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PELL CONICS AND QUADRATIC RECIPROCITY
S. HAMBLETON AND V. SCHARASCHKIN

ABSTRACT. We give a proof of quadratic reciprocity,
based on the arithmetic of conics. The proof works in all
cases, and the calculations are remarkably simple.

1. Introduction. A large number of proofs of quadratic reciprocity
are known [3]. In this paper we give a proof using the arithmetic of
conics. This approach has the advantage that all the calculations are
almost trivial, and we avoid Gauss’s lemma.

If f is a polynomial let V(f) be the list of roots of f (in a splitting
field), with multiplicity. If f € Z [z], let f € Fp[z] denote the reduction
of f modulo p.

In Proposition 2.3 we show that for all odd primes p and g there exist
monic polynomials F,, F, € Z[z] of degrees (p — 1)/2 and (¢ — 1)/2

such that
p a€V (Fp)

The main part of quadratic reciprocity follows immediately from the
next proposition. We shall derive the supplementary law for the prime
2 similarly.

Proposition 1.1. Let g and h be monic polynomials. Then

H h degg deg h H g

a€V(g) beV(h

Proof. This is a property of resultants. See [1, Chapter 3]. We
give a proof for completeness. Clearly h(z) = [[ ey (z —b) =
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(—1)desh HbeV(h)(b — ). So

I[ r@= IT v** J] 0-a
)

aeV(g) a€V(g) bev(h

— (_1)degg-degh H H (b _ a)
beV(h) aeV(yg)
— (_1)degg-degh H g(b) 0

beV(h)

2. Quadratic reciprocity. Lemmermeyer defined a group law on
affine Pell conics, analogous to addition on elliptic curves. See [4]. In
this framework, the polynomials F},, we use are derived from the conic
analogues of the m-division polynomials for elliptic curves.

Let d # 0 be a square-free integer and let A = d if d =1 (mod 4)
and A =4d if d =2 and 3 (mod 4). Let € be the affine conic defined
by

C:ax?—Ay? =4.
(For our purposes nothing is lost by only considering A > 0, or even
fixing A =8.)

If (u,v) and (z,y) are points on C, we define (u,v) @ (z,y) =
((uz + Avy) /2, (uy + vx)/2). The following properties all follow easily
from this definition.

Proposition 2.1. (1) The set of points on C with integer coordinates,
C(Z), is an Abelian group with identity O = (2,0), and point T =
(—2,0) of order 2. No other points have y = 0 or x = 2. The inverse
of (z,y) is (z, —y)-

(2) There are no points of finite order (z,y) with © > 2.

(3) If p is a prime not dividing 2A and q = p’ we may consider C
defined over the field F,, which we denote C. The group é(Fq) has
order q £ 1.

Proof. (1) follows immediately from the definition.

(2) If m(z,y) = O with > 2, then m(z, —y) = O also, so without
loss of generality we may assume y > 0. Suppose P = (u,v), Q = (z,y)
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are points on the conic with u, z > 2 and v, y > 0. Clearly y(P®Q) > 0.
If z = u then v = y so (P ® Q) = 22 —2 > 2. Otherwise 4(z —u)? >0
implies (uz — 4)% > (u? — 4)(z? — 4) = (Avy)? so again z(P & Q) > 2.

(3) This follows on considering the birational map from C to the affine
hyperbola H : uv = A given by

P=(z,y) — (a:y?jx—y}-Z) for P£0, T,

with inverse map H — € given by
2
Q:(u,v)H<7,—> for u # v. u]

Define monic polynomials f,,, g, € Z[z] of degrees! m, m — 1 (if
m > 1) respectively by fo =2, fi =, 9o =0, g1 =1 and for m > 1
define

fm1 =2fm — fm-1, Im+1 = TGm — Gm—1-

The polynomials f,,, and g,, are conic analogues of the division polyno-
mials Yy, G, Wi for elliptic curves [6, Example 3.7, page 105], with
the advantage that f,, and g, are independent of A:

Proposition 2.2. Let P = (z,y) be a point on C. Then mP =
(fm (), ygm () for m > 0. Furthermore, f,(2) =2, f.(2) = m? and
fm(2) = (1/6)m?(m? - 1).

Proof. These results are all straightforward induction arguments. We
check that for all m > 1

(1'2 - 4)gm =2Zfm —2fm-1, and 2gm—i—l = fm + ZTgm.

Let m®P = (zm,Ym). The addition formula gives z,,+1 = (zfm +
(2?2 — 4)g,n)/2 = xfm — fm—1 and the required result follows by
induction, and similarly for ym,, 1. Also mO = O so fn(2) = 2. The
derivative properties follow similarly. ]

In particular, the group of m-torsion points C[m] is finite, and indeed
m(z,y) = O if and only if f,,(z) = 2.
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Since m®P lies on € we have (fn, — 2)(fm +2) = (2% — 4)g2,, with the
factors on the lefthand side relatively prime. Also (z —2) | (fm — 2),
while if m is odd then mT # O, so (x +2) t (fm — 2). Thus
(fm(z) — 2)/(xz — 2) must be a square. That is,

(1) fm(x) =2 = (x —2)F(x)* (m odd)

for some monic polynomial F,, € Z [z] of degree (m — 1)/2. Also define
Fy(z) = z.

Proposition 2.3. Let p and q be prime numbers with p # 2. Then

()= 11 Fo

a€V(Fp)

(where in the product the a occur according to their multiplicity).

Proof. We may assume p # q. Let Ly, = Haev(Fp) F,(a). Choose
A not divisible by p, and consider the associated conic C.

Let F be a splitting field of F; over F,,. By Proposition 2.1 no element
of C(F) has order p. Thus the only root of F, in F is z = 2, so

2) Fiy(a) = (z — 20172,

~

- - B F,(2
Lyp= H F,(a) = F,(2)P~V/2 = ( d
a€V(F,)

> (mod p).

If ¢ = 2 then Fy(2) = q. Otherwise, by Proposition 2.2 the Taylor
series expansion of f, about z = 2 is f,(z) = 2 + m?(z — 2) +
(1/12)m?*(m?* — 1)(z — 2)* + ---. By equation (1) the Taylor series
expansion of F,, about = = 2 for odd m is

m(m? — 1)

(3) xF,(r)=m+ 1

(x — 2) + (higher order terms),
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and so Fy,(2) = +m. If F,,(2) = —m, then F,, has a real root greater
than 2, contradicting Proposition 2.1 (2), so the sign in equation (3) is
+ and in all cases

(4) Fy(2)=q¢

Thus Ly, = (¢/p) (mod p).

To finish the proof we show that L,, = 1. Multiplication by ¢ is
an automorphism of the group of p-torsion points C[p], and hence f,
permutes V(F},). Thus

I[[ G-2= ] @-2= ] @-2)F@"

2EV(F,) zEV(F,) zEV(F,)

Canceling the factors (x —2) (which are nonzero by equation (4)) shows
that Ly, = £1. O

This establishes quadratic reciprocity for odd primes. If ¢ = 2, then
applying Proposition 1.1 to equation (2) gives

(2) = Ly, = (~1)" D2 F,(0).

p

Thus F,(0) = £1. To determine the sign of F,(0) it suffices to find
F,(0) (mod 4). Evaluating equation (3) at = 0 gives

+1 ifp=1,3 (mod 8)
F =
»(0) { ~1 ifp=5,7 (mod 8).

The quadratic character of 2 follows.
3. Remarks. Let T,(z) = cos(n arccosz), so that T,, is the nth
Chebyshev polynomial. See [5]. The T, satisfy almost the same

recurrence relation as the f, and one checks easily that f,(z) =
2T, (z/2). Thus

=TT (-2 (227
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Our proof can therefore be viewed as Eisenstein’s trigonometric proof
in disguise. Compare [2, Chapter 5.3].

ENDNOTES
1. We consider the 0 polynomial to be degree —1.
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