PELL CONICS AND QUADRATIC RECIPROCITY

S. HAMBLETON AND V. SCHARASCHKIN

ABSTRACT. We give a proof of quadratic reciprocity, based on the arithmetic of conics. The proof works in all cases, and the calculations are remarkably simple.

1. Introduction. A large number of proofs of quadratic reciprocity are known [3]. In this paper we give a proof using the arithmetic of conics. This approach has the advantage that all the calculations are almost trivial, and we avoid Gauss's lemma.

If f is a polynomial let $\mathbf{V}(f)$ be the list of roots of f (in a splitting field), with multiplicity. If $f \in \mathbf{Z}[x]$, let $\widetilde{f} \in \mathbf{F}_p[x]$ denote the reduction of f modulo p.

In Proposition 2.3 we show that for all odd primes p and q there exist monic polynomials F_p , $F_q \in \mathbf{Z}[x]$ of degrees (p-1)/2 and (q-1)/2 such that

$$\left(\frac{q}{p}\right) = \prod_{a \in \mathbf{V}(F_p)} F_q(a).$$

The main part of quadratic reciprocity follows immediately from the next proposition. We shall derive the supplementary law for the prime 2 similarly.

Proposition 1.1. Let g and h be monic polynomials. Then

$$\prod_{a \in \mathbf{V}(g)} h(a) = (-1)^{\deg g \cdot \deg h} \prod_{b \in \mathbf{V}(h)} g(b).$$

Proof. This is a property of resultants. See [1, Chapter 3]. We give a proof for completeness. Clearly $h(x) = \prod_{b \in \mathbf{V}(h)} (x - b) =$

²⁰¹⁰ AMS $Mathematics\ subject\ classification.$ Primary 11A15, 11C08. Keywords and phrases. Quadratic reciprocity, Pell conics. Received by the editors on June 29, 2009.

$$(-1)^{\deg h} \prod_{b \in \mathbf{V}(h)} (b - x). \text{ So}$$

$$\prod_{a \in \mathbf{V}(g)} h(a) = \prod_{a \in \mathbf{V}(g)} (-1)^{\deg h} \prod_{b \in \mathbf{V}(h)} (b - a)$$

$$= (-1)^{\deg g \cdot \deg h} \prod_{b \in \mathbf{V}(h)} \prod_{a \in \mathbf{V}(g)} (b - a)$$

$$= (-1)^{\deg g \cdot \deg h} \prod_{b \in \mathbf{V}(h)} g(b). \quad \Box$$

2. Quadratic reciprocity. Lemmermeyer defined a group law on affine Pell conics, analogous to addition on elliptic curves. See [4]. In this framework, the polynomials F_m we use are derived from the conic analogues of the m-division polynomials for elliptic curves.

Let $d \neq 0$ be a square-free integer and let $\Delta = d$ if $d \equiv 1 \pmod{4}$ and $\Delta = 4d$ if $d \equiv 2$ and 3 (mod 4). Let \mathcal{C} be the affine conic defined by

$$\mathcal{C}: x^2 - \Delta y^2 = 4.$$

(For our purposes nothing is lost by only considering $\Delta > 0$, or even fixing $\Delta = 8$.)

If (u,v) and (x,y) are points on \mathbb{C} , we define $(u,v) \oplus (x,y) = ((ux + \Delta vy)/2, (uy + vx)/2)$. The following properties all follow easily from this definition.

Proposition 2.1. (1) The set of points on \mathbb{C} with integer coordinates, $\mathbb{C}(\mathbf{Z})$, is an Abelian group with identity $\mathbb{O}=(2,0)$, and point $\mathcal{T}=(-2,0)$ of order 2. No other points have y=0 or x=2. The inverse of (x,y) is (x,-y).

- (2) There are no points of finite order (x, y) with x > 2.
- (3) If p is a prime not dividing 2Δ and $q=p^f$ we may consider \mathfrak{C} defined over the field \mathbf{F}_q , which we denote $\widetilde{\mathfrak{C}}$. The group $\widetilde{\mathfrak{C}}(\mathbf{F}_q)$ has order $q\pm 1$.

Proof. (1) follows immediately from the definition.

(2) If m(x, y) = 0 with x > 2, then m(x, -y) = 0 also, so without loss of generality we may assume y > 0. Suppose $\mathcal{P} = (u, v)$, $\mathcal{Q} = (x, y)$

are points on the conic with u, x > 2 and v, y > 0. Clearly $y(\mathcal{P} \oplus \mathcal{Q}) > 0$. If x = u then v = y so $x(\mathcal{P} \oplus \mathcal{Q}) = x^2 - 2 > 2$. Otherwise $4(x - u)^2 > 0$ implies $(ux - 4)^2 > (u^2 - 4)(x^2 - 4) = (\Delta vy)^2$ so again $x(\mathcal{P} \oplus \mathcal{Q}) > 2$.

(3) This follows on considering the birational map from \mathcal{C} to the affine hyperbola $\mathcal{H}: uv = \Delta$ given by

$$\mathfrak{P} = (x, y) \longmapsto \left(\frac{x-2}{y}, \frac{x+2}{y}\right) \text{ for } \mathfrak{P} \neq \mathfrak{O}, \, \mathcal{T},$$

with inverse map $\mathcal{H} \to \mathcal{C}$ given by

$$Q = (u, v) \longmapsto \left(\frac{2(v+u)}{v-u}, \frac{4}{v-u}\right) \text{ for } u \neq v.$$

Define monic polynomials f_m , $g_m \in \mathbf{Z}[x]$ of degrees¹ m, m-1 (if m>1) respectively by $f_0=2$, $f_1=x$, $g_0=0$, $g_1=1$ and for $m\geq 1$ define

$$f_{m+1} = xf_m - f_{m-1}, \qquad g_{m+1} = xg_m - g_{m-1}.$$

The polynomials f_m and g_m are conic analogues of the division polynomials ψ_m , ϕ_m , ω_m for elliptic curves [6, Example 3.7, page 105], with the advantage that f_m and g_m are independent of Δ :

Proposition 2.2. Let $\mathcal{P} = (x,y)$ be a point on \mathbb{C} . Then $m\mathcal{P} = (f_m(x), yg_m(x))$ for $m \geq 0$. Furthermore, $f_m(2) = 2$, $f'_m(2) = m^2$ and $f''_m(2) = (1/6)m^2(m^2 - 1)$.

Proof. These results are all straightforward induction arguments. We check that for all $m \geq 1$

$$(x^2 - 4)g_m = xf_m - 2f_{m-1}$$
, and $2g_{m+1} = f_m + xg_m$.

Let $m\mathfrak{P}=(x_m,y_m)$. The addition formula gives $x_{m+1}=(xf_m+(x^2-4)g_m)/2=xf_m-f_{m-1}$ and the required result follows by induction, and similarly for y_{m+1} . Also $m\mathfrak{O}=\mathfrak{O}$ so $f_m(2)=2$. The derivative properties follow similarly. \square

In particular, the group of m-torsion points C[m] is finite, and indeed m(x,y) = 0 if and only if $f_m(x) = 2$.

Since $m\mathcal{P}$ lies on \mathcal{C} we have $(f_m-2)(f_m+2)=(x^2-4)g_m^2$, with the factors on the lefthand side relatively prime. Also $(x-2) \mid (f_m-2)$, while if m is odd then $m\mathcal{T} \neq 0$, so $(x+2) \nmid (f_m-2)$. Thus $(f_m(x)-2)/(x-2)$ must be a square. That is,

(1)
$$f_m(x) - 2 = (x-2)F_m(x)^2 \quad (m \text{ odd})$$

for some monic polynomial $F_m \in \mathbf{Z}[x]$ of degree (m-1)/2. Also define $F_2(x) = x$.

Proposition 2.3. Let p and q be prime numbers with $p \neq 2$. Then

$$\left(\frac{q}{p}\right) = \prod_{a \in \mathbf{V}(F_p)} F_q(a)$$

(where in the product the a occur according to their multiplicity).

Proof. We may assume $p \neq q$. Let $L_{q,p} = \prod_{a \in \mathbf{V}(F_p)} F_q(a)$. Choose Δ not divisible by p, and consider the associated conic \mathcal{C} .

Let **F** be a splitting field of $\widetilde{F_p}$ over \mathbf{F}_p . By Proposition 2.1 no element of $\mathcal{C}(\mathbf{F})$ has order p. Thus the only root of \widetilde{F}_p in **F** is x=2, so

(2)
$$\widetilde{F}_p(x) = (x-2)^{(p-1)/2}$$
.

Hence

$$L_{q,p} \equiv \prod_{a \in \mathbf{V}(\widetilde{F}_p)} \widetilde{F}_q(a) \equiv \widetilde{F}_q(2)^{(p-1)/2} \equiv \left(\frac{\widetilde{F}_q(2)}{p}\right) \pmod{p}.$$

If q=2 then $F_q(2)=q$. Otherwise, by Proposition 2.2 the Taylor series expansion of f_m about x=2 is $f_m(x)=2+m^2(x-2)+(1/12)m^2(m^2-1)(x-2)^2+\cdots$. By equation (1) the Taylor series expansion of F_m about x=2 for odd m is

(3)
$$\pm F_m(x) = m + \frac{m(m^2 - 1)}{24}(x - 2) + \text{(higher order terms)},$$

and so $F_m(2) = \pm m$. If $F_m(2) = -m$, then F_m has a real root greater than 2, contradicting Proposition 2.1 (2), so the sign in equation (3) is + and in all cases

$$(4) F_q(2) = q.$$

Thus $L_{q,p} \equiv (q/p) \pmod{p}$.

To finish the proof we show that $L_{q,p}=\pm 1$. Multiplication by q is an automorphism of the group of p-torsion points $\mathcal{C}[p]$, and hence f_q permutes $\mathbf{V}(F_p)$. Thus

$$\prod_{x\in \mathbf{V}(F_p)}(x-2)=\prod_{x\in \mathbf{V}(F_p)}(f_q(x)-2)=\prod_{x\in \mathbf{V}(F_p)}(x-2)\,F_q(x)^2.$$

Canceling the factors (x-2) (which are nonzero by equation (4)) shows that $L_{q,p}=\pm 1$.

This establishes quadratic reciprocity for odd primes. If q = 2, then applying Proposition 1.1 to equation (2) gives

$$\left(\frac{2}{p}\right) = L_{2,p} = (-1)^{(p-1)/2} F_p(0).$$

Thus $F_p(0) = \pm 1$. To determine the sign of $F_p(0)$ it suffices to find $F_p(0) \pmod{4}$. Evaluating equation (3) at x = 0 gives

$$F_p(0) = \begin{cases} +1 & \text{if } p \equiv 1, 3 \pmod{8} \\ -1 & \text{if } p \equiv 5, 7 \pmod{8}. \end{cases}$$

The quadratic character of 2 follows.

3. Remarks. Let $T_n(x) = \cos(n \arccos x)$, so that T_n is the *n*th Chebyshev polynomial. See [5]. The T_n satisfy almost the same recurrence relation as the f_n and one checks easily that $f_n(x) = 2T_n(x/2)$. Thus

$$f_n(x) = \prod_{j=0}^{n-1} \left(x - 2\cos\left(\frac{(2j+1)\pi}{2n}\right) \right).$$

Our proof can therefore be viewed as Eisenstein's trigonometric proof in disguise. Compare [2, Chapter 5.3].

ENDNOTES

1. We consider the 0 polynomial to be degree -1.

REFERENCES

- 1. David A. Cox, John B. Little and Donal O'Shea, *Using algebraic geometry*, 2nd ed., Springer, New York, 2005.
- 2. K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., Springer, New York, 1990.
- 3. F. Lemmermeyer, *Reciprocity laws*, Springer Mono. Math. (2000), Springer, New York.
- 4. ———, Conics—A poor man's elliptic curves, arXiv:math/0311306v1, preprint at www.fen.bilkent.edu.tr/ franz/publ/conics.pdf.
 - 5. T.J. Rivlin, Chebyshev polynomials, Wiley, New York, 1990.
- 6. J. Silverman, *The arithmetic of elliptic curves*, Springer-Verlag, New York, 1986.

Dept. Mathematics, University of Queensland, St Lucia, Queensland, Australia

 ${\bf Email~address:~sah@maths.uq.edu.au}$

Dept. Mathematics, University of Queensland, St Lucia, Queensland, Australia

Email address: victors@maths.uq.edu.au