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REGULARIZATION OF
SIMULTANEOUS BINARY COLLISIONS
IN SOME GRAVITATIONAL SYSTEMS

PREDRAG PUNOSEVAC AND QIUDONG WANG

ABSTRACT. In this paper we construct coordinate trans-
forms that regularize the singularities of simultaneous binary
collisions in a pair of decoupled Kepler problems and in a re-
stricted collinear four-body problem. This is the first time
regularization transforms are introduced for collisions involv-
ing more than one colliding pair in the study of the Newtonian
gravitational systems.

1. Introduction. Let us start with the equations of the collinear
four-body problem. We assume that the physical space is one-
dimensional, and x1, =3, x3 and x4 are the respective positions of
four gravitational masses my, mo, m3 and my4. Let the interactions
be governed by the Newtonian law of gravitations. Then we obtain the
following set of ordinary differential equations: let £ = 1,2, 3 and 4,

dZCEk oUu

(1) mk—dtz = a—mk

where U is the potential function,
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We call the space of z = (21,2, 23,24) € R* the space of positions.
Let A;j := {z € R%, z; = z;} and A := Uj<j<;<44;j. The potential
function U, and consequently equation (1) are singular on A.

Let z(t) = (z1(t),z2(t), z3(t), z4(t)) be a solution of equation (1)
defined on (t1,t2), and assume that x(t) — L = (L1, L2, L3, L4) as

t — t;. We say that z(t) has a singularity of collision at t = ¢y if
L € A. According to the locations of L in A, singularities of collision
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are put into the categories of (a) binary collisions, (b) simultaneous
binary collisions, (c) triple collisions and (d) four-body (total) collision.
Categories (a)—(d) are in fact the only singularities allowed by equation
(1) for x(t). In particular, we have a singularity of simultaneous binary
collision if L is such that Ly = Lo, L3 = L4 but Ly # L3. Let us
denote the set of L satisfying these restrictions as A2 34.

If a solution z(t) has a singularity of binary collision at to, then there
exists a new time s and an analytic function ¢ = #(s), such that for
some sy < oo satisfying t(s2) = t2, z(t(s)) as a function of s is analytic
at sa. In fact, it is well known that the singularities of binary collision
in (1) are easily removed by a change of variables, a process commonly
referred to as regularization of collisions.

The regularization of binary collisions played a pivotal role in Sund-
man’s construction of global power series solutions for the three-body
problem. Partly through the influences of Sundman’s work ([7, 9]),
regularization became an important theme. It turned out that the sin-
gularity of collisions of three bodies or more is entirely different from
that of two bodies. They are in general not regularizable. This was
originally proved by Siegel [6]. The underlining implications of Siegel’s
analysis on the phase space geometry have been thoroughly investi-
gated through the introduction of McGehee’s transformation [4], made
possible much progress, including the proofs on the existence of non-
collision singularities [3, 11], and the construction of global power series
solutions [10].

As to the issue of regularization, the singularity of simultaneous
binary collisions is the only case left open for investigations. On one
hand, studies based on Siegel’s analysis and McGehee’s transformation
[1, 2, 5, 8] have confirmed that the phase space geometry surrounding
the solutions of simultaneous binary collisions are almost identical to
that of two independent binary collisions. On the other hand, no
regularization transforms have been constructed so far, not even for
the system of decoupled Kepler problems.

In this paper we construct coordinate transforms that remove the
singularities of simultaneous binary collisions in a pair of decoupled
Kepler problems and in a restricted collinear four-body problem. To
the best of our knowledge, this is the first time regularization transforms
are introduced for collisions involving more than one colliding pair in



REGULARIZATION OF BINARY COLLISIONS 259

the study of Newtonian gravitational systems. On the other hand,
because of a hurdle posted by interactions between different colliding
pairs, we are not yet able to extend our construction of regularization
variables to the collinear four-body problem.

Let us now turn to two gravitational systems in which the regular-
ization transforms are constructed in this paper. Decoupled Kepler
problems, obtained by dropping the interactions between mass groups
{my, ma} and {ms, m4} in the collinear four-body problem, is studied
in Section 2. The restricted collinear four-body problem, obtained by
letting m; = my4 = 0, is studied in subsections 3.1-3.3. For a precise
statement of results, see Theorem 1 in subsection 2C and Theorem 2
in subsection 3.3. The difficulty we mentioned earlier in extending the
same construction to the collinear four-body problem is discussed in
subsection 3.4.

2. On a pair of decoupled Kepler problems. Let z;,z, € R*.
In this section we study the following set of differential equations

(2) d2I1 _ 7i d2$2 _ 7i
dt? z?’ dt? xd

These are the equations for a pair of decoupled Kepler problems. Let

dl‘l dxz
vy = —— Vg = W

dt’

We take (z1,x2,v1,v2) as phase variables to rewrite equation (2) as

) dm_, dw__1oodm ooode 1
a " dat 22’ a dt a2

For : = 1,2, let A; = {(1‘1,3?2) S (R2)+,l‘i = 0}, A = A;UAy and
A1 = A1 NAy. Positions in A\ Ay are positions of binary collision,
and those in A; 5 are positions of simultaneous binary collisions.

A. Preliminaries. Let us denote p = (z1, x2,v1,v2). Equation (3)
has two first integrals of energy
vi 1 v 1

4 s _ % 2
( ) o 2 :Ul, a2 2 xIo
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Let
Uy :={p = (z1,22,v1,12) € R*)T x R?: |au1], |aams| < p},

where p < 1 is positive. Throughout this section we fix p and consider
only solutions of equation (3) in U,. We also let

2
_ V25

F(a,u):/o ﬁ— 3 1+ X(a,u)],
where
(5) X(a,u) = i 236" a™u"”
~2n+3
and ¢, are such that
(6) (14a)"1/2 = i cnz”.
n=0

Lemma 2.1. Let p(t) = (z1(t), z2(t), v1(t),v2(t)) be a solution of
equation (3) in U,. Then
(7)

t = +(F(a, 21(t)) = F(ar,21(0))) = £(F(az, 22(t)) — F(az, 22(0)))

where £ indicates that there is a sign that could go either way.

Proof. We have from (4) that

t (L‘l(t) (L‘z(t)
/ dt _ :t/ d:l?l -4 d$2 :
0 21(0) v/2(a1 + (1/21)) 22000 v/ 2(az2 + (1/z2))

from which (7) follows. O

For t1,t2 > 0, let

Wl(tl) = {p = (1‘1,1‘2,1}1,1)2) S Up . F(al, .’El) = tl},
Wa(tz) = {p = (z1,22,v1,v2) €U, 1 F(az, z2) = ta}.
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Corollary 2.1. Let p(t) = (z1(t), z2(t), v1(t),v2(t)) be a solution
of equation (3) in U,. Then x1(t) — 0 as t — t; if and only if
p(0) € Wi(t1). Similarly, z2(t) — 0 as t — t5 if and only if
p(O) S Wg(tg).

Proof. Observe that Wy (t;) is defined by F(«ay,x1) = t1, an equation
obtained by letting ¢ = ¢;, z1(¢) = 0 in (7). The =+ sign in (7) is forced
to be negative since dxy/dt < 0 as t — t; . The situation for x5 is
similar. |

Let

Y = F(ag, 372) — F(O[l, 331)

(8) - ?/ [1+ X (az,z2)]

V2
— 5 a1+ X ()]

where a1, a2 are as in (4) and X (o, ) is as in (5). Y is a crucial new
variable. Let us now make the following observations.

(a) Let p(t) be a given solution of equation (3). Then

o) =0

(b) The algebraic variety defined by Y(p) = 0 and its backward
images in time form a co-dimensional one immersed sub-manifold
in phase space containing all solutions heading toward simultaneous
binary collisions.

(c) We can solve for z1/x2 and z2/x2 from (8) to obtain

o 2/§/ L+ X(az,2) — [(3v/2Y)/(223/)].
To 1+ X(ay,21) ’

(9)

2y _ 2/§/ L+ X(an,@1) + [(3v2Y)/(223/2)]
T1 1+ X (a2, ®2)

where X (o, z) is as in (5).
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B. A change of variables and the regularized equations. We
are now ready to introduce regularization variables. Let us denote the
new phase variables as q = (£1, &2, M1, 72, @1, 2,Y), and the new time
as 7.

First, (&1,m) and (§2,72) are determined by (z1,v1) and (z2,v2)
through

g
27

= ﬂ' x2 = g ’[}2 = @

& 2’ €2
These are the well known Levi-Civita changes of coordinates. Second,
(a1, aip) are defined by using (4) and Y by using (8). Third, 7 is defined

through

(11) dr = %(i + i) dt,

T T2

(10) X1 U1

and in reverse we have

1 1\ !
(12) dt = <§ + g) dT.

The new equations for q = (&1,&2,m1, 72,1, a2,Y) derived from
equation (3) are as follows.

dé, . 1 dny _ 2 .
(13) ar i1 a™ ar it f o
e 1 dny ,
(14) ar C1x R ar T Thazﬁzv
dOél o dOlQ A
(15) ? - 07 ? - 07
dy
where
fi= z/i/ L+ X1 [(3ea)/ (2" (2 + )]s 8" — (6Y /65)
- L+ [Ben) /@ e+ a)ager
. 2/§/ L+ 3 [(3en)/(27 (2 + )€ + (61 /&)
1+ o [Ben) /(220 1 8)Joges”
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In order for the solutions of the regularized equations (13)—(16) to rep-
resent the solutions of equation (3), we also need to impose constraints

(18) 26faq =7 — 4, 285, =m3 — 4
and
1 G n 3
[—+1212n n+ (3/2)) 2 36 }52
(19) Z_oo
- [_ " Zn; Pt 3/2)) nﬁ%n] 3t

Equation (18) is derived from (4) and (19) from (8).

Derivations of equations (13)—(16). Equations (15) and (16)
follow from the fact that a;,a; and Y are first integrals of equation
(3). For the first item of equation (13) we differentiate {2 = 2z to
obtain

i _ o _m
a & &
We have, by using (12),
o m

dr 1+ (£/€3)

We then substitute f; for £7/£2 using (9).
For the second item of equation (13) we differentiate 7 = v1£; to
obtain )
dm _ % cedi_u &
dt Yat T g 2
where equation (3) is used in obtaining the second equality. We then
use (4) and (12) to conclude

dn 2a1&;

dr 1+ (€2/€2)

We again substitute fi for £2/£2 by using (9). The derivations for
equations in (14) are similar. o
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Let

Vp - {q = (5174‘2777177727a17a2ay) : |C¥1£%|, |0[2§§‘ < 2:0}

be the correspondence of U, in phase space q, and let M, be the alge-
braic variety defined by (18) and (19) in V,. Our next lemma assures
that (18) and (19) are nature constraints for equations (13)—(16).

Lemma 2.2. Let q(7),7 € (11,72) be a solution of equations
(13)-(16) in V,. If {q(1),7 € (11,72)} N M, # @, then it is included
in M,.

Proof. Recall that q = (&1, &2, 71, M2, a1, a2,Y) are used to denote the
new phase variables and p = (z1, z3, v1, v2) the old phase variables. Let
q(7) be a solution of equations (13)—(16) and assume that q(7p) satisfies
(18) and (19). By using (10) we obtain a corresponding value py. Let
p(t) be the solution of equation (3) satisfying p(0) = po. We then use
(4), (8), (10) and

(20) r:¢0+%/0t<%(t)+%(t)>dt

to convert p(t) to a function of q in 7, which we denote as (7). We
caution that there is more than one way to make the last conversion
but we can always choose to make q(79) = q(79). We then observe that

(i) q(7) satisfies (13)—(16) by the derivation in the above, and by
uniqueness q(7) = q(7) for all T;
(ii) on the other hand, q(7) satisfies (18) and (19) by default. o

Equations (13)—(16) confined on M, are the reqularized equations we
seek for (3). Other solutions of equations (13)—(16) are not relevant.

Remark. It is sometimes helpful to use new equations obtained
from (13)—(16) by substitutions derived from constraints (18) and (19).
These new equations might look different but, confined on M,, the
vector field they define is the same as the one defined by the old
equations. For instance, replacing f; in equation (13) by £7/£3 while
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keeping all the other equations the same would give us a set of equations
that looks new but on M,, it is the same as (13)—(16).

C. Regularization result. We are now ready to prove

Theorem 1. Let p(t), t € (t1,t2) be a solution of equation (3) in
U,. Assume that p(t) — A ast —t,. Let 7(t) be defined by (20), and
let (), 7 € (11, 72) be the functions obtained from p(t) through (4),
(8) and (10). Then

(a) q(7) is a solution of equations (13)—(16) on M,;

(b) 73 := 7(t2) < 00, and q(72) :=lim__, - q(7) is well-defined; and

()

c) equations (13)—(16) defined on M, are real analytic at q(72).

Proof. (a) This follows from the derivations of equations (13)—(16) in
subsection 2B. We caution that (10) allows different ways to convert
p(t) to q(r) because & (= =£+/2z; by (10)) can assume different
signs. This is a well-known characteristic of Levi-Civita variables. For
definiteness, let us choose the positive sign so that & = v/2z;. We also
note that 7y in (20) is arbitrary.

(b) It is well known that, when a collision singularity occurs at ts,

U(t) == + ~ (t—t) 723
( ) Qﬁl(t) $2(t) ( 2)
From this it follows that
1 [t
7'2=T0+§ U(t)dt < oo.
0

Now, for q(72): ai1(72),a2(m2) and Y(r2) are integral constants
determined by initial conditions. Observe that acl (t) — a definite limit
ast — t5 , which we denote as z;(t2). We let &;(12) = /2z;(t2). Finally
for n;(12) we use n;(72) = vi(t2)/&i(m2) if &(2) # 0 (vi(t) — vi(t2) is a
definite limit in this case). If £;(m2) = 0, then nZ(m2) = 4 according to
(18), from which it follows that 7;(12) = —2. n;(72) is negative because
we have used a positive sign for &;(m).
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(c) We have three cases to consider depending on what happens at
tz: (].) .’L‘l(tz) =0 and xz(tz) = 0, (2) .’L‘l(tz) = 0 but Qﬁg(tg) 7é 0, and
(3) @2(t2) = 0 but x1(t2) # 0. They correspond to the cases of Y = 0,
Y > 0 and Y < 0 respectively.

Case Y = 0. This is the case of simultaneous binary collisions.
Set Y = 0 in equations (13) and (14). It is clear that the functions
on the right hand side are all analytic at the values of q(72) given in
the above. We conclude that the singularity of simultaneous binary
collisions is regularized.

Case Y < 0. This is a case of binary collision at which z3(t2) = 0. In
this case &1(m2) # 0, £&2(2) = 0. To see that this singularity is removed
in the first item of equation (13), we rewrite it as

(21) a8 _ més
Ty [RDEH T [on/ @ (/20 4y
&+ 7

(2/3) +Z Jlen/ (@ (n+(3/2))]ayed™
It is clear that £, = 0 is not a singularity of the function on the right

hand side because —4Y > 0 by assumption. The second item is handled
similarly.

For the first item of equation (14) we replace fa by £2/£% to rewrite
this equation as

& _ Eine
dr — §+&
(See the remark we made at the end of subsection 2B.) The function on
the right hand side is obviously real analytic at q(72) since & (12) # 0.

The argument for the second item follows the same line of reasoning.

Case Y > 0. Similar to the case Y < 0. O

Theorem 1 is a precise way to state that all singularities of collision
in equation (3) are removed by transferring to equations (13)—(16) on

M,

3. On a restricted four-body problem. In this section we
introduce regularization variables for the singularity of simultaneous
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binary collisions in a restricted four-body problem. New issues arise as
we move from the decoupled Kepler problems studied in Section 2 to
this restricted gravitational system that is not integrable.

3.1. Equations of motion. We consider gravitational particles
mq, Mo, m3 and my positioned at z; < xy < x3 < x4 respectively in
R. In this section we assume m; = my = 0. To simplify the writing
we also assume ms = m3 = 1. Our assumptions on mo and ms are
not necessary, and the construction presented in this section applies in
principle to arbitrary combinations of positive mo and ms.

Let
Uy = T2 — 71, U2 = T4 — T3, U=2T3 — T2
and v; = du;/dt for i = 1,2, v = du/dt. (u1,us,u,v1,ve,0) are the

phase variables. Let
1

u+u

K(u,u) =
We denote
Icl :K(ulaa)a ICZ :’C(u%a)? E:K(Ova)a

and write the equations of motion as

duy _oodvw_ 1 9K 9K
a v dt u? = Ouy ou’
du dv 1 0K, 0K
(22) duz _ v - 92 OR,
a Y dt u3 * duy  Ou’
@, ok
a7’ dt  “ou’
Let
14 1 14 1
(23) o = -y — e az = 50 e

It follows from (22) that

(24) doy (01 0K doy _ (0K, OK
a "\ ou,  9a) a2\ ou, ou )
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Remarks. (1) (u1,us2,4) € (R?)T x RT is now the space of positions
and Ay = {u; =uy =0, u € R1} is the singular set for simultaneous
binary collisions.

(2) Observe that we would get back to the decoupled Kepler problems
in Section 2 by letting K(u,u) = constant in equation (22).

(3) We intend to follow the ideas developed in Section 2. However,
because IC;, IC are non-trivial, «; are no longer first integrals. Conse-

quently, the correspondence of the new variable Y is much less straight
forward to define.

(4) Let us also note that, for the restricted four-body problem
introduced above, (0?K;)/(0u10uz) = 0 by design. The fact that
the correspondences of these mixed derivatives are not zero in the
full collinear four-body problem will post a major hurdle in similar
constructions of regularization variables, as we will see in subsection 3.4.

3.2. Variable Y: formal definition and convergence.

A. Outline of strategy. Let K > 1 be fixed and p < (100K%)~?
positive. In this section p = (u1, u2, @, v1,v2,v) are the phase variables
and

Uk, =P R) T xR®: uj,us < p; K~' <U < K; ||, |aa| < K}
We only consider solutions of equation (22) in U, ,.

Lemma 3.1. Let p(t), t € (t1,t2), be a solution of equation (22)
in Uk . Then the limits of u;, U,V are well defined as t — t;.
Furthermore, if u;(t) — u;(t2) # 0, then v;(t) has a well defined limit
ast —ty .

The proof of Lemma 3.1 is well documented. See, for instance, [7].
We have from (23) that

du1

V2(ar + (L/ur))

dt =+
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Let p(t) C Uk,, be a solution of equation (22). Integrating on both
sides we obtain

ul(t) du1

0 V2 (a1 + (1/u1))

where ¢; is such that uq(¢t;) = 0. Let us denote

(25) t—t, =+

du1
B /0 V2(a1 + (1/uy))

Since «; is no longer a first integral of equation (22), F' as written
above is not precisely a well-defined definite integral. Let us, however,
put this subtlety aside for now and treat F' formally as if it is well
defined. We then expand the integrand to obtain

2 3/2 n+ (1/2)
(26) F= + Cn af duy
73 Z

where ¢,,n > 0 are as in (6) in Section 2.

To each of the integrals in (26) (as well as the new ones we will soon
encounter), a degree is assigned according to the power of u; in the
integrand. For instance, the integral

u1
In :/ a? ?+( /Q)dul
0

is an integral of degree n + (1/2). Our strategy is to use integration by
parts together with equation (22) to replace all integrals in (26) with
integrals of degrees higher and higher to eventually write F' explicitly
in phase variables. Let us take I,, as an example. We have

1 “ n+(3/2)
I, = ng
n+(3/2) / arath

= anyrte2

n+(3/2) 1

n “o1doy ny(3/2)
- n-1771 d
n+ (3/2) / N T M b
1 n v n

— 1 g m / 19K niiarn) g,

n+ (3/2) n+ (3/2) duy

n 1Ok sy
. n—17"% d
* n+(3/2)/0 Mgt "
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where for the last equality we replaced day/duy by using (24). I, is
then the summation of a term that is explicit in u; and «; and two
integrals of one degree higher.

We now go one step further to transfer the new integrals obtained in
the above to integrals of degree even higher. We have for instance

Y L10KL ng3)2
I::A oy la—ulu1+( / )dU1

1 210K ny(s/2)
- n-19%1 4
n+ (5/2) /0 1 Ouy “

1 n 10K1 ni(s/2)
n+ (/20 Fu

-1 “ —2 0Ky n+(5/2) doy
- - n—27">1 1 d
2) ‘/0 A 8u1 1 du1 b

U1 82’C
n—1 1 n+(5/2)d
/2>/o T A
ul n_1 82IC1 n+(5/2) ?)\ dul
) Jo '

(e% ~ <U —
! 8u18u !

The first two integrals can be further converted to integrals of one
degree higher the same way. The last one, however, is with a new
factor vv, !, We will keep 9, which is bounded, therefore harmless, but
rewrite v, ' through (23) as

_ 1, 1p n. n+(1/2)
(27) U1 t= —=(uy"" + Z CnQ¥ Uy )
\/5 n=1

where ¢,, is as in (6). The third integral is then replaced by a sequence
of integrals of ascending degrees through (27).

Based on computations of a similar nature, we now proceed as follows.
Let us start with (26). First we replace the integral of degree 3/2 in
(26) by a function written explicitly in phase variables and a number
of integrals of higher degree. We then move up to replace all integrals
of degree 5/2 the same way and so on.? This process goes forever and,
at the end, we will be able to write F' explicitly as a function of uq,
a1, U and v. Let us also remember that, for the replacement process
described above to be meaningful, the infinite series we obtain at the
end must converge.
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B. A formal inductive process. We now formally introduce a
replacement process that is convergent following the strategy outlined
in subsection 3.2A for

F_L/ul duy
CV2)o ar+ (L)

Initially, we let
@ . L[2380, 5 (" nmt(/2)
(28) F=F = \/—5 §u1 + Z Cn Qg Uy dU1 .
n=1"0
Proposition 3.1. Let m > 3. We have

m+1
F=Fm .= Z < Z ﬁ”)(ul’al,a,%\))u?/Q

~

n=3 " j<S(m,n)

NS

n=m *;j<S(m,n)

(29)

U1

J

£ (w1, 00,4, a)u;‘”dm)
0

where
(a) on non-integral terms:

(i) for every j < g(m,n), there exist coefficients én,]- satisfying

|6’n]| < 10" and non-negative integers iy for k = 1 to 4 satisfying
1, < 2n such that

i

J

w1, 00,10, 0) = Cr 0157 (uy +0) B0
500

(ii) S(m,m+1) < 5™"Y

(b) on integrals:

(i) for every j < S(m,n), there exist coefficients C, ; satisfying
C,.i| < 10™ and non-negative integers i, for k = 1 to 4 satisfyin

2 g g ying
i < 2n, such that

f;n) (u1, 01,8, 0) = Cp jai 02 (uy +8) 7B0~;

(i) S(m,m) < 5™.
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Remark. F(™) in (29) represents the integral F' obtained at the end
of stage m of a replacement process we will introduce momentarily in
the proof of Proposition 3.1. According to (29) and (a) (i), the non-
integral part is a finite sum of terms of ascending degrees in wu;, the
highest of which is (m + 1)/2. The term of degree n/2, n < m+1, in
this summation is in turn a summation of S (m, n) terms, each of which
is in the form assumed in Proposition (a) (i). Similarly, according to
(29) and (b) (i), the integral part is a series of integrals of ascending
degrees, the lowest of which is m/2. We have in total S(m,n) integrals
of degree n/2 for n > m, each of which is in the form assumed in
b (i). (a) (ii) and b (ii) claim that the growth of the number of terms
created by replacement is slower than exponential, a crucial fact for
convergence. Let us also note that the increment of power in w; is half
instead of one in F(™) because of the use of (27). However, through
integration by parts, the non-integral terms obtained from an integral
of degree m/2 is of degree (m/2)+1. This is why the non-integral part
is a summation up to n = m + 1 instead of n = m.

Proof of Proposition 3.1. First we prove (a) (i), (b) (i) and (29)
inductively. For m = 3, F(3) is as in (28). It is obviously in the form
assumed by (29) satisfying Proposition 3.1 a (i) and b (i).

Let us now inductively assume that F(™), m = 3,..., M are well
defined in the form assumed by (29) and Proposition 3.1 a (i) and b (i)
hold up to m = M. FM+D js derived by replacing all integrals of
degree M/2 in FM) as follows. Let

I = /UI fJ(M) (ula g, aa %\)uiw/Zdul
0
be an integral of degree M /2 in FM)
I=0Cu, /“1 Of?aiz (u1 + @)_i3ﬂ_i4ui\/1/2du1
0
= Oy /"1 o/f@”‘é (u; + ﬂ)fﬁﬁ*"‘*dugM/Z)H
0

(M/2)+1
CM’]'

i i iz g (M/2)+1
:7<a’11572(u1+u) By ’4u§ D+

(M/2) +1

uy ) ) ) '

- / o (o (w4 7) Ra ) ).
0
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Hence

4
(30)  I= OMIgigia(y, 4 ) eging (M4 Sz

——a
(M/2)+1 1 P
The first term on the right hand side is the contribution of I to the

non-integral part of F(M+1), )

To be more precise we get one f;MH
from I such that

FMHD OMyj iy
J

Q42 (uy + 1) e,

For this EMH) term Proposition 3.1 a (i) is satisfied with

5M+1 j = 7CM’j .
7 (M/2)+1
We also have in (30)
1Cui ™ 1 .
I, = 7(1\2/21;4_’]_ 1 / ol 19 (uy + 1) B0 ’4%u§M/2)+ldu1,
0 1
ioClny s Lo i, dU 1
I, = (1\22/2%/ T (T u)_”u_“d—z—ugM/Q)Hdul,
0 U1
) ' wo . . -
Iy = —(A’;’/Zﬁ : / Q15" (uy + @) e g (1 + 1>u§M/ D quy
0 v
i4Chr,j harpe N igig—1 U (M/2)+1
Ty = — ) 17302 3 a—1 7 du.
) (M/2>+1/0 LT o )RR T

All these integrals are to be further transformed as follows.
(a) On I;: From (24) we have

(31)
ilCMj “ i1—1~4 ~ —1
I — b] 1 2 3
1 7(M/2)+1/0 a0 (ug + u)
X 074 (—(ug + @) 2 + (@) 2uMP T du,
y . U1 . . . .
o (ME/CQYI)M;rj_l / ap 719 (ug + @)~ A M g
0

i [ et ) e
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Hence 7 is the sum of two integrals of degree (M/2) + 1, each of
which satisfies Proposition 3.1 b (i): note that the degree of these new
integrals is (M/2)+1 and recall that we have assumed inductively that

Cmy <10M, iy, g, g, da < 2M,
from which it follows that

iICM] M—|—2 . . . .
———= <10 i1 — 1, 49, i3+ 2, ig +2 < 2(M + 2).
(M/2)+1~ ! 2 3 4 ( )

(b) On Ty: Note that dv/dt = —24~2 and, for v; ', we use (27). We
have

(32) I,

21 C . U1 R - .
B (]\;2/2%/ 0/115}\12 l(ul + ’U,)713u*(14+2)v1 1U§M/2)+1du1

\/—z C i ey
M/22 Ki Z/ Cka11+k ~ig— 1(u1+u) isgy (14+2)U§M/2)+k+(3/2)du1

Hence Z; is a summation of infinitely many integrals of ascending
degrees, each of which again satisfies Proposition 3.1 b (i). Observe
that, to any given n > M, T, contains only one integral of degree n/2.

(c) On Zz: Similarly we have

ZSCM] /UI i1 ~\—iz—1
I3 =—+———72— atv?(uy +u) "

ST M2)+1 ), ! (11 +3)
X ﬂfi‘*ugM/zH—ldul

(33) /i o
2i3C0mj / L iitkointl S\ ig—1
- — CrOX v u + u '3

M +2 kzzo o (ur +7)

< Ty (M/2)+k+(3/2)du1

73 is again an infinite summation of integrals of ascending degrees, each
of which satisfies Proposition 3.1 b (i). Again, for any given n > M,
T3 contains at most one integral of degree n/2.
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(d) On Zy: Similarly we have

i1y (M/DHEHC/D g

This is similar to Zy and Z3.

We are now ready to define F(M+1)_ For every integral I of degree
M/2 in FM) | we replace I by using (30)—(34). This proves Proposition
3.1 a (i), b (i) and (29).

For Proposition 3.1 a (ii) and b (ii) we observe that from (a)—(d)
above

Lemma 3.2. (1) S(M,n) = 5(M +1,n) forn < M +1,
(2) S(M +1,M +2) = S(M, M),
(3) S(M +1,n) < S(M,n)+4S(M,M) forn> M.

Proof. From FM) to FM+1)  pon-integral terms of degree <
(M +2)/2 in u; are not affected so (1) holds. (2) follows from the
observation that every integral I of degree M/2 in F (M) contributes
exactly one non-integral term (see (30)) of power (M/2) + 1 in u; to
FM+1) - (3) follows from the fact that, for any n > M fixed, replac-
ing an integral I of degree M/2 in F) by using (30) and (a)—(d)
above adds at most four more integrals of degree n/2 to the previous
collection of integrals of the same degree in F(M), O

We now use Lemma 3.2 (3) inductively to prove Proposition 3.1 (ii).
Note that Lemma 3.2 (3) holds for all M > 3. We have

S(M +1,M+1) < S(M, M +1) + 4S(M, M)
<S(M —1,M +1)+4S(M —1,M — 1)
+4S8(M, M)

M
<SB,M+1)+4)_ S(n,n).
n=3
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Note that S(3, M + 1) = 1. We have

g5 SOUH LM+ 1) SASLM) 4 4S( — LM 1)+
+48(3,3) + 1
for all M > 3. Using (35) inductively we obtain
S(M, M) < 5M,
from which it also follows that

S(M +1,M +2) < S(M, M) < 5M.

Here Lemma 3.2 (2) is used in obtaining the first inequality. This
finishes our proof of Proposition 3.1 (a) (ii) and b (ii). o

Finally we let

V2 3/

F(u17a17a76) = ?U’l

+i(

(36)
R 00 )
g(n,n-l—l)

Proposition 3.2. Under the assumption that p < (100K%)~2,
F(uy,a1,u,?) in (36) is convergent.

Proof. From Proposition 3.1 a (i) we have for every 7,
A = G a5 (ug + @) "/,
from which it follows that
(37) 7] < 107 K5 o/

on Uk ,. Combining Proposition 3.1 a (ii), b (ii) and (37) we have

|F(u1,01,@,0)| < > _(100K®%)"p"/2.

n=3
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Hence F converges provided that p < (100K8)~2. This proves Propo-
sition 3.2. O

Remark. Let us caution that Fy = F(u1, 1,4, ) is not analytic in
up at up = 0 because the power of u; ascends by half instead of one.
To get analyticity, we need to replace u; by a new variable &; through
€2 = uy. Fy is then analytic in &; at & = 0.

C. The new variable Y. Let F(u1, a1,4,?) be as in (36) and
(38) Y = F(u1,a1,u,0) — F(ug, a2,u,?).
We claim that Y is a first integral of equation (22). This claim is proved
as follows. For a given solution p(t) of equation (22) in Uk ,, let ¢; be
such that u;(¢t;) = 0 and t9 such that uz(t2) = 0. We have from the

way F(up,a1,u,0) is defined that

t—t1 = F(uy(t), a1 (t),a(t),0(t)),
u(t), o(t

(39) t —ta = F(ua(t), az(t),u(t),v(t)),

from which we obtain

Y(t) =ty —ty.

It then follows that

dY
40 — =0.
(40) o

Let
(41)
3v2 n ~ ) (e
f(ulaalau’v) - TZ Z J?J( +1)(u1,a1,u,v)>u( 2)/2‘
n=4 A(n,n+1)
We have
o 2 ~

(42) F(uy, 1,u,v) = %ui’/z(l—l-f(ul,al,u,v)).
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Note that f(uy,a1,u,?) is again in a form of power series in /u; and
f(0,1,u,v) = 0. From (36) and (38) we obtain

(43) ur _ 2/§/1 + f(u2, a2,u,v) + (3ﬁy)/(2ug/2)
= 1+f(u1,a1,a,§;)

ol nn - 0/

u1 1+f(u27a27a7i}\)
(43) and (44) are the correspondence of (9) in Section 2.

3.3. Variables of regularization. This subsection is in parallel
to subsections 2B and 2C. Let us denote the regularization variables
as q = (&1,&2,M1,M2,0,0,a1,03,Y) and the new time as 7. (&1,m1)
and (§2,72) are again determined by (u;,v;) and (ug,vs) through a
Levi-Civita change of coordinates

:ﬂ u2:§ ’U2:n—2'
&' &’

_&

(45) (5% 2 ,

U1 27

4,V remain the same, (ai,a3) are defined by using (23), and Y is
defined by using (38). The new time 7 is defined through

1 [t/1 1
(46) T:To+—/ <——l——>dt,
2 0 (51 U2

and in reverse we have

1 1\ !

The new equations for q = (&1, &2, 71, M2, U, U, a1, &z, Y) derived from
equation (22) are as follows.
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(48)
d&: 1 dm 1 13 3
— — | — 2 —_—e,_— —_ .
o Irn™ 1% N T et @)
dés 1 dns 1 3 £
_— = — _ —_— 2 _ _ ®a @ 24 .
ir TIE%™ dr 1R X, e Tagrap a)
du _ 1 25 dv_ -1 i
dr — 1+X,'7 dr 1+ X0
L I S
dar 1+ x0T (e ez @)
dOlQ - 1 f 1 n 1 .
dar 1+ X2\ T (@2 raz az)
dy
= =0
dr
where

X, = 2/3 ]-+f((1/2) %,O{Q,ﬁ,i}\)—f—(GY/fg)
e 1+ £((1/2)€2, a1, 0,0) ’
)

- z/i/ 1+ 1((1/2)6,04,8,0) = (6Y /&)

1+ f((1/2)€2, as,u,)

and f is as in (41). For i = 1 and 2, f((1/2)&2, o, @, ,Y) is analytic
in & at & = 0. We also have f(0, o;,w,v) = 0.

The following constraints are further imposed on equation (48):

(

19)
(50
v e (1+7(58a00) ) - g (147 (38 a0) )

The derivations of equation (48) and the constraints (49) and (50)
are straightforward, which we leave to the reader.

265 =} — 4, 26500 =15 — 4

Let Vi , be the correspondence of Uk , in new phase variables and
Mk , the algebraic variety defined by (49) and (50) in Vi ,. Let q(7),
T € (71, 72), be a solution of equation (48) in Vg ,. We claim once
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more that, if {q(7),7 € (m,72)} N Mgk, # @, then it is included in
Mk . Our proof for this last claim is identical to that of Lemma 2.2 in
Section 2. Equation (48) defined on Mg , is our reqularized equation
for (22). In parallel to Theorem 1 in Section 2, we have

Theorem 2. Let p(t), t € (t1,t2), be a solution of equation (22) in
Uk,p. Assume that p(t) = A ast — t,. Let 7(t) be defined by (46)
and q(7), 7 € (11,72) the functions obtained from p(t) through (23),
(38) and (45). Then:

(a) q(7) is a solution of equation (48) on Mk ,;
(b) T2 1= 7(t2) < 00, and q(72) := lim,__, - q(7) is well-defined; and

(c) equation (48) defined on Mg , is real analytic at q(72).

The proof of this theorem is completely parallel to that of Theorem 1
in Section 2. We again leave the details to the reader.

3.4. On the collinear four-body problem. Let us now consider
equation (1) in Section 1 for the collinear four-body problem assuming
r1 < T2 < T3 < 4. To avoid messy writings we set m; = mo = mg =
myg = 1. We also assume that the center of masses of the four bodies
are fixed at z =0, i.e.,

(51) Yzm=0, Y ddfj = 0.

i=1 1=1

This helps in cutting the dimension of the phase space down by two.
Let

(62) wy =wy —x1, Uy =T4— 3, U =1+ Ty, U =T34+ T4,

and v; = (du;/dt), v; = (du;/dt) for i = 1,2. Note that by (51)
Uy = —Uz, U] = —Up so there are only six independent variables
out of (u;,U;v;,0;), ¢ = 1,2. We denote u = u;,v = 71 and use
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p = (u1,u2, U, vy, vs,0) to rewrite equation (1) as

du1 dv1 2 + 9 6]C
—_— = _— = —— _
dt b dt u? T Ouy’
d’LLQ dU2 2 6]C
(53) a dt u3 * Ouy’
di o ook
a7’ dt  ~ou
where
2 2
= — + —=
22U+ us —uy 22U+ us + uq
(54)
2 2
+ —= — .
—2u—uy—uy —2u—uz+u;

(u1,us,7) € (R?)™ x R~ is now the space of positions and Ay 34 =
{u1 = uz = 0,u € R} is the singular set for simultaneous binary
collisions. The potential function in (ui,us,d1) is U = (1/uy) +
(1/ug) + K and K(uq,us, ;) is analytic on Ay 34. Again, let oy =
(1/4)v? — (1/u1), ag := (1/4)v3 — (1/uz). We have
da1 6/C da2 6/C

(55)

it Mou at T Pouy

As we apply the replacement strategy of subsection 3.2 to the collinear
four-body problem, a technical difficulty caused by interactions between
colliding pairs occurs. Let us explain in detail.

We follow the same strategy aiming at writing the integral F' explicitly
in phase variables through inductive use of integration by part and
equations (53) and (55). Let us start again from (26) in subsection 3.2
and repeat the computation appearing in subsection 3.2A for I,,. We
replace day /duy by 0K /0uy according to (55). One of the new integrals
we obtain is in the form of

e 0*’K v
n—1 V2 n+(5/2) 4
/0 @ (9u18u2 U1 “ v

due to the fact that (92K)/(0u10us) # 0. A simple computation shows
that the degree of this integral will never go up (nor it will go down)
by a direct combination of integration by part and equation (53).
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The true implication of this technical difficulty is not at all clear to
us. It is entirely possible that this is merely a resolvable technical
issue, although at the moment we do not know how to resolve it. It
is also conceivable that this is an intrinsic difficulty that occurred only
because what we have aimed to construct is not at all in existence for
the collinear four-body problem. In any case, it is evident that, as far
as the issue of regularization transforms is concerned, the singularity of
simultaneous binary collisions is in fact very different from that of two
independent binary collisions and the difference is due to the existence
of interactions between colliding pairs.

ENDNOTES

1. We note that the non-collision singularity in the collinear four-
body problem, the existence of which is proved in [3], only occurs after
the singularity of binary collisions are regularized.

2. Initially the degrees of integral are moved up by one but very soon

the increment gets down to 1/2 because of replacements that invokes
(27).
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