ON SOME FUNCTIONAL EQUATIONS ARISING FROM (m, n)-JORDAN DERIVATIONS AND COMMUTATIVITY OF PRIME RINGS

MAJA FOŠNER AND JOSO VUKMAN

Abstract

The purpose of this paper is to prove the following result. Let $m, n \geq 1$ be some fixed integers with $m \neq n$, and let R be a prime ring with $(m+n)^{2}<\operatorname{char}(R)$. Suppose a nonzero additive mapping $D: R \rightarrow R$ exists satisfying the relation $(m+n)^{2} D\left(x^{3}\right)=m(3 m+n) D(x) x^{2}+$ $4 m n x D(x) x+n(3 n+m) x^{2} D(x)$ for all $x \in R$. In this case D is a derivation and R is commutative.

1. Introduction. Throughout, R will represent an associative ring with center $Z(R)$. Given an integer $n \geq 2$, a ring R is said to be n-torsion free, if, for $x \in R, n x=0$ implies $x=0$. As usual, the commutator $x y-y x$ will be denoted by $[x, y]$. Recall that a ring R is prime if, for $a, b \in R, a R b=(0)$ implies that either $a=0$ or $b=0$ and is semiprime in the case where $a R a=(0)$ implies $a=0$. An additive mapping $D: R \rightarrow R$, where R is an arbitrary ring, is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$, and is called a Jordan derivation in the case where $D\left(x^{2}\right)=D(x) x+x D(x)$ is fulfilled for all $x \in R$. Obviously, any derivation is a Jordan derivation. The converse in general is not true. Herstein [14] has proved that any Jordan derivation on a prime ring with $\operatorname{char}(R) \neq 2$ is a derivation. A brief proof of Herstein's result can be found in [9]. Cusack [11] has proved Herstein's theorem for 2 -torsion free semiprime rings (see [5] for an alternative proof). It should be mentioned that Herstein's theorem has been fairly generalized by Beidar, Brešar, Chebotar and Martindale in [1]. An additive mapping $D: R \rightarrow R$ is called a left derivation if $D(x y)=y D(x)+x D(y)$ holds for all pairs $x, y \in R$ and is called a left Jordan derivation (or Jordan left derivation) in the case where $D\left(x^{2}\right)=2 x D(x)$ is fulfilled for all $x \in R$. The concepts of left derivation and left Jordan derivation were introduced by Brešar and
[^0]Vukman in $[\mathbf{1 0}]$. One can easily prove (see [10]) that the existence of a nonzero left derivation on a prime ring forces the ring to be commutative. Moreover, we have the following result.

Let R be a prime ring, and let $D: R \rightarrow R$ be a nonzero left Jordan derivation. If $\operatorname{char}(R) \neq 2$, then D is a derivation and R is commutative.

The result we have just mentioned was first proved by Brešar and Vukman [10] under the additional assumption that char $(R) \neq 3$. Later on, Deng [12] proved that the assumption char $(R) \neq 3$ is superfluous.

Vukman [17] has proved that in the case where a left Jordan derivation $D: R \rightarrow R$ exists, where R is a 2 -torsion free semiprime ring, then D is a derivation which maps R into $Z(R)$.

The concept of left Jordan derivation and related results are connected with the theory of commuting and centralizing mappings. A mapping F, which maps a ring R into itself, is called centralizing on R in the case where $[F(x), x] \in Z(R)$ holds for all $x \in R$. In a special case where $[F(x), x]=0$ is fulfilled for all $x \in R, F$ is called commuting on R. A classical result of Posner (Posner's second theorem) [15] states that the existence of a nonzero centralizing derivation $D: R \rightarrow R$, where R is a prime ring, forces the ring to be commutative.
Let $m \geq 0, n \geq 0$ with $m+n \neq 0$ some fixed integers. An additive mapping $D: R \rightarrow R$, where R is an arbitrary ring, is called an (m, n) Jordan derivation in the case where

$$
(m+n) D\left(x^{2}\right)=2 m D(x) x+2 n x D(x)
$$

holds for all $x \in R$.
2. Results. The concept of the (m, n)-Jordan derivation was introduced by Vukman in [18]. This concept covers the concept of left Jordan derivation as well as the concept of Jordan derivation. More precisely, $(0,1)$-Jordan derivation is a left Jordan derivation and $(1,1)$ Jordan derivation on a 2 -torsion free ring is a Jordan derivation.

Vukman $[\mathbf{1 8}]$ has recently proved the following result.

Theorem 1. Let $m \geq 1, n \geq 1$ be some fixed integers with $m \neq n$, and let R be a prime ring with char $(R) \neq 2 m n(m+n)(m-n)$. Suppose
$D: R \rightarrow R$ is a nonzero (m, n)-Jordan derivation. If char $(R)=0$ or $\operatorname{char}(R)>3$, then D is a derivation and R is commutative.

One can prove (see [18] for the details) that any (m, n)-Jordan derivation on arbitrary 2 -torsion free ring R satisfies the following relation

$$
\begin{align*}
(m+n)^{2} D\left(x^{3}\right)= & m(3 m+n) D(x) x^{2} \tag{1}\\
& +4 m n x D(x) x+n(3 n+m) x^{2} D(x), \quad x \in R
\end{align*}
$$

In the case $m=n \neq 0, R$ is 2 and m-torsion the torsion free ring, the above relation reduces to

$$
\begin{equation*}
D\left(x^{3}\right)=D(x) x^{2}+x D(x) x+x^{2} D(x), \quad x \in R \tag{2}
\end{equation*}
$$

Beidar, Brešar, Chebotar and Martindale [1, Theorem 4.4] have proved that in the case where there exists an additive mapping $D: R \rightarrow$ R, where R is a prime ring with char $(R) \neq 2$ satisfying relation (2) for all $x \in R$, then D is a derivation (actually they proved a much more general result). In this paper we consider the functional equation (1) in case $m \neq n$. More precisely, it is our aim in this paper to prove the following result.

Theorem 2. Let $m \geq 1, n \geq 1$ be some fixed integers with $m \neq n$, and let R be a prime ring with $(m+n)^{2}<\operatorname{char}(R)$. Suppose that $D: R \rightarrow R$ is a nonzero additive mapping satisfying the relation

$$
\begin{align*}
(m+n)^{2} D\left(x^{3}\right)= & m(3 m+n) D(x) x^{2} \\
& +4 m n x D(x) x+n(3 n+m) x^{2} D(x) \tag{3}
\end{align*}
$$

for all $x \in R$. In this case D is a derivation and R is commutative.

For the proof of Theorem 2 we need Theorem 3 below, which is of independent interest. Our result is obtained as an application of the theory of functional identities (Brešar-Beidar-Chebotar theory). We refer the reader to [7] for an introductory account on functional identities and to $[\mathbf{8}]$ for full treatment of this theory.

Let R be a ring, and let X be a subset of R. By $C(X)$ we denote the set $\{r \in R \mid[r, X]=0\}$. Let $m \in \mathbf{N}$, and let $E: X^{m-1} \rightarrow R$, $p: X^{m-2} \rightarrow R$ be arbitrary mappings. In the case where $m=1$, this should be understood as that E is an element in R and $p=0$. Let $1 \leq i<j \leq m$, and define $E^{i}, p^{i j}, p^{j i}: X^{m} \rightarrow R$ by

$$
\begin{aligned}
E^{i}\left(\bar{x}_{m}\right) & =E\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}\right) \\
p^{i j}\left(\bar{x}_{m}\right)=p^{j i}\left(\bar{x}_{m}\right) & =\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m}\right),
\end{aligned}
$$

where $\bar{x}_{m}=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$.
Let $I, J \subseteq\{1, \ldots, m\}$, and, for each $i \in I, j \in J$ let $E_{i}, F_{j}: X^{m-1} \rightarrow$ R be arbitrary mappings. Consider the functional identities

$$
\begin{array}{ll}
\sum_{i \in I} E_{i}^{i}\left(\bar{x}_{m}\right) x_{i}+\sum_{j \in J} x_{j} F_{j}^{j}\left(\bar{x}_{m}\right)=0, & \left(\bar{x}_{m} \in X^{m}\right) \\
\sum_{i \in I} E_{i}^{i}\left(\bar{x}_{m}\right) x_{i}+\sum_{j \in J} x_{j} F_{j}^{j}\left(\bar{x}_{m}\right) \in C(X), & \left(\bar{x}_{m} \in X^{m}\right) \tag{5}
\end{array}
$$

A natural possibility when (4) and (5) are fulfilled is when there exist mappings $p_{i j}: X^{m-2} \rightarrow R, i \in I, j \in J, i \neq j$, and $\lambda_{k}: X^{m-1} \rightarrow C(X), k \in I \cup J$, such that

$$
\begin{align*}
& E_{i}^{i}\left(\bar{x}_{m}\right)=\sum_{j \in J, j \neq i} x_{j} p_{i j}^{i j}\left(\bar{x}_{m}\right)+\lambda_{i}^{i}\left(\bar{x}_{m}\right), \\
& F_{j}^{j}\left(\bar{x}_{m}\right)=-\sum_{i \in I, j \neq i} p_{i j}^{i j}\left(\bar{x}_{m}\right) x_{i}-\lambda_{j}^{j}\left(\bar{x}_{m}\right), \tag{6}\\
& \lambda_{k}=0 \quad \text { if } \quad k \notin I \cap J
\end{align*}
$$

for all $\bar{x}_{m} \in X^{m}, i \in I, j \in J$. We shall say that every solution of form (6) is a standard solution of (4) and (5).

The case where one of the sets I or J is empty is not excluded. The sum over the empty set of indices should be simply read as zero. So,
when $J=0$ (respectively $I=0$) (4) and (5) reduce to

$$
\begin{gather*}
\sum_{i \in I} E_{i}^{i}\left(\bar{x}_{m}\right) x_{i}=0 \tag{7}\\
\left(\text { respectively } \sum_{j \in J} x_{j} F_{j}^{j}\left(\bar{x}_{m}\right)=0\right), \quad\left(\bar{x}_{m} \in X^{m}\right), \\
\sum_{i \in I} E_{i}^{i}\left(\bar{x}_{m}\right) x_{i} \in C(X) \tag{8}\\
\left(\text { respectively } \sum_{j \in J} x_{j} F_{j}^{j}\left(\bar{x}_{m}\right) \in C(X)\right), \quad\left(\bar{x}_{m} \in X^{m}\right) .
\end{gather*}
$$

In that case the (only) standard solution is

$$
\begin{equation*}
E_{i}=0, \quad i \in I \quad\left(\text { respectively } F_{j}=0, \quad j \in J\right) \tag{9}
\end{equation*}
$$

A d-freeness of X will play an important role in this paper. For a definition of d-freeness, we refer the reader to [4]. Let us mention that a prime ring R is a d-free subset of its maximal right ring of quotients, unless R satisfies the standard polynomial identity of degree less than $2 d$ (see [2, Theorem 2.4]).

Let R be a ring, and let

$$
p\left(x_{1}, x_{2}, x_{3}\right)=\sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)} x_{\pi(3)}
$$

be a fixed multilinear polynomial in noncommutative indeterminates x_{1}, x_{2}, x_{3}. Further, let L be a subset of R closed under p, i.e., $p\left(\bar{x}_{3}\right) \in L$ for all $x_{1}, x_{2}, x_{3} \in L$, where $\bar{x}_{3}=\left(x_{1}, x_{2}, x_{3}\right)$. We shall consider a mapping $D: L \rightarrow R$ satisfying

$$
\begin{align*}
(m+n)^{2} D\left(p\left(\bar{x}_{3}\right)\right)= & m(3 m+n) \sum_{\pi \in S_{3}} D\left(x_{\pi(1)}\right) x_{\pi(2)} x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left(x_{\pi(2)}\right) x_{\pi(3)} \tag{10}\\
& +n(3 n+m) \sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)} D\left(x_{\pi(3)}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in L$. Let us mention that the idea of considering the expression $\left[p\left(\bar{x}_{3}\right), p\left(\bar{y}_{3}\right)\right]$ in its proof is taken from $[\mathbf{3}]$ and was used in [13] as well.

Theorem 3. Let L be a 6 -free Lie subring of R closed under p. If $D: L \rightarrow R$ is an additive mapping satisfying (10), then $p \in C(L)$ and $\lambda: L \rightarrow C(L)$ exist such that $(m+n)^{2} n(3 n+m) D(x)=p x+\lambda(x)$ for all $x \in L$.

Proof. Note that, for any $a \in L$ and $\bar{x}_{3} \in L^{3}$, we have

$$
\left[p\left(\bar{x}_{3}\right), a\right]=p\left(\left[x_{1}, a\right], x_{2}, x_{3}\right)+p\left(x_{1},\left[x_{2}, a\right], x_{3}\right)+p\left(x_{1}, x_{2},\left[x_{3}, a\right]\right)
$$

Thus,

$$
\begin{aligned}
(m+n)^{2} D\left[p\left(\bar{x}_{3}\right), a\right]= & (m+n)^{2} D\left(p\left(\left[x_{1}, a\right], x_{2}, x_{3}\right)\right) \\
& +(m+n)^{2} D\left(p\left(x_{1},\left[x_{2}, a\right], x_{3}\right)\right) \\
& +(m+n)^{2} D\left(p\left(x_{1}, x_{2},\left[x_{3}, a\right]\right)\right) .
\end{aligned}
$$

Using (10), it follows that

$$
\begin{aligned}
(m+n)^{2} D\left[p\left(\bar{x}_{3}\right), a\right]= & m(3 m+n) \sum_{\pi \in S_{3}} D\left[x_{\pi(1)}, a\right] x_{\pi(2)} x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}}\left[x_{\pi(1)}, a\right] D\left(x_{\pi(2)}\right) x_{\pi(3)} \\
& +n(3 n+m) \sum_{\pi \in S_{3}}\left[x_{\pi(1)}, a\right] x_{\pi(2)} D\left(x_{\pi(3)}\right) \\
& +m(3 m+n) \sum_{\pi \in S_{3}} D\left(x_{\pi(1)}\right)\left[x_{\pi(2)}, a\right] x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left[x_{\pi(2)}, a\right] x_{\pi(3)} \\
& +n(3 n+m) \sum_{\pi \in S_{3}} x_{\pi(1)}\left[x_{\pi(2)}, a\right] D\left(x_{\pi(3)}\right) \\
& +m(3 m+n) \sum_{\pi \in S_{3}} D\left(x_{\pi(1)}\right) x_{\pi(2)}\left[x_{\pi(3)}, a\right] \\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left(x_{\pi(2)}\right)\left[x_{\pi(3)}, a\right] \\
& +n(3 n+m) \sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)} D\left[x_{\pi(3)}, a\right] .
\end{aligned}
$$

Thus,

$$
\begin{align*}
(m+n)^{2} D\left[p\left(\bar{x}_{3}\right), a\right]= & m(3 m+n) \sum_{\pi \in S_{3}} D\left[x_{\pi(1)}, a\right] x_{\pi(2)} x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}}\left[x_{\pi(1)}, a\right] D\left(x_{\pi(2)}\right) x_{\pi(3)} \\
& +n(3 n+m) \sum_{\pi \in S_{3}}\left[x_{\pi(1)} x_{\pi(2)}, a\right] D\left(x_{\pi(3)}\right) \\
& +m(3 m+n) \sum_{\pi \in S_{3}} D\left(x_{\pi(1)}\right)\left[x_{\pi(2)} x_{\pi(3)}, a\right] \tag{11}\\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left[x_{\pi(2)}, a\right] x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left(x_{\pi(2)}\right)\left[x_{\pi(3)}, a\right] \\
& +n(3 n+m) \sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)} D\left[x_{\pi(3)}, a\right] .
\end{align*}
$$

In particular,
(12) $(m+n)^{2} D\left[p\left(\bar{x}_{3}\right), p\left(\bar{y}_{3}\right)\right]$

$$
\begin{aligned}
= & m(3 m+n) \sum_{\pi \in S_{3}} D\left[x_{\pi(1)}, p\left(\bar{y}_{3}\right)\right] x_{\pi(2)} x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}}\left[x_{\pi(1)}, p\left(\bar{y}_{3}\right)\right] D\left(x_{\pi(2)}\right) x_{\pi(3)} \\
& +n(3 n+m) \sum_{\pi \in S_{3}}\left[x_{\pi(1)} x_{\pi(2)}, p\left(\bar{y}_{3}\right)\right] D\left(x_{\pi(3)}\right) \\
& +m(3 m+n) \sum_{\pi \in S_{3}} D\left(x_{\pi(1)}\right)\left[x_{\pi(2)} x_{\pi(3)}, p\left(\bar{y}_{3}\right)\right] \\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left[x_{\pi(2)}, p\left(\bar{y}_{3}\right)\right] x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left(x_{\pi(2)}\right)\left[x_{\pi(3)}, p\left(\bar{y}_{3}\right)\right] \\
& +n(3 n+m) \sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)} D\left[x_{\pi(3)}, p\left(\bar{y}_{3}\right)\right]
\end{aligned}
$$

for all $\bar{x}_{3}, \bar{y}_{3} \in L^{3}$. For $i=1,2,3$ we also have (by (11))

$$
\begin{aligned}
\varphi\left(x_{\pi(i)}\right)= & (m+n)^{2} D\left[x_{\pi(i)}, p\left(\bar{y}_{3}\right)\right] \\
= & -(m+n)^{2} D\left[p\left(\bar{y}_{3}\right), x_{\pi(i)}\right] \\
= & m(3 m+n) \sum_{\sigma \in S_{3}} D\left[x_{\pi(i)}, y_{\sigma(1)}\right] y_{\sigma(2)} y_{\sigma(3)} \\
& +4 m n \sum_{\sigma \in S_{3}}\left[x_{\pi(i)}, y_{\sigma(1)}\right] D\left(y_{\sigma(2)}\right) y_{\sigma(3)} \\
& +n(3 n+m) \sum_{\sigma \in S_{3}}\left[x_{\pi(i)}, y_{\sigma(1)} y_{\sigma(2)}\right] D\left(y_{\sigma(3)}\right) \\
& +m(3 m+n) \sum_{\sigma \in S_{3}} D\left(y_{\sigma(1)}\right)\left[x_{\pi(i)}, y_{\sigma(2)} y_{\sigma(3)}\right] \\
& +4 m n \sum_{\sigma \in S_{3}} y_{\sigma(1)} D\left[x_{\pi(i)}, y_{\sigma(2)}\right] y_{\sigma(3)} \\
+ & 4 m n \sum_{\sigma \in S_{3}} y_{\sigma(1)} D\left(y_{\sigma(2)}\right)\left[x_{\pi(i)}, y_{\sigma(3)}\right] \\
+ & n(3 n+m) \sum_{\sigma \in S_{3}} y_{\sigma(1)} y_{\sigma(2)} D\left[x_{\pi(i)}, y_{\sigma(3)}\right]
\end{aligned}
$$

for all $\bar{y}_{3} \in L^{3}$. Therefore, (12) can be written as

$$
\begin{align*}
&(m+n)^{4} D\left[p\left(\bar{x}_{3}\right), p\left(\bar{y}_{3}\right)\right] \tag{13}\\
&= m(3 m+n) \sum_{\pi \in S_{3}} \varphi\left(x_{\pi(1)}\right) x_{\pi(2)} x_{\pi(3)} \\
&+(m+n)^{2} 4 m n \sum_{\pi \in S_{3}}\left[x_{\pi(1)}, p\left(\bar{y}_{3}\right)\right] D\left(x_{\pi(2)}\right) x_{\pi(3)} \\
&+(m+n)^{2} n(3 n+m) \sum_{\pi \in S_{3}}\left[x_{\pi(1)} x_{\pi(2)}, p\left(\bar{y}_{3}\right)\right] D\left(x_{\pi(3)}\right) \\
&+(m+n)^{2} m(3 m+n) \sum_{\pi \in S_{3}} D\left(x_{\pi(1)}\right)\left[x_{\pi(2)} x_{\pi(3)}, p\left(\bar{y}_{3}\right)\right] \\
&+4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} \varphi\left(x_{\pi(2)}\right) x_{\pi(3)}
\end{align*}
$$

$$
\begin{aligned}
& +(m+n)^{2} 4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left(x_{\pi(2)}\right)\left[x_{\pi(3)}, p\left(\bar{y}_{3}\right)\right] \\
& +n(3 n+m) \sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)} \varphi\left(x_{\pi(3)}\right)
\end{aligned}
$$

for all $\bar{x}_{3}, \bar{y}_{3} \in L^{3}$. On the other hand, using $\left[p\left(\bar{x}_{3}\right), p\left(\bar{y}_{3}\right)\right]=$ $-\left[p\left(\bar{y}_{3}\right), p\left(\bar{x}_{3}\right)\right]$, we get from the above identity

$$
\begin{array}{rl}
(m+n)^{4} & D\left[p\left(\bar{x}_{3}\right), p\left(\bar{y}_{3}\right)\right] \tag{14}\\
= & m(3 m+n) \sum_{\sigma \in S_{3}} \varphi^{\prime}\left(y_{\sigma(1)}\right) y_{\sigma(2)} y_{\sigma(3)} \\
& +(m+n)^{2} 4 m n \sum_{\sigma \in S_{3}}\left[p\left(\bar{x}_{3}\right), y_{\sigma(1)}\right] D\left(y_{\sigma(2)}\right) y_{\sigma(3)} \\
& +(m+n)^{2} n(3 n+m) \sum_{\sigma \in S_{3}}\left[p\left(\bar{x}_{3}\right), y_{\sigma(1)} y_{\sigma(2)}\right] D\left(y_{\sigma(3)}\right) \\
& +(m+n)^{2} m(3 m+n) \sum_{\sigma \in S_{3}} D\left(y_{\sigma(1)}\right)\left[p\left(\bar{x}_{3}\right), y_{\sigma(2)} y_{\sigma(3)}\right] \\
& +4 m n \sum_{\sigma \in S_{3}} y_{\sigma(1)} \varphi^{\prime}\left(y_{\sigma(2)}\right) y_{\sigma(3)} \\
& +(m+n)^{2} 4 m n \sum_{\sigma \in S_{3}} y_{\sigma(1)} D\left(y_{\sigma(2)}\right)\left[p\left(\bar{x}_{3}\right), y_{\sigma(3)}\right] \\
& +n(3 n+m) \sum_{\sigma \in S_{3}} y_{\sigma(1)} y_{\sigma(2)} \varphi^{\prime}\left(y_{\sigma(3)}\right)
\end{array}
$$

for all $\bar{x}_{3}, \bar{y}_{3} \in L^{3}$, where

$$
\begin{aligned}
\varphi\left(y_{\sigma(i)}\right)^{\prime}= & m(3 m+n) \sum_{\pi \in S_{3}} D\left[x_{\pi(1)}, y_{\sigma(i)}\right] x_{\pi(2)} x_{\pi(3)} \\
& +4 m n \sum_{\pi \in S_{3}}\left[x_{\pi(1)}, y_{\sigma(i)}\right] D\left(x_{\pi(2)}\right) x_{\pi(3)} \\
& +n(3 n+m) \sum_{\pi \in S_{3}}\left[x_{\pi(1)} x_{\pi(2)}, y_{\sigma(i)}\right] D\left(x_{\pi(3)}\right) \\
& +m(3 m+n) \sum_{\pi \in S_{3}} D\left(x_{\pi(1)}\right)\left[x_{\pi(2)} x_{\pi(3)}, y_{\sigma(i)}\right] \\
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left[x_{\pi(2)}, y_{\sigma(i)}\right] x_{\pi(3)}
\end{aligned}
$$

$$
\begin{aligned}
& +4 m n \sum_{\pi \in S_{3}} x_{\pi(1)} D\left(x_{\pi(2)}\right)\left[x_{\pi(3)}, y_{\sigma(i)}\right] \\
& +n(3 n+m) \sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)} D\left[x_{\pi(3)}, y_{\sigma(i)}\right]
\end{aligned}
$$

for all $\bar{x}_{3} \in L^{3}$. Let $s: \mathbf{Z} \rightarrow \mathbf{Z}$ be a mapping defined by $s(i)=i-3$. For each $\sigma \in S_{3}$ the mapping $s^{-1} \sigma s:\{4,5,6\} \rightarrow\{4,5,6\}$ is denoted by $\bar{\sigma}$. Comparing identities (13) and (14) and writing x_{3+i} instead of $y_{i}, i=1,2,3$, we can express the so-obtained relation as

$$
\sum_{i=1}^{6} E_{i}^{i}\left(\bar{x}_{6}\right) x_{i}+\sum_{j=1}^{6} x_{j} F_{j}^{j}\left(\bar{x}_{6}\right)=0
$$

for all $\bar{x}_{6}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in L^{6}$. We can prove that $p \in L$ and a mapping $\lambda: L \rightarrow C(L)$ exist such that

$$
\begin{equation*}
(m+n)^{2} m(3 m+n) D(x)=x p+\lambda(x) \tag{15}
\end{equation*}
$$

for all $x \in L$. Similarly, we can show that $q \in L$ and a mapping $\mu: L \rightarrow C(L)$ exist such that

$$
\begin{equation*}
(m+n)^{2} n(3 n+m) D(x)=q x+\mu(x) \tag{16}
\end{equation*}
$$

for all $x \in L$. Thus,

$$
\begin{aligned}
n(3 n+m)(m+n)^{2} m(3 m+n) & D(x) \\
& =n(3 n+m) x p+n(3 n+m) \lambda(x) \\
m(3 m+n)(m+n)^{2} n(3 n+m) & D(x) \\
& =m(3 m+n) q x+m(3 m+n) \mu(x),
\end{aligned}
$$

for all $x \in L$. Comparing these two identities, we arrive at

$$
n(3 n+m) x p-m(3 m+n) q x \in C(L)
$$

for all $x \in L$. It follows that $n(3 n+m) p=m(3 m+n) q \in C(L)$, which yields $p, q \in C(L)$. Thereby, the proof is completed.

We are now in a position to prove Theorem 2.

Proof. The complete linearization of (3) gives us (10). First suppose that R is not a PI ring (satisfying the standard polynomial identity of degree less than 6). According to Theorem 3, $p \in C$ and $\lambda: R \rightarrow C$ exist such that

$$
(m+n)^{2} m(3 m+n) D(x)=p x+\lambda(x)
$$

for all $x \in R$. Thus,

$$
x^{2}\left(2(m+n)^{2} p x+3(m+n)^{2} \lambda(x)\right)=(m+n)^{2} \lambda\left(x^{3}\right),
$$

which yields

$$
x^{2}(2 p x+3 \lambda(x))=\lambda\left(x^{3}\right)
$$

for all $x \in R$. A complete linearization of this identity leads to

$$
\sum_{\pi \in S_{3}} x_{\pi(1)} x_{\pi(2)}\left(2 p x_{\pi(3)}+3 \lambda\left(x_{\pi(3)}\right)\right)=\lambda\left(p\left(\bar{x}_{3}\right)\right)
$$

for all $x_{1}, x_{2}, x_{3} \in R$. Since R is not a PI ring, it follows that

$$
\begin{equation*}
2 p x+3 \lambda(x)=0 \tag{17}
\end{equation*}
$$

for all $x \in R$. Thus, $[2 p x, y]=0$ for all $x, y \in R$, which in turn implies $[x, y] z p=0$ for all $x, y, z \in R$. By the primeness of R, it follows that R is commutative or $p=0$. The second relation gives us $\lambda(x)=0$ for all $x \in R$ by (17). Thus, $D=0$. Suppose now that $[x, y]=0$ for all $x, y \in R$. Using (17) it follows that $\lambda(x) y-\lambda(y) x=0$ for all $x, y \in R$, which implies $\lambda=0$. Consequently, $D=0$.

Assume now that R is a PI ring. It is well known, that in this case, R has a nonzero center (see [16]). Let c be a nonzero central element. Pick any $x \in R$, and set $x_{1}=x_{2}=c x$ and $x_{3}=x$ in (10). We arrive at

$$
\begin{aligned}
(m+n)^{2} D\left(6 c^{2} x^{3}\right)= & m(3 m+n) c\left(4 D(c x) x^{2}+2 c D(x) x^{2}\right) \\
& +4 m n c(4 x D(c x) x+2 c x D(x) x) \\
& +n(3 n+m) c\left(4 x^{2} D(c x)+2 c x^{2} D(x)\right)
\end{aligned}
$$

On the other hand, setting $x_{1}=x_{2}=c$ and $x_{3}=x^{3}$ in (10), we obtain

$$
\begin{aligned}
(m+n)^{2} D\left(6 c^{2} x^{3}\right)= & m(3 m+n) c\left(4 D(c) x^{3}+2 c D\left(x^{3}\right)\right) \\
& +4 m n c\left(2 D(c) x^{3}+2 c D\left(x^{3}\right)+2 x^{3} D(c)\right) \\
& +n(3 n+m) c\left(2 c D\left(x^{3}\right)+4 x^{3} D(c)\right)
\end{aligned}
$$

Comparing the so-obtained relations, we get

$$
\begin{align*}
0= & m(3 m+n)\left(D(c x) x^{2}-c D(x) x^{2}-D(c) x^{3}\right) \\
& +2 m n\left(2 x D(c x) x-2 c x D(x) x-D(c) x^{3}-x^{3} D(c)\right) \tag{18}\\
& +n(3 n+m)\left(x^{2} D(c x)-c x^{2} D(x)-x^{3} D(c)\right)
\end{align*}
$$

for all $x \in R$. In the case where $x=c$, we have

$$
\begin{equation*}
D\left(c^{2}\right)=2 c D(c) \tag{19}
\end{equation*}
$$

The complete linearization of (18) and setting $x_{1}=x$ and $x_{2}=x_{3}=c$ in the so-obtained identity yields

$$
\begin{aligned}
6(m+n)^{2} D(c x)= & (2 m(3 m+n)+4 m n) D(c) x \\
& +(2 n(3 n+m)+4 m n) x D(c) \\
& +6(m+n)^{2} c D(x)
\end{aligned}
$$

for all $x \in R$. Hence,

$$
\begin{equation*}
(m+n)(D(c x)-c D(x))=m D(c) x+n x D(c) \tag{20}
\end{equation*}
$$

for all $x \in R$.
Putting $c x$ instead of x in (3), we get

$$
\begin{align*}
(m+n)^{2} D\left(c^{3} x^{3}\right)= & m(3 m+n) c^{2} D(c x) x^{2} \\
& +4 m n c^{2} x D(c x) x \tag{21}\\
& +n(3 n+m) c^{2} x^{2} D(c x)
\end{align*}
$$

for all $x \in R$. On the other hand, setting $x_{1}=x_{2}=c$ and $x_{3}=c x^{3}$ in (10), we obtain

$$
\begin{align*}
(m+n)^{2} D\left(c^{3} x^{3}\right)= & (m+n)^{2} c^{2} D\left(c x^{3}\right) \\
& +2 m(m+n) c^{2} D(c) x^{3} \tag{22}\\
& +2 n(m+n) c^{2} x^{3} D(c)
\end{align*}
$$

for all $x \in R$. Note that, by (20),

$$
\begin{aligned}
(m+n)^{2} D\left(c x^{3}\right)= & (m+n)\left((m+n) c D\left(x^{3}\right)\right. \\
& \left.+m D(c) x^{3}+n x^{3} D(c)\right) \\
= & m(3 m+n) c D(x) x^{2} \\
& +4 m n c x D(x) x+n(3 n+m) c x^{2} D(x) \\
& +m(m+n) D(c) x^{3}+n(m+n) x^{3} D(c) .
\end{aligned}
$$

Comparing identities (21) and (22), we arrive at

$$
\begin{align*}
m(3 m+n)(D(c x)-c & D(x)) x^{2} \tag{23}\\
& +4 m n x(D(c x)-c D(x)) x \\
& +n(3 n+m) x^{2}(D(c x)-c D(x)) \\
= & 3 m(m+n) D(c) x^{3}+3 n(m+n) x^{3} D(c)
\end{align*}
$$

for all $x \in R$. Multiplying this relation by $(m+n)$ and using (20), it follows that

$$
\begin{aligned}
m(3 m+n)(m D(c) x+ & n x D(c)) x^{2} \\
& +4 m n x(m D(c) x+n x D(c)) x \\
& +n(3 n+m) x^{2}(m D(c) x+n x D(c)) \\
= & 3 m(m+n)^{2} D(c) x^{3}+3 n(m+n)^{2} x^{3} D(c)
\end{aligned}
$$

which in turn implies

$$
\begin{aligned}
(5 m+3 n) D(c) x^{3}+(3 m & +5 n) x^{3} D(c) \\
& =(m+7 n) x^{2} D(c) x+(7 m+n) x D(c) x^{2}
\end{aligned}
$$

for all $x \in R$. After a complete linearization and putting $x_{1}=x_{2}=x$ and $x_{3}=c$ in this new identity, we obtain $[[x, D(c)], x]=0$ for all $x \in R$. Using Posner's second theorem, it follows that $[x, D(c)]=0$ for all $x \in R$. From (20), we get

$$
\begin{equation*}
D(c x)=D(c) x+c D(x) \tag{24}
\end{equation*}
$$

for all $x \in R$. Pick any $x \in R$, and set $x_{1}=c$ and $x_{2}=x_{3}=x$ in (10). We arrive at

$$
\begin{aligned}
6(m+n)^{2} D\left(c x^{2}\right)= & m(3 m+n)\left(4 D(x) x c+2 D(c) x^{2}\right) \\
& +4 m n(2 c D(x) x+2 x D(x) c+2 x D(c) x) \\
& +n(3 n+m)\left(4 c x D(x)+2 x^{2} D(c)\right)
\end{aligned}
$$

for all $x \in R$. By (24), we have $6(m+n)^{2} D\left(c x^{2}\right)=6(m+n)^{2}\left(D(c) x^{2}+\right.$ $\left.c D\left(x^{2}\right)\right)$ for all $x \in R$. Comparing the so-obtained identities, we arrive at

$$
\begin{equation*}
(m+n) D\left(x^{2}\right)=2 m D(x) x+2 n x D(x) \tag{25}
\end{equation*}
$$

for all $x \in R$.
The linearization of relation (25) gives us

$$
\begin{align*}
(m+n) D(x y+y x)= & 2 m D(x) y \\
& +2 m D(y) x+2 n x D(y)+2 n y D(x) \tag{26}
\end{align*}
$$

for all $x, y \in R$. Now, putting $(m+n)^{2} x^{3}$ for y in relation (26) and applying (3), we obtain after some calculations

$$
\begin{align*}
(m+n)^{3} D\left(x^{4}\right)= & \left(4 m^{3}+3 m^{2} n+m n^{2}\right) D(x) x^{3} \tag{27}\\
& +\left(7 m^{2} n+m n^{2}\right) x D(x) x^{2}+\left(7 m n^{2}+m^{2} n\right) x^{2} D(x) x \\
& +\left(4 n^{3}+3 m n^{2}+m^{2} n\right) x^{3} D(x)
\end{align*}
$$

for all $x \in R$. On the other hand, putting $(m+n) x^{2}$ for x in (21), we obtain

$$
\begin{align*}
(m+n)^{3} D\left(x^{4}\right)= & 4 m^{2}(m+n) D(x) x^{3}+4 m n(m+n) x D(x) x^{2} \\
& +4 m n(m+n) x^{2} D(x) x+4 n^{2}(m+n) x^{3} D(x) \tag{28}
\end{align*}
$$

for all $x \in R$. By comparing (23) and (24), we obtain

$$
\begin{align*}
& m n(n-m) D(x) x^{3}+3 m n(m-n) x D(x) x^{2}+ \tag{29}\\
& \quad 3 m n(n-m) x^{2} D(x) x+m n(m-n) x^{3} D(x)=0
\end{align*}
$$

for all $x \in R$. Whence, it follows that

$$
D(x) x^{3}-3 x D(x) x^{2}+3 x^{2} D(x) x-x^{3} D(x)=0
$$

for all $x \in R$, which can be written in the form

$$
[[[D(x), x], x], x]=0
$$

for all $x \in R$. By the result of Brešar [6], it follows that $[D(x), x]=0$ holds for all $x \in R$, which makes it possible to replace $D(x) x$ in (25)
with $x D(x)$. We therefore have $(m+n) D\left(x^{2}\right)=2(m+n) x D(x)$ for all $x \in R$, which reduces to $D\left(x^{2}\right)=2 x D(x), x \in R$. Again applying the fact that D is commuting on R, we arrive at $D\left(x^{2}\right)=D(x) x+x D(x)$ for all $x \in R$. In other words, D is a Jordan derivation, whence it follows that D is a derivation by Herstein's theorem. Thus, D is a nonzero commuting derivation. By Posner's second theorem, R is commutative. Thereby the proof of the theorem is complete.

REFERENCES

1. K.I. Beidar, M. Brešar, M.A. Chebotar and W.S. Martindale 3rd, On Herstein's Lie map conjectures II, J. Algebra 238 (2001), 239-264.
2. K.I. Beidar and M.A. Chebotar, On functional identities and d-free subsets of rings I, Comm. Algebra 28 (2000), 3925-3952.
3. K.I. Beidar and Y. Fong, On additive isomorphisms of prime rings preserving polynomials, J. Algebra 217 (1999), 650-667.
4. K.I. Beidar, A.V. Mikhalev and M.A. Chebotar, Functional identities in rings and their applications, Russian Math. Surv. 59 (2004), 403-428.
5. M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
6. - On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641-649.
7. -_, Functional identities: A survey, Contemp. Math. 259 (2000), 93-109.
8. M. Brešar, M.A. Chebotar and W.S. Martindale 3rd, Functional identities, Birkhauser Verlag, Basel, 2007.
9. M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.
10. -, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16.
11. J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
12. Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145-147.
13. M. Fošner and J. Vukman, Equations related to derivations on prime rings, to appear.
14. I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
15. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
16. L.H. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223.
17. J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequat. Math. 75 (2008), 260-266.
18. J. Vukman, On (m, n)-Jordan derivations and commutativity of prime rings, Demonstr. Math. 41 (2008), 773-778.

Faculty of logistics, University of Maribor, Mariborska cesta 7, 3000 Celje, Slovenia
Email address: maja.fosner@uni-mb.si
Department of Mathematics and Computer Science, Faculty of Natural Sciences And Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
Email address: joso.vukman@uni-mb.si

[^0]: 2010 AMS Mathematics subject classification. Primary 16N60, 39B05.
 Keywords and phrases. Prime ring, semiprime ring, derivation, Jordan derivation, left derivation, left Jordan derivation, (m, n)-Jordan derivation.

 Received by the editors on December 18, 2009.

