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ON SOME FUNCTIONAL EQUATIONS
ARISING FROM (m,n)-JORDAN DERIVATIONS
AND COMMUTATIVITY OF PRIME RINGS

MAJA FOŠNER AND JOSO VUKMAN

ABSTRACT. The purpose of this paper is to prove the
following result. Let m,n ≥ 1 be some fixed integers with
m �= n, and let R be a prime ring with (m + n)2 < char (R).
Suppose a nonzero additive mapping D : R → R exists
satisfying the relation (m+ n)2D(x3) = m(3m+ n)D(x)x2 +
4mnxD(x)x+n(3n+m)x2D(x) for all x ∈ R. In this case D
is a derivation and R is commutative.

1. Introduction. Throughout, R will represent an associative ring
with center Z(R). Given an integer n ≥ 2, a ring R is said to be
n-torsion free, if, for x ∈ R, nx = 0 implies x = 0. As usual, the
commutator xy − yx will be denoted by [x, y]. Recall that a ring R is
prime if, for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0
and is semiprime in the case where aRa = (0) implies a = 0. An
additive mapping D : R → R, where R is an arbitrary ring, is called a
derivation if D(xy) = D(x)y+xD(y) holds for all pairs x, y ∈ R, and is
called a Jordan derivation in the case where D(x2) = D(x)x+xD(x) is
fulfilled for all x ∈ R. Obviously, any derivation is a Jordan derivation.
The converse in general is not true. Herstein [14] has proved that any
Jordan derivation on a prime ring with char (R) �= 2 is a derivation.
A brief proof of Herstein’s result can be found in [9]. Cusack [11]
has proved Herstein’s theorem for 2-torsion free semiprime rings (see
[5] for an alternative proof). It should be mentioned that Herstein’s
theorem has been fairly generalized by Beidar, Brešar, Chebotar and
Martindale in [1]. An additive mapping D : R → R is called a left
derivation if D(xy) = yD(x) + xD(y) holds for all pairs x, y ∈ R and
is called a left Jordan derivation (or Jordan left derivation) in the case
where D(x2) = 2xD(x) is fulfilled for all x ∈ R. The concepts of left
derivation and left Jordan derivation were introduced by Brešar and
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Vukman in [10]. One can easily prove (see [10]) that the existence
of a nonzero left derivation on a prime ring forces the ring to be
commutative. Moreover, we have the following result.

Let R be a prime ring, and let D : R → R be a nonzero left
Jordan derivation. If char (R) �= 2, then D is a derivation and R is
commutative.

The result we have just mentioned was first proved by Brešar and
Vukman [10] under the additional assumption that char (R) �= 3. Later
on, Deng [12] proved that the assumption char (R) �= 3 is superfluous.

Vukman [17] has proved that in the case where a left Jordan deriva-
tion D : R → R exists, where R is a 2-torsion free semiprime ring, then
D is a derivation which maps R into Z(R).

The concept of left Jordan derivation and related results are con-
nected with the theory of commuting and centralizing mappings. A
mapping F , which maps a ring R into itself, is called centralizing on R
in the case where [F (x), x] ∈ Z(R) holds for all x ∈ R. In a special case
where [F (x), x] = 0 is fulfilled for all x ∈ R, F is called commuting on
R. A classical result of Posner (Posner’s second theorem) [15] states
that the existence of a nonzero centralizing derivation D : R → R,
where R is a prime ring, forces the ring to be commutative.

Let m ≥ 0, n ≥ 0 with m + n �= 0 some fixed integers. An additive
mapping D : R → R, where R is an arbitrary ring, is called an (m,n)-
Jordan derivation in the case where

(m+ n)D(x2) = 2mD(x)x+ 2nxD(x)

holds for all x ∈ R.

2. Results. The concept of the (m,n)-Jordan derivation was
introduced by Vukman in [18]. This concept covers the concept of left
Jordan derivation as well as the concept of Jordan derivation. More
precisely, (0, 1)-Jordan derivation is a left Jordan derivation and (1, 1)-
Jordan derivation on a 2-torsion free ring is a Jordan derivation.

Vukman [18] has recently proved the following result.

Theorem 1. Let m ≥ 1, n ≥ 1 be some fixed integers with m �= n,
and let R be a prime ring with char (R) �= 2mn(m+n)(m−n). Suppose
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D : R → R is a nonzero (m,n)-Jordan derivation. If char (R) = 0 or
char (R) > 3, then D is a derivation and R is commutative.

One can prove (see [18] for the details) that any (m,n)-Jordan
derivation on arbitrary 2-torsion free ring R satisfies the following
relation

(1)
(m+ n)2D(x3) = m(3m+ n)D(x)x2

+ 4mnxD(x)x+ n(3n+m)x2D(x), x ∈ R.

In the case m = n �= 0, R is 2 and m-torsion the torsion free ring,
the above relation reduces to

(2) D(x3) = D(x)x2 + xD(x)x + x2D(x), x ∈ R.

Beidar, Brešar, Chebotar and Martindale [1, Theorem 4.4] have
proved that in the case where there exists an additive mappingD : R →
R, where R is a prime ring with char (R) �= 2 satisfying relation (2) for
all x ∈ R, then D is a derivation (actually they proved a much more
general result). In this paper we consider the functional equation (1)
in case m �= n. More precisely, it is our aim in this paper to prove the
following result.

Theorem 2. Let m ≥ 1, n ≥ 1 be some fixed integers with m �= n,
and let R be a prime ring with (m + n)2 < char (R). Suppose that
D : R → R is a nonzero additive mapping satisfying the relation

(3)
(m+ n)2D(x3) = m(3m+ n)D(x)x2

+ 4mnxD(x)x + n(3n+m)x2D(x)

for all x ∈ R. In this case D is a derivation and R is commutative.

For the proof of Theorem 2 we need Theorem 3 below, which is
of independent interest. Our result is obtained as an application of
the theory of functional identities (Brešar-Beidar-Chebotar theory).
We refer the reader to [7] for an introductory account on functional
identities and to [8] for full treatment of this theory.
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Let R be a ring, and let X be a subset of R. By C(X) we denote
the set {r ∈ R | [r,X ] = 0}. Let m ∈ N, and let E : Xm−1 → R,
p : Xm−2 → R be arbitrary mappings. In the case where m = 1, this
should be understood as that E is an element in R and p = 0. Let
1 ≤ i < j ≤ m, and define Ei, pij , pji : Xm → R by

Ei(xm) = E(x1, . . . , xi−1, xi+1, . . . , xm),

pij(xm) = pji(xm) = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xm),

where xm = (x1, . . . , xm) ∈ Xm.

Let I, J ⊆ {1, . . . ,m}, and, for each i ∈ I, j ∈ J let Ei, Fj : X
m−1 →

R be arbitrary mappings. Consider the functional identities

∑
i∈I

Ei
i(xm)xi +

∑
j∈J

xjF
j
j (xm) = 0, (xm ∈ Xm),(4)

∑
i∈I

Ei
i(xm)xi +

∑
j∈J

xjF
j
j (xm) ∈ C(X), (xm ∈ Xm).(5)

A natural possibility when (4) and (5) are fulfilled is when there
exist mappings pij : Xm−2 → R, i ∈ I, j ∈ J , i �= j, and
λk : Xm−1 → C(X), k ∈ I ∪ J , such that

(6)

Ei
i(xm) =

∑
j∈J,j �=i

xjp
ij
ij(xm) + λi

i(xm),

F j
j (xm) = −

∑
i∈I,j �=i

pijij(xm)xi − λj
j(xm),

λk = 0 if k /∈ I ∩ J

for all xm ∈ Xm, i ∈ I, j ∈ J . We shall say that every solution of form
(6) is a standard solution of (4) and (5).

The case where one of the sets I or J is empty is not excluded. The
sum over the empty set of indices should be simply read as zero. So,
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when J = 0 (respectively I = 0) (4) and (5) reduce to

∑
i∈I

Ei
i(xm)xi = 0(7)

(
respectively

∑
j∈J

xjF
j
j (xm) = 0

)
, (xm ∈ Xm),

∑
i∈I

Ei
i(xm)xi ∈ C(X)(8)

(
respectively

∑
j∈J

xjF
j
j (xm) ∈ C(X)

)
, (xm ∈ Xm).

In that case the (only) standard solution is

(9) Ei = 0, i ∈ I (respectively Fj = 0, j ∈ J).

A d-freeness of X will play an important role in this paper. For a
definition of d-freeness, we refer the reader to [4]. Let us mention that
a prime ring R is a d-free subset of its maximal right ring of quotients,
unless R satisfies the standard polynomial identity of degree less than
2d (see [2, Theorem 2.4]).

Let R be a ring, and let

p(x1, x2, x3) =
∑
π∈S3

xπ(1)xπ(2)xπ(3)

be a fixed multilinear polynomial in noncommutative indeterminates
x1, x2, x3. Further, let L be a subset of R closed under p, i.e., p(x3) ∈ L
for all x1, x2, x3 ∈ L, where x3 = (x1, x2, x3). We shall consider a
mapping D : L → R satisfying

(10)

(m+ n)2D(p(x3)) = m(3m+ n)
∑
π∈S3

D(xπ(1))xπ(2)xπ(3)

+ 4mn
∑
π∈S3

xπ(1)D(xπ(2))xπ(3)

+ n(3n+m)
∑
π∈S3

xπ(1)xπ(2)D(xπ(3))
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for all x1, x2, x3 ∈ L. Let us mention that the idea of considering the
expression [p(x3), p(y3)] in its proof is taken from [3] and was used in
[13] as well.

Theorem 3. Let L be a 6-free Lie subring of R closed under p. If
D : L → R is an additive mapping satisfying (10), then p ∈ C(L) and
λ : L → C(L) exist such that (m+ n)2n(3n+m)D(x) = px+ λ(x) for
all x ∈ L.

Proof. Note that, for any a ∈ L and x3 ∈ L3, we have

[p(x3), a] = p([x1, a], x2, x3) + p(x1, [x2, a], x3) + p(x1, x2, [x3, a]).

Thus,

(m+ n)2D[p(x3), a] = (m+ n)2D(p([x1, a], x2, x3))

+ (m+ n)2D(p(x1, [x2, a], x3))

+ (m+ n)2D(p(x1, x2, [x3, a])).

Using (10), it follows that

(m+ n)2D[p(x3), a] = m(3m+ n)
∑
π∈S3

D[xπ(1), a]xπ(2)xπ(3)

+ 4mn
∑
π∈S3

[xπ(1), a]D(xπ(2))xπ(3)

+ n(3n+m)
∑
π∈S3

[xπ(1), a]xπ(2)D(xπ(3))

+m(3m+ n)
∑
π∈S3

D(xπ(1))[xπ(2), a]xπ(3)

+ 4mn
∑
π∈S3

xπ(1)D[xπ(2), a]xπ(3)

+ n(3n+m)
∑
π∈S3

xπ(1)[xπ(2), a]D(xπ(3))

+m(3m+ n)
∑
π∈S3

D(xπ(1))xπ(2)[xπ(3), a]

+ 4mn
∑
π∈S3

xπ(1)D(xπ(2))[xπ(3), a]

+ n(3n+m)
∑
π∈S3

xπ(1)xπ(2)D[xπ(3), a].
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Thus,

(11)

(m+ n)2D[p(x3), a] = m(3m+ n)
∑
π∈S3

D[xπ(1), a]xπ(2)xπ(3)

+ 4mn
∑
π∈S3

[xπ(1), a]D(xπ(2))xπ(3)

+ n(3n+m)
∑
π∈S3

[xπ(1)xπ(2), a]D(xπ(3))

+m(3m+ n)
∑
π∈S3

D(xπ(1))[xπ(2)xπ(3), a]

+ 4mn
∑
π∈S3

xπ(1)D[xπ(2), a]xπ(3)

+ 4mn
∑
π∈S3

xπ(1)D(xπ(2))[xπ(3), a]

+ n(3n+m)
∑
π∈S3

xπ(1)xπ(2)D[xπ(3), a].

In particular,

(12) (m+ n)2D[p(x3), p(y3)]

= m(3m+ n)
∑
π∈S3

D[xπ(1), p(y3)]xπ(2)xπ(3)

+ 4mn
∑
π∈S3

[xπ(1), p(y3)]D(xπ(2))xπ(3)

+ n(3n+m)
∑
π∈S3

[xπ(1)xπ(2), p(y3)]D(xπ(3))

+m(3m+ n)
∑
π∈S3

D(xπ(1))[xπ(2)xπ(3), p(y3)]

+ 4mn
∑
π∈S3

xπ(1)D[xπ(2), p(y3)]xπ(3)

+ 4mn
∑
π∈S3

xπ(1)D(xπ(2))[xπ(3), p(y3)]

+ n(3n+m)
∑
π∈S3

xπ(1)xπ(2)D[xπ(3), p(y3)]

for all x3, y3 ∈ L3. For i = 1, 2, 3 we also have (by (11))
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ϕ(xπ(i)) = (m+ n)2D[xπ(i), p(y3)]

= −(m+ n)2D[p(y3), xπ(i)]

= m(3m+ n)
∑
σ∈S3

D[xπ(i), yσ(1)]yσ(2)yσ(3)

+ 4mn
∑
σ∈S3

[xπ(i), yσ(1)]D(yσ(2))yσ(3)

+ n(3n+m)
∑
σ∈S3

[xπ(i), yσ(1)yσ(2)]D(yσ(3))

+m(3m+ n)
∑
σ∈S3

D(yσ(1))[xπ(i), yσ(2)yσ(3)]

+ 4mn
∑
σ∈S3

yσ(1)D[xπ(i), yσ(2)]yσ(3)

+ 4mn
∑
σ∈S3

yσ(1)D(yσ(2))[xπ(i), yσ(3)]

+ n(3n+m)
∑
σ∈S3

yσ(1)yσ(2)D[xπ(i), yσ(3)]

for all y3 ∈ L3. Therefore, (12) can be written as

(m+ n)4D[p(x3), p(y3)]
(13)

= m(3m+ n)
∑
π∈S3

ϕ(xπ(1))xπ(2)xπ(3)

+ (m+ n)24mn
∑
π∈S3

[xπ(1), p(y3)]D(xπ(2))xπ(3)

+ (m+ n)2n(3n+m)
∑
π∈S3

[xπ(1)xπ(2), p(y3)]D(xπ(3))

+ (m+ n)2m(3m+ n)
∑
π∈S3

D(xπ(1))[xπ(2)xπ(3), p(y3)]

+ 4mn
∑
π∈S3

xπ(1)ϕ(xπ(2))xπ(3)
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+ (m+ n)24mn
∑
π∈S3

xπ(1)D(xπ(2))[xπ(3), p(y3)]

+ n(3n+m)
∑
π∈S3

xπ(1)xπ(2)ϕ(xπ(3))

for all x3, y3 ∈ L3. On the other hand, using [p(x3), p(y3)] =
−[p(y3), p(x3)], we get from the above identity

(14) (m+ n)4D[p(x3), p(y3)]

= m(3m+ n)
∑
σ∈S3

ϕ′(yσ(1))yσ(2)yσ(3)

+ (m+ n)24mn
∑
σ∈S3

[p(x3), yσ(1)]D(yσ(2))yσ(3)

+ (m+ n)2n(3n+m)
∑
σ∈S3

[p(x3), yσ(1)yσ(2)]D(yσ(3))

+ (m+ n)2m(3m+ n)
∑
σ∈S3

D(yσ(1))[p(x3), yσ(2)yσ(3)]

+ 4mn
∑
σ∈S3

yσ(1)ϕ
′(yσ(2))yσ(3)

+ (m+ n)24mn
∑
σ∈S3

yσ(1)D(yσ(2))[p(x3), yσ(3)]

+ n(3n+m)
∑
σ∈S3

yσ(1)yσ(2)ϕ
′(yσ(3))

for all x3, y3 ∈ L3, where

ϕ(yσ(i))
′ = m(3m+ n)

∑
π∈S3

D[xπ(1), yσ(i)]xπ(2)xπ(3)

+ 4mn
∑
π∈S3

[xπ(1), yσ(i)]D(xπ(2))xπ(3)

+ n(3n+m)
∑
π∈S3

[xπ(1)xπ(2), yσ(i)]D(xπ(3))

+m(3m+ n)
∑
π∈S3

D(xπ(1))[xπ(2)xπ(3), yσ(i)]

+ 4mn
∑
π∈S3

xπ(1)D[xπ(2), yσ(i)]xπ(3)
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+ 4mn
∑
π∈S3

xπ(1)D(xπ(2))[xπ(3), yσ(i)]

+ n(3n+m)
∑
π∈S3

xπ(1)xπ(2)D[xπ(3), yσ(i)]

for all x3 ∈ L3. Let s : Z → Z be a mapping defined by s(i) = i − 3.
For each σ ∈ S3 the mapping s−1σs : {4, 5, 6} → {4, 5, 6} is denoted
by σ. Comparing identities (13) and (14) and writing x3+i instead of
yi, i = 1, 2, 3, we can express the so-obtained relation as

6∑
i=1

Ei
i(x6)xi +

6∑
j=1

xjF
j
j (x6) = 0,

for all x6 = (x1, x2, x3, x4, x5, x6) ∈ L6. We can prove that p ∈ L and
a mapping λ : L → C(L) exist such that

(15) (m+ n)2m(3m+ n)D(x) = xp+ λ(x)

for all x ∈ L. Similarly, we can show that q ∈ L and a mapping
μ : L → C(L) exist such that

(16) (m+ n)2n(3n+m)D(x) = qx+ μ(x)

for all x ∈ L. Thus,

n(3n+m)(m+ n)2m(3m+ n)D(x)

= n(3n+m)xp+ n(3n+m)λ(x),

m(3m+ n)(m+ n)2n(3n+m)D(x)

= m(3m+ n)qx+m(3m+ n)μ(x),

for all x ∈ L. Comparing these two identities, we arrive at

n(3n+m)xp−m(3m+ n)qx ∈ C(L)

for all x ∈ L. It follows that n(3n+m)p = m(3m+ n)q ∈ C(L), which
yields p, q ∈ C(L). Thereby, the proof is completed.
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We are now in a position to prove Theorem 2.

Proof. The complete linearization of (3) gives us (10). First suppose
that R is not a PI ring (satisfying the standard polynomial identity of
degree less than 6). According to Theorem 3, p ∈ C and λ : R → C
exist such that

(m+ n)2m(3m+ n)D(x) = px+ λ(x)

for all x ∈ R. Thus,

x2(2(m+ n)2px+ 3(m+ n)2λ(x)) = (m+ n)2λ(x3),

which yields
x2(2px+ 3λ(x)) = λ(x3)

for all x ∈ R. A complete linearization of this identity leads to

∑
π∈S3

xπ(1)xπ(2)

(
2pxπ(3) + 3λ(xπ(3))

)
= λ(p(x3))

for all x1, x2, x3 ∈ R. Since R is not a PI ring, it follows that

(17) 2px+ 3λ(x) = 0

for all x ∈ R. Thus, [2px, y] = 0 for all x, y ∈ R, which in turn implies
[x, y]zp = 0 for all x, y, z ∈ R. By the primeness of R, it follows that
R is commutative or p = 0. The second relation gives us λ(x) = 0 for
all x ∈ R by (17). Thus, D = 0. Suppose now that [x, y] = 0 for all
x, y ∈ R. Using (17) it follows that λ(x)y − λ(y)x = 0 for all x, y ∈ R,
which implies λ = 0. Consequently, D = 0.

Assume now that R is a PI ring. It is well known, that in this case,
R has a nonzero center (see [16]). Let c be a nonzero central element.
Pick any x ∈ R, and set x1 = x2 = cx and x3 = x in (10). We arrive
at

(m+ n)2D(6c2x3) = m(3m+ n)c(4D(cx)x2 + 2cD(x)x2)

+ 4mnc(4xD(cx)x+ 2cxD(x)x)

+ n(3n+m)c(4x2D(cx) + 2cx2D(x)).
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On the other hand, setting x1 = x2 = c and x3 = x3 in (10), we obtain

(m+ n)2D(6c2x3) = m(3m+ n)c(4D(c)x3 + 2cD(x3))

+ 4mnc(2D(c)x3 + 2cD(x3) + 2x3D(c))

+ n(3n+m)c(2cD(x3) + 4x3D(c)).

Comparing the so-obtained relations, we get

(18)

0 = m(3m+ n)(D(cx)x2 − cD(x)x2 −D(c)x3)

+ 2mn(2xD(cx)x − 2cxD(x)x −D(c)x3 − x3D(c))

+ n(3n+m)(x2D(cx)− cx2D(x)− x3D(c))

for all x ∈ R. In the case where x = c, we have

(19) D(c2) = 2cD(c).

The complete linearization of (18) and setting x1 = x and x2 = x3 = c
in the so-obtained identity yields

6(m+ n)2D(cx) = (2m(3m+ n) + 4mn)D(c)x

+ (2n(3n+m) + 4mn)xD(c)

+ 6(m+ n)2cD(x)

for all x ∈ R. Hence,

(20) (m+ n)(D(cx) − cD(x)) = mD(c)x+ nxD(c)

for all x ∈ R.

Putting cx instead of x in (3), we get

(21)

(m+ n)2D(c3x3) = m(3m+ n)c2D(cx)x2

+ 4mnc2xD(cx)x

+ n(3n+m)c2x2D(cx)

for all x ∈ R. On the other hand, setting x1 = x2 = c and x3 = cx3 in
(10), we obtain

(22)

(m+ n)2D(c3x3) = (m+ n)2c2D(cx3)

+ 2m(m+ n)c2D(c)x3

+ 2n(m+ n)c2x3D(c)
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for all x ∈ R. Note that, by (20),

(m+ n)2D(cx3) = (m+ n)((m+ n)cD(x3)

+mD(c)x3 + nx3D(c))

= m(3m+ n)cD(x)x2

+ 4mncxD(x)x+ n(3n+m)cx2D(x)

+m(m+ n)D(c)x3 + n(m+ n)x3D(c).

Comparing identities (21) and (22), we arrive at

(23) m(3m+ n)(D(cx) − cD(x))x2

+ 4mnx(D(cx)− cD(x))x

+ n(3n+m)x2(D(cx) − cD(x))

= 3m(m+ n)D(c)x3 + 3n(m+ n)x3D(c)

for all x ∈ R. Multiplying this relation by (m + n) and using (20), it
follows that

m(3m+ n)(mD(c)x + nxD(c))x2

+ 4mnx(mD(c)x+ nxD(c))x

+ n(3n+m)x2(mD(c)x+ nxD(c))

= 3m(m+ n)2D(c)x3 + 3n(m+ n)2x3D(c),

which in turn implies

(5m+ 3n)D(c)x3 + (3m+ 5n)x3D(c)

= (m+ 7n)x2D(c)x+ (7m+ n)xD(c)x2

for all x ∈ R. After a complete linearization and putting x1 = x2 = x
and x3 = c in this new identity, we obtain [[x,D(c)], x] = 0 for all
x ∈ R. Using Posner’s second theorem, it follows that [x,D(c)] = 0 for
all x ∈ R. From (20), we get

(24) D(cx) = D(c)x + cD(x)

for all x ∈ R. Pick any x ∈ R, and set x1 = c and x2 = x3 = x in (10).
We arrive at

6(m+ n)2D(cx2) = m(3m+ n)(4D(x)xc+ 2D(c)x2)

+ 4mn(2cD(x)x+ 2xD(x)c + 2xD(c)x)

+ n(3n+m)(4cxD(x) + 2x2D(c))
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for all x ∈ R. By (24), we have 6(m+n)2D(cx2) = 6(m+n)2(D(c)x2+
cD(x2)) for all x ∈ R. Comparing the so-obtained identities, we arrive
at

(25) (m+ n)D(x2) = 2mD(x)x+ 2nxD(x)

for all x ∈ R.

The linearization of relation (25) gives us

(26)
(m+ n)D(xy + yx) = 2mD(x)y

+ 2mD(y)x+ 2nxD(y) + 2nyD(x)

for all x, y ∈ R. Now, putting (m + n)2x3 for y in relation (26) and
applying (3), we obtain after some calculations
(27)
(m+ n)3D(x4) = (4m3 + 3m2n+mn2)D(x)x3

+ (7m2n+mn2)xD(x)x2 + (7mn2 +m2n)x2D(x)x

+ (4n3 + 3mn2 +m2n)x3D(x)

for all x ∈ R. On the other hand, putting (m+ n)x2 for x in (21), we
obtain

(28)
(m+ n)3D(x4) = 4m2(m+ n)D(x)x3 + 4mn(m+ n)xD(x)x2

+ 4mn(m+ n)x2D(x)x + 4n2(m+ n)x3D(x)

for all x ∈ R. By comparing (23) and (24), we obtain

(29) mn(n−m)D(x)x3 + 3mn(m− n)xD(x)x2+

3mn(n−m)x2D(x)x+mn(m− n)x3D(x) = 0

for all x ∈ R. Whence, it follows that

D(x)x3 − 3xD(x)x2 + 3x2D(x)x − x3D(x) = 0

for all x ∈ R, which can be written in the form

[[[D(x), x], x], x] = 0

for all x ∈ R. By the result of Brešar [6], it follows that [D(x), x] = 0
holds for all x ∈ R, which makes it possible to replace D(x)x in (25)
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with xD(x). We therefore have (m+n)D(x2) = 2(m+n)xD(x) for all
x ∈ R, which reduces to D(x2) = 2xD(x), x ∈ R. Again applying the
fact thatD is commuting onR, we arrive atD(x2) = D(x)x+xD(x) for
all x ∈ R. In other words, D is a Jordan derivation, whence it follows
that D is a derivation by Herstein’s theorem. Thus, D is a nonzero
commuting derivation. By Posner’s second theorem, R is commutative.
Thereby the proof of the theorem is complete.
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