∈ [0, 1], such

that a1(x0) > 0 and a2(x
′
0) > 0.

(H2) f1, f2 ∈ C([0,+∞)× [0,+∞), [0,+∞)) and there exist nonneg-
ative constants f0

1 , f
∞
1 , f0

2 and f∞
2 , such that

f0
1 = lim

u+v→0+

f1(u, v)

u+ v
, f∞

1 = lim
u+v→∞

f1(u, v)

u+ v
,

f0
2 = lim

u+v→0+

f2(u, v)

u+ v
, f∞

2 = lim
u+v→∞

f2(u, v)

u+ v
.

Our approach is based on the following Guo-Krasnosel’skii’s fixed
point theorem in a cone.

Theorem 1.1 [3, Theorem 2.3.4, page 94]. Let E be a Banach space
and K ⊂ E a cone in E. Assume that Ω1 and Ω2 are two bounded open
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sets in E such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 − Ω1) → K
be a completely continuous operator such that either:

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2,

or

(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has at least one fixed point in K ∩ (Ω2 − Ω1).

2. Preliminary lemmas. In this section, we present several lemmas
that will be used in the proofs of our results.

Lemma 2.1 [12, 13]. Let β 
= (1 − αη)/(1 − η). Then, for
y ∈ C([0, 1],R), the boundary-value problem

(2.1)

{
u′′ + y(t) = 0 t ∈ (0, 1),

u(0) = βu(η), u(1) = αu(η)

has a unique solution

u(t) = −
∫ t

0

(t− s)y(s) ds

+
(β − α)t− β

(1− αη)− β(1− η)

∫ η

0

(η − s)y(s) ds

+
(1− β)t+ βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s) ds.

Lemma 2.2 [12, 13]. Let 0 < α < 1/η, 0 < β < (1 − αη)/(1 − η).
Then, for y ∈ C([0, 1],R), and y ≥ 0, the unique solution of problem
(2.1) satisfies

u(t) ≥ 0, t ∈ [0, 1].

In what follows, by ‖u‖ we will mean the sup norm in C([0, 1],R),
i.e.,

‖u‖ = sup
t∈[0,1]

|u(t)|.
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Lemma 2.3 [12, 13]. Let 0 < α < 1/η, 0 < β < (1 − αη)/(1 − η).
Then, for y ∈ C([0, 1],R), and y ≥ 0, the unique solution of the problem
(2.1) satisfies

min
t∈[0,1]

u(t) ≥ γ‖u‖,

where

γ = min

{
α(1 − η)

1− αη
, αη, βη, β(1 − η)

}
.

Note that (u, v) is a solution of (1.1), if and only if

u(t) = λ1

[
−
∫ t

0

(t− s)a1(s)f1(u(s), v(s)) ds

+
(β1 − α1)t− β1

(1 − α1η)− β1(1 − η)

∫ η

0

(η − s)a1(s)f1(u(s), v(s)) ds

+
(1 − β1)t+ β1η

(1 − α1η)− β1(1 − η)

∫ 1

0

(1− s)a1(s)f1(u(s), v(s)) ds

]
:= T1(u, v)(t)

and

v(t) = λ2

[
−
∫ t

0

(t− s)a2(s)f2(u(s), v(s)) ds

+
(β2 − α2)t− β2

(1 − α2η)− β2(1 − η)

∫ η

0

(η − s)a2(s)f2(u(s), v(s)) ds

+
(1 − β2)t+ β2η

(1 − α2η)− β2(1 − η)

∫ 1

0

(1− s)a2(s)f2(u(s), v(s)) ds

]
:= T2(u, v)(t).

We will take E to be the Banach space C([0, 1],R2) := C([0, 1],R)×
C([0, 1],R) endowed with the norm

(2.2) ‖(u, v)‖ = ‖u‖+ ‖v‖.

Let
γ3 = min{γ1, γ2}
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where

γi = min

{
αi(1− η)

1− αiη
, αiη, βiη, βi(1 − η)

}
, i = 1, 2,

and define a cone in the space E as K1 ×K2 where

Ki =
{
u : u ∈ C[0, 1], u ≥ 0, min

t∈[0,1]
u(t) ≥ γi‖u‖

}
, i = 1, 2.

Then, (u, v) is a positive solution of (1.1) if and only if it is a fixed
point of the operator

(2.3) T : K1 ×K2 −→ E = C([0, 1],R2), T = (T1, T2).

By Lemmas 2.2 and 2.3, we know that

T (K1 ×K2) =
(
T1(K1 ×K2), T2(K1 ×K2)

)
⊂ K1 ×K2,

and it is easy to verify that T : K1 × K2 → K1 × K2 is completely
continuous since T1 : K1 × K2 → K1 and T2 : K1 × K2 → K2 are
completely continuous.

3. Main results. Throughout this paper, we shall use the following
notation:

A1 =
1 + β1(1 + η)

(1− α1η)− β1(1 − η)

∫ 1

0

(1− s)a1(s) ds,

B1 =
β1(1− η)

(1− α1η)− β1(1 − η)

∫ η

0

sa1(s) ds,

A2 =
1 + β2(1 + η)

(1− α2η)− β2(1 − η)

∫ 1

0

(1− s)a2(s) ds,

B2 =
β2(1− η)

(1− α2η)− β2(1 − η)

∫ η

0

sa2(s) ds.

Theorem 3.1. Suppose that (H1) (H2) hold,

0 < αi < 1/η(3.1)
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and

0 < βi < (1− αiη)/(1− η) for i = 1, 2,

and let p and q be positive numbers such that

1

p
+

1

q
= 1.

(i) If A1f
0
1 < γ3B1f

∞
1 and A2f

0
2 < γ3B2f

∞
2 , then for each

(λ1, λ2) ∈
(

1

pγ3B1f∞
1

,
1

pA1f0
1

)
×
(

1

qγ3B2f∞
2

,
1

qA2f0
2

)
,

problem (1.1) has at least one positive solution.

(ii) If f0
1 = f0

2 = 0 and f∞
1 = f∞

2 = ∞, then for any

(λ1, λ2) ∈ (0,∞)× (0,∞),

problem (1.1) has at least one positive solution.

(iii) If f∞
1 = f∞

2 = ∞ and 0 < f0
1 , f

0
2 < ∞, then for each

(λ1, λ2) ∈
(
0,

1

pA1f0
1

)
×
(
0,

1

qA2f0
2

)
,

problem (1.1) has at least one positive solution.

(iv) If f0
1 = f0

2 = 0 and 0 < f∞
1 , f∞

2 < ∞, then for each

(λ1, λ2) ∈
(

1

pγ3B1f∞
1

,∞
)
×
(

1

qγ3B2f∞
2

,∞
)
,

problem (1.1) has at least one positive solution.

Proof. Since the proof of (ii) (iv) is similar to the proof of (i), we
only prove (i). Let

(λ1, λ2) ∈
(

1

pγ3B1f∞
1

,
1

pA1f0
1

)
×
(

1

qγ3B2f∞
2

,
1

qA2f0
2

)
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and choose ε > 0 such that

1

pγ3B1(f∞
1 − ε)

< λ1 <
1

pA1(f0
1 + ε)

(3.2)

and

1

qγ3B2(f∞
2 − ε)

< λ2 <
1

qA2(f0
2 + ε)

.(3.3)

By the definition of f0
1 , f

0
2 , there exists H1 > 0 such that

f1(x, y) ≤ (f0
1 + ε)(x+ y) for x, y ≥ 0 with x+ y ∈ [0, H1],

and

f2(x, y) ≤ (f0
2 + ε)(x+ y) for x, y ≥ 0 with x+ y ∈ [0, H1].

Let (u, v) ∈ K1 × K2 with ‖(u, v)‖ = H1; from (3.2) and (3.3), we
obtain

T1(u, v)(t) ≤ λ1β1t

(1 − α1η)− β1(1− η)

×
∫ η

0

(η − s)a1(s)f1(u(s), v(s)) ds

+
λ1(t+ β1η)

(1− α1η)− β1(1− η)

×
∫ 1

0

(1 − s)a1(s)f1(u(s), v(s)) ds

≤ λ1β1

(1 − α1η)− β1(1− η)

×
∫ 1

0

(1 − s)a1(s)f1(u(s), v(s)) ds

+
λ1(1 + β1η)

(1− α1η)− β1(1− η)

×
∫ 1

0

(1 − s)a1(s)f1(u(s), v(s)) ds
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=
λ1(1 + β1 + β1η)

(1 − α1η)− β1(1− η)

×
∫ 1

0

(1 − s)a1(s)f1(u(s), v(s)) ds

≤ λ1(1 + β1 + β1η)

(1 − α1η)− β1(1− η)

×
∫ 1

0

(1 − s)a1(s)(f
0
1 + ε)(u(s) + v(s)) ds

≤ λ1A1(f
0
1 + ε)‖(u, v)‖ ≤ 1

p
‖(u, v)‖.

As a result, ‖T1(u, v)‖ ≤ (1/p)‖(u, v)‖.
Similarly, we have

T2(u, v)(t) ≤ λ2β2t

(1 − α2η)− β2(1− η)

×
∫ η

0

(η − s)a2(s)f2(u(s), v(s)) ds

+
λ2(t+ β2η)

(1− α2η)− β2(1− η)

×
∫ 1

0

(1 − s)a2(s)f2(u(s), v(s)) ds

≤ λ2β2

(1 − α2η)− β2(1− η)

×
∫ 1

0

(1 − s)a2(s)f2(u(s), v(s)) ds

+
λ2(1 + β2η)

(1− α2η)− β2(1− η)

×
∫ 1

0

(1 − s)a2(s)f2(u(s), v(s)) ds

=
λ2(1 + β2 + β2η)

(1 − α2η)− β2(1− η)

×
∫ 1

0

(1 − s)a2(s)f2(u(s), v(s)) ds

≤ λ2(1 + β2 + β2η)

(1 − α2η)− β2(1− η)
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×
∫ 1

0

(1 − s)a2(s)(f
0
2 + ε)(u(s) + v(s)) ds

≤ λ2A2(f
0
2 + ε)‖(u, v)‖

≤ 1

q
‖(u, v)‖.

Therefore, ‖T2(u, v)‖ ≤ (1/q)‖(u, v)‖.
Combining the above two inequalities, we obtain

‖T (u, v) ‖ = ‖T1 (u, v) ‖+ ‖T2 (u, v) ‖
≤

(
1

p
+

1

q

)
‖(u, v)‖

= ‖(u, v)‖.

Let Ω1 = {(u, v) ∈ C([0, 1],R2) : ‖(u, v)‖ < H1}; then

(3.4) ‖T (u, v)‖ ≤ ‖(u, v)‖, for u ∈ K ∩ ∂Ω1.

Also, from the definitions of f∞
1 and f∞

2 , there exists a Ĥ2 > 0 such
that

f1(x, y) ≥ (f∞
1 − ε)(x + y) for x, y ≥ 0 with x+ y ∈ [Ĥ2,∞),

and

f2(x, y) ≥ (f∞
2 − ε)(x + y) for x, y ≥ 0 with x+ y ∈ [Ĥ2,∞).

Set H2 = max{2H1, Ĥ2/γ3}, and let Ω2 = {(u, v) ∈ C([0, 1],R2) :
‖(u, v)‖ < H2}. If (u, v) ∈ K1 × K2 with ‖(u, v)‖ = H2, then

mint∈[0,1](u(t) + v(t)) ≥ γ1‖u‖ + γ2‖v‖ ≥ γ3‖(u, v)‖ ≥ Ĥ2. We then
have

T1(u, v)(0) = − λ1β1

(1 − α1η)− β1(1− η)

×
∫ η

0

(η − s)a1(s)f1(u(s), v(s)) ds

+
λ1β1η

(1− α1η)− β1(1 − η)
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×
∫ 1

0

(1− s)a1(s)f1(u(s), v(s)) ds

≥ − λ1β1

(1 − α1η)− β1(1− η)

×
∫ η

0

(η − s)a1(s)f1(u(s), v(s)) ds

+
λ1β1η

(1− α1η)− β1(1 − η)

×
∫ η

0

(1− s)a1(s)f1(u(s), v(s)) ds

=
λ1β1(1− η)

(1− α1η)− β1(1− η)

×
∫ η

0

sa1(s)f1(u(s), v(s)) ds

≥ λ1β1(1− η)

(1− α1η)− β1(1− η)

×
∫ η

0

sa1(s)(f
∞
1 − ε)(u(s) + v(s)) ds

≥ λ1γ3B1(f
∞
1 − ε)‖(u, v)‖

≥ 1

p
‖(u, v)‖.

Consequently, ‖T1(u, v)‖ ≥ (1/p)‖(u, v)‖ for (u, v) ∈ K1 ×K2 ∩ ∂Ω2.

Similarly, we have

T2(u, v)(0) = − λ2β2

(1 − α2η)− β2(1− η)

×
∫ η

0

(η − s)a2(s)f2(u(s), v(s)) ds

+
λ2β2η

(1− α2η)− β2(1 − η)

×
∫ 1

0

(1− s)a2(s)f2(u(s), v(s)) ds

≥ − λ2β2

(1 − α2η)− β2(1− η)
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×
∫ η

0

(η − s)a2(s)f2(u(s), v(s)) ds

+
λ2β2η

(1− α2η)− β2(1 − η)

×
∫ η

0

(1− s)a2(s)f2(u(s), v(s)) ds

=
λ2β2(1− η)

(1− α2η)− β2(1− η)

×
∫ η

0

sa2(s)f2(u(s), v(s)) ds

≥ λ2β2(1− η)

(1− α2η)− β2(1− η)

×
∫ η

0

sa2(s)(f
∞
2 − ε)(u(s) + v(s)) ds

≥ λ2γ3B2(f
∞
2 − ε)‖(u, v)‖

≥ 1

q
‖(u, v)‖.

Thus, ‖T2(u, v)‖ ≥ (1/q)‖(u, v)‖ for (u, v) ∈ K1 ×K2 ∩ ∂Ω2.

Combining the above two inequalities yields

‖T (u, v) ‖ = ‖T1 (u, v) ‖+ ‖T2 (u, v) ‖
≥

(
1

p
+

1

q

)
‖(u, v)‖ = ‖(u, v)‖.

It follows from part (i) of Theorem 1.1 that T has a fixed point (u, v)
with H1 ≤ ‖(u, v)‖ ≤ H2 in K1 ×K1 ∩ (Ω2 \ Ω1).

The proof of the following theorem is similar to that of Theorem 3.1,
and so we omit the details.

Theorem 3.2. Suppose that (H1) (H2) hold,

0 < αi < 1/η and 0 < βi < (1− αiη)/(1− η) for i = 1, 2,

and let p and q be positive numbers such that

1

p
+

1

q
= 1.
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(i) If A1f
∞
1 < γ3B1f

0
1 and A2f

∞
2 < γ3B2f

0
2 , then for each

(λ1, λ2) ∈
(

1

pγ3B1f0
1

,
1

pA1f∞
1

)
×
(

1

qγ3B2f0
2

,
1

qA2f∞
2

)
,

problem (1.1) has at least one positive solution.

(ii) If f0
1 = f0

2 = ∞ and f∞
1 = f∞

2 = 0, then for any

(λ1, λ2) ∈ (0,∞)× (0,∞),

problem (1.1) has at least one positive solution.

(iii) If f0
1 = f0

2 = ∞ and 0 < f∞
1 , f∞

2 < ∞, then for each

(λ1, λ2) ∈
(
0,

1

pA1f∞
1

)
×
(
0,

1

qA2f∞
2

)
,

problem (1.1) has at least one positive solution.

(iv) If f∞
1 = f∞

2 = 0 and 0 < f0
1 , f

0
2 < ∞, then for each

(λ1, λ2) ∈
(

1

pγ3B1f0
1

,∞
)
×
(

1

qγ3B2f0
2

,∞
)
,

problem (1.1) has at least one positive solution.

Remark 3.1. There appears to be a misprint in the statement of parts
(3) and (4) of Theorem 3.2 of Ma [13]. As written there, the resulting
eigenvalue intervals are degenerate. In view of Theorem 3.2 above, it
is easy to see what the correct statements should be.

Remark 3.2. It would be interesting to extend the results here to
four-point problems like the one considered by Henderson et al. in [7],
or to systems of higher order equations such as those considered by
Henderson and Ntouyas [5], or to problems on time scales like the one
considered by Luo and Ma [12].

4. Example. In this final section we present an example to illustrate
the applicability of our results.
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Example 4.1. Consider the boundary value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−u′′ = λ1 (2 + 4t2) (u+v)[1+270(u+v)]
1+u+v t ∈ (0, 1),

−v′′ = λ2 (1 + t) (u+v)[567(u+v)2+e−(u+v)]
(u+v)2+1 t ∈ (0, 1),

u(0) = 1
2u(

2
3 ), u(1) = 1

4u(
2
3 ),

v(0) = 1
3v(

2
3 ), v(1) = 3

4v(
2
3 ),

where λ1, λ2 > 0 are positive parameters. We take p = q = 2. It is
easy to check that (3.1) holds, γ1 = 1/10, γ2 = 1/9, f0

1 = 1, f∞
1 = 270,

f0
2 = 1 and f∞

2 = 567. A simple calculation shows that A1 = 11/3,
B1 = 13/81, A2 = 8/3 and B2 = 52/567. By part (i) of Theorem 3.1,
the boundary value problem (4.1) has at least one positive solution if

(λ1, λ2) ∈
(

3

26
,
3

22

)
×
(

5

52
,
3

16

)
.
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