ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 41, Number 5, 2011

DIVISIBLY NORM-PRESERVING MAPS
BETWEEN COMMUTATIVE BANACH ALGEBRAS

TAKESHI MIURA, DAI HONMA AND RUMI SHINDO

ABSTRACT. Let A and B be unital commutative Banach
algebras. Suppose that A is semi-simple. Let p: A — A and
7 : B — B be bijections. If T': A — B is a surjection with,

for some a € C \ {0}, r(T(f)7(T(g)) — @) = x(fp(g) — a) for
all f,g € A, then B is semi-simple and r(T(f)T(g)~ ! —1) =
r(fg~! —1) for every f € Aand g € A~1. As a consequence,
T(1) is invertible and T'(1)~!T is a real-algebra isomorphism.
If, in addition, T'(1)~!T'(i) = i, then T(1)~!T is a complex-
algebra isomorphism. This result unifies and generalizes [3,
Theorem 7.4] and [4, Theorem 3.2 and 6.2].

1. Introduction. Let C(X) be the commutative Banach algebra
of all complex-valued continuous functions on a compact Hausdorff
space X with respect to pointwise operations and the supremum norm.
In 2001, Molnér [10] introduced “spectral multiplicativity conditions”
for a surjection T from C(X) onto itself, which is not necessarily
linear nor continuous: o(T(f)T(g9)) = o(fg) for all f,g € C(X);
or o(T(f)T(g)) = o(fg) for all f,g € C(X). Here, o(f) and f
are the spectrum and the complex conjugate function of f € C(X),
respectively. In particular, he proved that if X is first countable,
then T(1)"!T is an algebra automorphism. These results can be
extended for uniform algebras on arbitrary compact Hausdorff spaces
and commutative Banach algebras.

For uniform algebras, the corresponding result was proven by Rao
and Roy [11]. Hatori, Miura and Takagi [2] replaced the spectra
of elements by their ranges. Further work has been done analyzing
maps with o (T(f)T(g9)) = ox(fg), where o,(-) is the peripheral
spectrum, by Luttman and Tonev [9]. Generalizing further to norm
conditions, Hatori, Miura and Takagi [3, Corollary 7.5] showed that if
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a surjection T : A — B satisfies, for some non-zero complex number «,
IT(f)T(9) — alloo = |fg — @l|oo for all f, g € A, then T'(1) 17T is a real-
algebra isomorphism. Lambert, Luttman and Tonev [7, Theorem 4]
also showed that a surjection T': A — B is an algebra isomorphism if
T satisfies T'(1) =1 and ||T(f)T(9) + ¢||oc = ||fg + ] for all f,ge A
and for all & € C with |a] = 1. In the case when A = C(X) and
B = C(Y), Honma [5, Theorem 1.1] has shown that a surjection
T:C(X) — C(Y) is an algebraic isomorphism whenever T'(A) = A
for A = £1,43 and | T(f)T(9) — 1l|ooc = ||fg — 1| for all f,g9 € C(X).
Most recently, Luttman and Lambert [8] gave a representation of such
a surjection T': A — B that ||aT(f)T(9) + Bllcc = |afg + B||ec for all
f,g9 € A, where a, 8 are fixed non-zero complex numbers.

For unital commutative Banach algebras A and B, Hatori, Miura
and Takagi [3, Theorem 7.4] have shown that if A is semi-simple and
T : A — B is a surjection such that, for some non-zero complex number
a, 1(T(f)T(g9) — «) = r(fg — «) for all f,g € A, then T(1)"'T is a
real-algebra isomorphism. Here, r(f) is the spectral radius of f € A.
They [3] have also extended the results of Molndr for a surjection
T : A — B between two unital commutative Banach algebras with
symmetric involutions * and *, respectively. An involution * on A

is symmetric if F = f for every f € A, where ~ is the Gelfand
transform. In particular, it was shown that if A is semi-simple and
o(T(f)T(g)*) = o(fg*) for all f,g € A, then T(1)7'T is an algebraic
isomorphism [4, Theorem 6.2].

Let p: A — A and 7 : B — B be bijections. Suppose that A
is semi-simple and 7" : A — B is a surjection with, for some non-
zero complex number «, r(T(f)7(T(g9)) — @) = r(fp(g9) — a) for all
f,g € A. In this paper, we will show that B is semi-simple and
r(T(f)T(g)* —1) = r(fg' — 1) for every f € A and g € AL
Furthermore, we will prove that T(A~') = B~ and T'(1) T is a real-
algebra isomorphism. If, in addition, 7°(1)~'7'(i) = i, then we show
that T'(1)~!T is a complex-algebra isomorphism.

2. Preliminaries. Let A and B be uniform algebras on compact
Hausdorff spaces X and Y, respectively. Suppose that A~! is the
group of invertible elements in A and expA = {expf : f € A} is
the exponentials of A. Let (Ga,Gp) = (exp A,exp B) or (A1, B71).
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We denote by o(f) and r(f) the spectrum and the spectral radius of
f € A, respectively. It is well known that r(f) = || f||co for each f € A,
where |||/ is the supremum norm on X. Define the subset of o(f) for
feAby o.(f) ={r€o(f): |\ =r(f)}. A subset K of X is called
a peak set for A if there exists an fx € A with o,(fx) = {1} and
fx~'({1}) = K. We say that fx is a peak function of A and peaks on
K. If {z} for z € X is the intersection of a family of peak sets for A, x is
called a peak point in the weak sense for A. Let Ch (A) be the Choquet
boundary of A. Recall that Ch (A) is the set of all peak points in the
weak sense for A. Set Pg,(z) = {u € G4 : o(u) = {1}, u(x) = 1} for
each z € Ch(A). Note that Pg,(z) is not empty for any z € Ch (A).
We denote by C and N the complex number field and the set of all
positive integers, respectively.

The following lemma is a well-known extension of a theorem of Bishop
[1, Theorem 2.4.1]. See also [4, Lemma 2.3].

Lemma 2.1. Suppose that f € A and xy € Ch(A) with |f(zo)| # 0.
For a closed set F C X with xo ¢ F, there exists a u € Pexp a(x0) such
that o (fu) = {f(zo)} and |fu(z)| < |f(xo)| for all x € F.

Note that f(zg) # 0 for every f € Ga. If f € G4 satisfies |f(zg)| <1
for some zy € Ch (A), then by Lemma 2.1 there exists a ug € Pg, (x0)
such that o (fup) = {f(x0)}. Since ||fuollco = |f(z0)| < 1, we get the
following lemma.

Lemma 2.2, Let f € G4 with ||fllc = 1 and o € Ch(A). If
lIfulleo =1 for all u € Pg,(z0), then |f(zo)| = 1.

For z € Ch(A) and y € Ch(B), define the subsets of A, B by

Ve={f€Ga:|f(@)l=1=fll},
Wy ={fegp: ()l =1=[[fll}

Note that Pg,(xz) C V, for any € Ch(A). Let z1,z2 € Ch(A) with
x1 # 2. By Lemma 2.1 with f = 1, there exists a u € Pg,(x1) such
that u(z1) = 1 and |u(x2)| < 1. Since u € Vy, \ Vy,, we have V, ¢ V.
We have the following:
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Lemma 2.3. If V,, C V., for some x1, o € Ch(A), then x1 = xo.

Let p: G4 — G4 and 7 : Gg — Gp be bijections. For some fixed
a € C\ {0}, let T be a surjection from G4 onto Gp such that

IT(f)T(T(9)) — alleo = [Ifr(9) — alloo

for all f,g € Ga.

Remark 2.1. Note that 7(T'(p 1 (ag™1))) = aT'(g) * for every g € Ga
since

IT(g)r(T(p~ " (ag™))) — allso = lgp(p™ " (ag™")) — allsc = 0.

Then we have

(2.1) H%_le_Hg_le

for all f,g € G4 since

aT'(f)
T(9)

- an — ()T Hag 1)) — allc

= 5ol ag ™) —allo = | 2L - aH

(oo}

Remark 2.2. By (2.1), the map T is injective. Thus 7! : Gg — G4
is a well-defined surjection satisfying

|r= .- 12l

for all f,g € Gg. The equation (2.1) also implies that

A
9 nlle nllyg o Tl T(g) oo
Azl =51, )
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<i{ (17 -zl
sALrAR D] i)
ML

T@) |, n

for all n € N and f,g € G4. Applying similar arguments to 771, we

get .

753l <|=@ ). == .
for all n € N and f,g € G4. We conclude that
e |7l - 1.

for all f,g € G4.

Until the end of this section, we will assume that 7°(1) = 1. By (2.2),
we have

(2.3) 1T()lloe = I fllo

for every f € G4.

Lemma 2.4. For any y € Ch(B), there ezists a unique v € Ch(A)
such that T-Y(W,) = V,.

Proof. Let y € Ch(B) and set Gy = Ngep-1(w,)|fI7 ({1}). First,
we show that G, is not empty. By the finite intersection property, it
is enough to show that N?_,|f;|~*({1}) # & for any finite number of
functions f1, f2,..., fo € T71(W,). Since T is surjective, there exists
an fo € Ga with T(fo) = II7_,T(f;). Let j = 1,2,...,n. By the
definition of Wy, we have |T'(f;)(y)| = 1 = [|T(f;)|loo- Hence || folloo =
IT(fo)llo = 1 by (2.3), and [T(fo)|"*({1}) < [T(f;)| *({1}). Since
Ch (A) is a boundary for A, there exists an x¢ € |fo| ™' ({1}) N Ch(A4).
Let u € Pg,(wo). Applying (2.2), we have ||T(fo)/T(u™")||eo =
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lfo/u Yoo = |lfoulloc = 1. So, there exists a yo € Ch(B) such
that |T(fo)(vo)/T (v 1)(y0)] = 1. On one hand, since 7(1) = 1, (2.2)
implies 1/|7(u™")(yo)| < [T(1)/T (™ lloo = I11/u" oo = [Juflo = 1,
and thus 1 < |T(u=1)(yo)|]- On the other hand, |T(f5)(yo)| < 1 since
|IT(fo)l|loo = 1. Therefore, 1 < |T(u=')(y0)| = |T(fo)(y0)| < 1, and
consequently |T(fo)(yo)| = 1. Since || fjullc <1 and |T'(fo)|*({1}) C
IT(£;)I7+({1}), we have | fjulloo = [If;/u oo = [T(f3)/T(u*)lloo =
1, and so | fj(xz)| = 1 by Lemma 2.2. Hence, 2 € Nj_,[f;| ' ({1}).

Finally, we show that there exists a unique z € G, N Ch(A) with
T-Y(W,) = V,. Let 1 € G,. For each f € T~*(W,), we define f € A

by f = (f(z1)f +1)/2. Then 7 {f(x1)}) = f~1({1}) is a peak
set for A with f~1({1})  |f|"*({1}) for every f € T1(W,). Thus
ﬁfeT_1(Wy)f’1({1}) is not empty. According to [1, Corollary 2.4.5],
there exists an x € ﬂfeTq(Wy)f*l({l}) N Ch(4) € Gy, N Ch(A).
By (2.3), we have [|fllcc = [[T(f)]lc = 1 with |f(z)] = 1 for all
f € T7*(W,). Thus T-*(W,) C V,. A similar argument applied
to T=! shows that T'(V;) C W, for some y' € Ch(B). Therefore,
W, C T(V;) C Wys. Lemma 2.3 implies that y =y, and consequently
T(Vp) = W,. For any 2’ € Ch (A) with T'(V,/) = W,,, we conclude that
T(Vy) = Wy = T(Vy), that is, V, = V,s. It follows from Lemma 2.3
that the = is unique. a

We define the mapping ¢ from Ch (B) into Ch (A4) by T'(Vy(,)) = W,
for y € Ch(B). Then ¢ is well-defined. Applying Lemma 2.4 to
T-!, we may define the mapping % from Ch(A) into Ch(B) by
T='(Wy(z)) = Vi for z € Ch(A). The definitions of ¢ and 1 with
Lemma 2.3 imply that ¢(4(y)) = y for any y € Ch(B) and ¢(¢(z)) =z
for any € Ch (A). Thus ¢ is bijective and ¢ = ¢~ .

Lemma 2.5. The equation

(2.4) 7)) =1f(6)

holds for every f € Ga and y € Ch(B).

Proof. Let f € G4 and y € Ch(B). By Lemma 2.1, there exists a
ug € Pg, (6(y)) with o (fuo) = {f(#(y))}. The equation (2.2) implies
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that
T(f)

FOW)] = I fuolloe = Hm

2|

and [|1/T (ug )]l = [luolec = 1. Since [u(¢(y))] =1 = ||ul| for every
u € Vy(y), the equation (2.2) shows that

2
T(uo™)

= [luoulleo =1

‘ (oo}

for all u € Vy(,). Lemma 2.2 with Pg,(y) C Wy = T(Vy(,) implies
that |1/T(uo~*)(y)| = 1. Hence |T(f)(y)] < |f(¢(y))|- Applying
similar arguments to 7-! and ¢(y), we have |T=Y(T(f))(¢(y))| <
IT(£) (67 (¢(y))]; thus, [f(6(y))] < IT(f)(y)|- Consequently, the
equation |T'(f)(y)| = [f(¢(y))| holds. o

Remark 2.3. By the Alexandroff theorem [6, Theorem 8, Chapter 5],
the weak topology on X induced by {|f| : f € Ga} coincides with
the original topology on X. Also, the weak topology on Y induced
by {|f| : f € Gg} coincides with the original topology on Y. Thus,
by (2.4), the bijection ¢ : Ch(B) — Ch(A) is continuous. Similar
arguments show that ¢! is also continuous. We conclude that ¢ is a
homeomorphism from Ch (B) onto Ch (4).

Note that Lemma 2.5 implies that, if 8 € C, then

(2.5) TB)] = 18-

Lemma 2.6. We have T ' (Pg,(y)) C Pg,(é(y)) for any y €
Ch(B), and T(—1) = —1.

Proof. For y € Ch(B), let u € T~'(Pg,(y)) and B € o,(u). Then
18] = |u|loc = ||T(u)||loo = 1. The equation (2.5) implies that

EE
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Since B € o, (u), there exists an z € X with u(x) = 8. Therefore,

2 = %—1‘<‘%—1Hw<2
By (2.1), we have
It Bl = et I

which implies that (T'(u)/T(-8))(yo) = —1 for some yo € Ch (B) since
Ch (B) is a boundary for B. By (2.5), |T'(u)(yo)| = |T(—8)(yo)| = 1.
Since T'(u) € Pg,(y), we have T'(u)(yo) = 1, and so T'(—8)(yo) = —1.
Thus, 2 < |-8—1] since ||T(=8) —1|loc = |-B8—1] by (2.1) and
T(1) = 1. This shows 8 = 1, that is, o.(u) = {1}. By (2.4), we
have |u(é(y))| = |T(u)(y)| = 1, and so u(¢p(y)) = 1. We conclude that
T1(Pg, (4))  Par(6(y)).

In order to prove T'(—1) = —1, it is sufficient to show that 7'(—1) =
—1 on Ch (B) since Ch(B) is a boundary for B. Let y € Ch(B). By
Lemma 2.1 with the surjectivity of T, there exists a u € G4 such that
T(u) € Po,(y) and op(T(u)/T(-1)) = {1/T(~1)(y)}. By (2.3), we
get ||T(uw)/T(—1)||eo = [1/T(—1)(y)| = 1. On the other hand, equation
(2.1) implies that

ES

since T (Pg,(y)) C Pg,(¢(y)). Hence there exists a yo € Y such that

(1) /T(~1))(30) = 1. Since o (T(u)/T(~1)) = {1/T(~1)(y)}, we
have —1 = (T(u)/T(~1))(yo) = 1/T(~1)(y), that is, T(~1)(y) = ~L. 0

Lemma 2.7. For any A € C with |\| = 1, the range T'(\)(Ch(B))
is contained in {\, A}.

Proof. Let A € C with |A\| = 1. Equation (2.1) and T'(1) = 1 imply
that
)

) - 11 = |73

—1H A= L = A1)
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Since T'(—1) = —1 by Lemma 2.6, we also have ||[T'(A) + 1]|cc = [A+1].
Thus the inequalities

T (y) -1 < |A=1] and |T(A)(y) +1] < [A+1]

hold for any y € Ch (B). On the other hand, the equation (2.5) implies
that |T'(A)(y )\ = |A| = 1. We thus conclude that T'(A\)(y) = A or A for
each y € Ch(B). O

Lemma 2.8. Lety € Ch(B), u € Pg,(y) and A € C with |A\] = 1.
For any B € o,(T~Y(T(\u)), there exists a yo € Ch(B) such that

T(=B)(yo) = =T (A)(3o)-

Proof. Let y € Ch(B), u € Pg,(y) and A € C with |A| = 1. Suppose
that 8 € o, (T~1(T(\)u)). We have |3| = 1 since

1T HTNwlo = ITNull = JJull =1

by (2.4) and Lemma 2.7. It follows from (2.2) that

H T(\)u - HTl(T(A)u) L

T(-p) —B

Since B € o(T7H(T(M)u)), there exists an z € X such that 8 =
T=YT(\)u)(z). Therefore, by (2.1),

oo

T(Nu H _ HTl(T(A)u) B H _
It follows that there exists a yo € Ch (B) with
T
T(—,B) (yO) =-1
By Lemma 2.7, |[T(\)| = |T ( B)] = 1. Hence \u(y )] = L. Since
u € Pg,(y), we have u(yo) = 1, and so T'(—8)(yo) = —T(A)(y ) O

Lemma 2.9. The inclusion T(i)Pg,(y) C T(iPg,(¢(y))) holds for
any y € Ch(B).



1684 T. MIURA, D. HONMA AND R. SHINDO

Proof. Let y € Ch(B) and u € Pg,(y). We show that T~ 1(T(i)u)/i €
Pg,(¢(y)). Let B € o (T 1(T'(i)u)). Since

ITHT@OWloe = 1Tl = Jullo =1,

we have |3] = 1. Lemma 2.8 yields the existence of yo € Ch(B) with
T(-B)(yo) = —T(i)(yo)- On the other hand, Lemma 2.7 shows that

T(—B)(yo) = —B or —8 and T(i)(yo) = ¢ or —i. Thus 8 =i or —i.
Since

H T~ H(T()w)

-
i _1H :H (Z)u_lH = fu-1lleo <2,

we have 3 # —i. Hence 3 =4, and so o (T~ (T (i)u)) = {i}. It follows
from (2.4) that

T 1T (D)) (é(y))| = IT(0) (y)uly)| = 1.
Therefore, T (T (i)u)(¢(y)) = i. We conclude that T 1(T'(i)u)/i €
Pg,(¢(y). o
Define a subset K7 C Ch(B) by
Kr ={y € Ch(B) : T(i)(y) = i}

for a surjection T from G4 onto Gg. By Lemma 2.7, K7 is a clopen
subset of Ch(B). By the continuity of T'(i), we see that (K7)° and
(Ch(B) \ Kr) are disjoint, where (-)' denotes the closure in Y.

Lemma 2.10. The equation T(—i) = —T'(i) holds on Ch(B).

Proof. Let y € Ch(B). We have two cases: If y € Kr, then set
F = (Ch(B)\ K7)%; If y € Ch(B) \ K, then set F = (Kr)<\. By
Lemma 2.1, there exists a u € Pg,, (y) such that

"“(T(un) B {T<1i>(y>}

and that the inequality
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holds on F. Lemma 2.9 implies that there exists a u € Pg, (¢(y)) with
T'(i)u = T'(iu). Hence we have, by (2.1),

7% = |7 - =5 o] = e =2
and, by (2.2),
] I | I | I
There exists a yp € Ch (B) such that
17:(@):; (yo) = —1.

Note that |u(yo)| = 1 by Lemma 2.7. It follows from u € Pg,(y) that
u(yo) = 1; hence, T(i)(yo) = —T(—i)(yo). Since |u/T(—i)| < 1 on
F, we have yo € Ch(B) \ F. This shows that T(i)(y) = T(7)(yo).
Moreover, the assumption for u, o (u/T(—%)) = {1/T(—%)(y)}, implies
that

Consequently, we obtain

T()(y) = T(@)(yo) = =T(=i)(30) = =T(=i)(v),

and so T'(—i) = =T'(¢). O

Lemma 2.11. For any A € C with |\| =1, the equality
A on Kr
TN =4 <
) {)\ on Ch(B)\ Kr
holds.

Proof. Let A\ € C with |A| = 1. Since |T'(¢)| = |T'(—%)| = 1 on Ch (B),
we have

o=~ ]_n-on

oo



1686 T. MIURA, D. HONMA AND R. SHINDO

and

)
T(—i)

=2 -1 —| = |70 = T=3) e

(oo}

R

If y € K7, then by Lemma 2.10
T(M)(y) =i <[A—i] and |T(A)(y)+1i| < |A+1].

It follows from Lemma 2.7 that T'(\)(y) = A. Similar arguments show
that T'(A)(y) = A for any y € Ch(B) \ Kr. o

Lemma 2.12. The inclusion T(A\)Pg,(y) C T(APg,(¢(y))) holds
for any y € Ch(B) and A € C with |\| = 1.

Proof. Let y € Ch(B), u € Pg,(y), and A € C with |A\| = 1. We show
that 71T (MNu)/X € Pg, (é(y)). Let B € o (T~ (T (A\)u)). Lemma 2.8
implies that there is a yo € Ch (B) with T(—~03)(y0) = —T(\)(y0)- By
Lemma 2.11, we have —3 = —\ or —3 = —A\, which implies that
B = X Thus o (T HT(Mu)) = {A\}. It follows from (2.4) that
T T (6()] = (T ()] = 1. Thus T-HTM)u)(6()) = A,
and hence T~} (T'(A\)u)/X € Pg, (¢(y)). o

Proposition 2.13. The equality
[ f(#(y)) yeEKr
TO0 = 560) 4 an)\ ke
holds for every f € Ga and y € Ch(B).

Proof. For each f € G4 and y € Ch(B), set A= —f(o(y))/IT(f)(y)]
and p = 1/T(f)(y). Then |A] =1 by (2.4). Lemma 2.1 implies that
there exists a u € Pg,, (y) such that

(2.6) w(ﬁ)m ={u}
and that
(2.7) 2 <|ulon F,
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where F = (K7)% if y € Ch(B) \ Kr; otherwise F = (Ch(B) \ Kr).
By Lemma 2.12, there exists a u € Pg,(¢(y)) with T(A)u = T'(Au).
Thus, by (2.1), we have

Au
7 -l - - 17l
1
S| S P S
‘f ‘ ()W)l ‘
= |ul + l
By Lemma 2.11, equation (2.6) implies that
-
() Il ~ Tl ~ "
that is,
T(Au T(Au B
S I IR
This yields that
A
E
so there is a yy € Ch (B) such that
T()‘)(yO)u(yO) — *|,U,‘
T(f)(%o) '

By Lemma 2.7 with |A| =1, we have |u(yo)/T(f)(y0)| = |x|. It follows
from (2.6) that u(yo)/T(f)(yo) = p. Note that yo € Ch(B) \ F by
(2.7). Hence we have T'(\)(yo) = T'(A\)(y). Consequently,

_M _ (M) (yo)w(yo) T(f)(yo)
1 T(f)(yo)  u(yo)

=T (y).
Lemma 2.11 implies that

- FWIT(NW) v e K
T = { TGN/ (W) v e Ch(B)\ Kr.
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By this equation, we conclude that T'(f)(y) is equal to f(¢(y)) ify € Ky
or f(¢(y)) if y € Ch(B)\ Kr. O

3. Main results.

Theorem 3.1. Let A and B be uniform algebras on compact
Hausdorff spaces X and Y, respectively. Let o € C\{0} and (Ga,GB) =
(exp A,exp B) or (A~', B™1). Suppose that p: Go — Ga and 7 : G —
Gp are bijections. If T : G4 — Gp is a surjection such that

IT(f)T(T(9)) — alleo = [fr(9) — alloo

for all f,g € Ga, then there exist a clopen subset K of Ch(B) and a
homeomorphism ¢ from Ch(B) onto Ch(A) such that the equality

flo(y) yekK
f(e(y)) yeCh(B)\K

holds for every f € Ga. If, in addition, T(1) = 1, then T can be
extended to a real-algebra isomorphism. Moreover, T can be extended
to a complez-algebra isomorphism if T(i) = i.

T(f)(y) = T()(y) x {

Here we denote by A~! the group of invertible elements in a unital
commutative Banach algebra A. Let 1 be the unit element in A
and o(f) the spectrum of f € A. For a subset S of A with the
maximal ideal space M 4, define S = {f : f € 8}, where 7 is the
Gelfand transform. The spectral radius r(f) of f € A is defined by
r(f) = sup{|f(z)| : © € M}. Let cl(S) be the uniform closure of S in
C(M,).

Theorem 3.2. Let A and B be unital commutative Banach algebras
and a € C\{0}. Letp: At - A L and T : B 1 = B! be bijections.
Suppose that A is semi-simple. If T : A~' — B~! is a surjection such

that
r(T(f)m(T(g)) — @) =x(fp(g) — @)

for all f,g € A~ 1, then B is semi-simple and there exist a clopen
subset K of Ch(cl(B)) and a homeomorphism ¢ from Ch (cl(B)) onto
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. few) yekK
T f = T ]. ~ B
(F)y) (1)(y) x {f(¢(y)) y € Ch(cl(B))\ K

for every f € A7, If, in addition, T(1) = 1, then T can be extended
to a real-algebra isomorphism from A onto B. Moreover, if T(i) = 1,
then T can be extended to a complex-algebra isomorphism.

By Theorem 3.2, we also obtain the following result: the case when
p and 7 are both identities was proven by Hatori, Miura and Takagi
[3, Theorem 7.4]. Honma [5, Theorem 1.1] obtained the corresponding
result for A = C(X), B=C(Y), and p = 7 =7, the complex conjugate.

Corollary 3.3. Let A and B be unital commutative Banach algebras.
Letp: A— A and 7 : B — B be bijections. Suppose that A is semi-
simple. If T : A — B is a surjection such that, for some oo € C\ {0},

r(T(f)7(T(g)) —a) =r(fp(g) — @)

for all f,g € A, then B is semi-simple, and there exist a clopen
subset K of Ch(cl(B)) and a homeomorphism ¢ from Ch(cl(B)) onto

-~

Ch(cl(A)) with

_ __ foly) yekK
T f =T(1 = B
Fiw) = T ) x {f(¢(y)) y € Ch(d (B)\ K

for every f € A. If, in addition, T(1) = 1, then T is a real-algebra
isomorphism. Moreover, if T(i) = i, then T is a complez-algebra
isomorphism.

As a consequence of Corollary 3.3, we generalize [4, Theorem 3.2]
and [4, Theorem 6.2]. In fact, Hatori, Miura and Takagi proved the
corresponding results for the two cases: p and 7 are both identities;
and p and 7 are symmetric involutions.
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Corollary 3.4. Let A and B be unital commutative Banach algebras.
Letp: A— A and 7 : B — B be bijections. Suppose that A is semi-
simple. If T : A — B is a surjection such that

o(T(£)m(T(9))) = o(fp(9))

for all f,g € A, then B is semi-simple, and there exists a homeomor-
phism ® from Mp onto M 4 such that

for every f € A and y € Mg. If, in addition, T(1) = 1, then T is a
complez-algebra isomorphism.

4. Proof of main results.

Proof of Theorem 3.1. Let T : G4 — Gp be as in Theorem 3.1. By
the same arguments used in Remark 2.1, we have

Eratl I e

for all f,g € Ga. Set T'(f) = T(f)/T(1) for f € Ga. Then T’ is a
surjection from G4 onto G with 77(1) = 1 and
'(f)

EoRsl i il
T'(9) e 9 e
for all f,g € Ga. By Proposition 2.13 applied to T”, there exist a clopen

subset K = K7 of Ch(B) and a homeomorphism ¢ from Ch (B) onto
Ch (A) such that

floy)) yeK
flo(y)) yeCh(B)\K

(1)) = {

for every f € G4. The conclusion follows from 7" = T/T(1). Finally,
we show that 7" can be extended to a real-algebra isomorphism from A
onto B. For any f € A, there exist an fy € exp A and a A € C\{0} with
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f = fo+A. We define a map S from A into B by S(f) =T"(fo)+T" ().

Since
(fo+A)og onK

(fo+A)o¢ onCh(B)\K,

the map S is a well-defined injective linear multiplicative map from A
into B with S|g, = T'. We show that S is surjective. Let f € B; then
there exist an fo € expB and a g € C\ {0} with §f = fo + p. Since
T’ is a surjection from G, onto Gp, there exist gi,g2 € G4 such that
T'(g1) = fo and T"(g2) = p. Set g = g1 + g2. Then we have

T'(fo) + T'(A) = {

S(g) = {% ZE é(h(B)\K :Tl(gl) +T,(g2) =f

on Ch (B). Since Ch (B) is a boundary for B, the map S is surjective.

Consequently, S is a real-algebra isomorphism from A onto B. o

Proof of Theorem 3.2. Let T : A~! — B! be a surjection with

r(T(f)7(T(9)) —a) =x(fp(g) — a)

for all f,g € A A~L. First, we consider the case when B is semi-simple.

Note that A-1 = A~! and B-1 = B~L. By similar arguments as in
Remark 2.1, we have

r(T(H)T(g) ~1) =x(fg~" — 1)

for all f,g € A~L. Define a map 7 from A~! into B! by f(f) =
( ) /T( ) for f E A~!. By hypotheses, T is a well-defined surjection
from A~! into B! such that 7'(1) = 1 and

fOI‘ all A’,/g\ S .lzl\ -

Set A = «cl (.;l\) and B = cl (E) Then A and B are uniform
algebras on M and Mg, respectively. We will construct a mapping
: A1 — B! with T|A L= = T. It should be mentioned that the

proof below is essentially due to [4, Proof of Claim 1]. Let f € A™;

i
g

o0
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then there exists a sequence {ﬁ}?f:l c A with ||?; — fllo = 0 as
n — oo. It is well known that My = M4 (cf. [4, preface of Section
2]), thus 0 ¢ f(M4). We may assume that {};};’L"Zl € A ! and there
exists a £ > 0 such that

=

IFll <k and \ <k

n oo

for all n € N. By the same argument as in Remark 2.2, we see that
|7~ ld]

T(9) llso 9 lloo
for all f,5 € A1, Since T(1) = 1, the inequalities ||T(f,)]lcc =
[fnlleo < k and

‘——1” H H 1T = Flloo < KITo = Fonlle

hold for all n,m € N. Thus we have

o~ o~

T(7m)
= () ||OOH In 1H

IT(Fn) = T(Fa)lloo < IT(Fn)llso

T(fa) 1”

oo

S k2||fn - fm”oo

for all n,m € N. Hence {f(};)}?f:l is a Cauchy sequence in B with
respect to the uniform norm on My, and there exists limn%c>o A(?;)
in B. Since ||1/T(f)|| = ||1/falloc < k, we have 1/k < |T(f,)| on
Mp for all n € N. Consequently, lim,, . (fn) € B~!. Note that
lim,, 00 f(?;) does not depend on a particular choice of a sequence
{#.}>, which converges to f: for if {gn}>>, C A~! is another
sequence with ||, — fllcc — 0 as n — oo, then

-l -2 1], -
T(@:) oo 9n (o)
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as n — 00, thus lim,,_, f(f;) = lim,, o f(g/fn) Set

T(f) = lim T(f,)

n—ro0

for every f € A:l. Then T is a well-defined mapping from A~! into
B! satisfying T|;1\71 =T and

Eras Il L

for all f,g € A™L.

We will show that T is surjective. Let § € B~Ll. Since T :
A= — B~!is surjective, there exists a sequence {h/\n}ff’:l c A
with ||f(ﬁ;) — flloc = 0 as n — oo. We may assume that there exists
an ! > 0 such that

|IT(hn)|lo <1 and <1

~ ~

T(hn)

for all n € N. By the argument used in the previous paragraph, we get

‘ oo

rn = Bonlloo < PIT(Rn) = T(om) | oo-

Therefore, {E}?le is a Cauchy sequence in A with respect to the
uniform norm on M 4. Let h € A be the limit of {hAn}ff:l. In the same
way as the proof of lim,,_, f(ﬁ) € B7!, we have h € A~1. By the
definition of i

T(h) = nl;n;o T(h,) = f.

We thus conclude that 7T is surjective. By Theorem 3.1, applied to f,
there exist a clopen subset K of Ch(B) and a homeomorphism ¢ from
Ch (B) onto Ch (A4) with

F() () = { f(o(y) yekK

f(¢(y)) yeCh(B)\K

—_— A~ o~

for every f € A~!. The conclusion follows from T'(f)/T(1) = T(f) =
T(f) for f € A7L.
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Finally, we consider the case when B is not assumed to be semi-
simple. Let I' be the Gelfand transformation on B. Then I'o T is a
surjection from A~! onto B~!. Note that B is a unital commutative
Banach algebra with respect to the quotient norm. Also, M 5= Mg,

thus B is semi-simple. Now it is obvious that

r(T(N)r(T(9)) - @) = x(T()7(T(9)) - @) = r(fp(g) - )
for all f,g € A7L. Set h = T'(p~'(ag™?)) for eachilg € A7, By

—_—1

similar arguments used in Remark 2.1, we have oZ'(g) = 7(h) for all
g € A7, Hence I o T satisfies

r(CoT)(f)ToT)(g) ' = 1) =x(fg~" — 1)

for all f,g € A~!, which implies that I' o T is injective. Since
T(A1) = B71, I'|g-1 is one-to-one. We show that I' is injective.
Suppose that I'(f) = 0 for € B, that is, f = 0 on Mz. Set fo = 1 + .
Then fo € B~! because fAO =1 on Mpg. Since T'|z-1 is one-to-one, we
have fo = 1, thus f = 0. We conclude that I' is injective, and so B is
semi-simple. a

Proof of Corollary 3.3. Let T : A — B be a surjection such that, for
some o € C\ {0},

r(T(f)7(T(9)) —a) =x(fp(g) — @)

for all f,g € A. First, we prove that B is semi-simple. Let I" be the
Gelfand transformation on B. Then I'oT is a surjection from .4 onto the
unital semi-simple commuta@i Bﬁh algebra B with respect to the
quotient norm. Note that r(T'(f)7(T(g9)) — o) = r(T(f)7(T(g)) — @) =
r(fp(g) — ) for all f,g € A. By similar arguments used in Remark 2.1,

—

we have T(A-1) C B~ and

r(T(f)T(g) -1)=rx(fg~" - 1)

for every f € A and g € A~!. We show that T(A-1) = B~ Let
g € B71; then there exist a g € A and an h € A such that T(g) = g
and T'(h) = 77! (ag™') since T is surjective. We obtain

—_——

0 = r(T(G(T(R) - @) = r(gp(h) — a).
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Hence g € A~!. Thus g € T(A™!), and consequently B~ =B-1c
T(A~1). By a similar argument to the proof of Theorem 3.1, we have
that I is injective, and so B is semi-simple.

-~ .

Set A = cl(A) and B = cl(B). By the proof of Theorem 3.1, there
exist a surjection T : A — B, a clopen subset K of Ch(B), and a
homeomorphism ¢ : Ch (B) — Ch (A) such that f(f) =T(f)/T(1) for
every f € A~! and that

T(f)(y) = {f<¢<y>) yeK

f(¢(y)) yeCh(B)\K

for every f € A7L. By the proof of Theorem 3.1, we may define a map
S:A— Bby S(f) =T(fo) + T(A) for f € A, where fo € A~ and
A e C\ {0} with f = fo + A. Since

_ = _ [(Jo+N)os omK
T(fo)+T()\)—{mo¢ on Ch(B)\ K’

we have R R

7=l

T(g) o 19 o

for every f € Aand g € A71. Let g € A7! and {g,}5>; C A7!

with ||gn — g/l — 0 as n — oco. By the definition of T, T(g) =

—_—

lim,,—, 0 T(g,)/T(1). Since

r(T(f)T(gn) " = 1) =1(fgn ' = 1),

by letting n — oo, we have

T R
T(1)T(g) S s 1T (g) oo

for every f € Aand g € A™1. Since T(A_l) = B~!, we obtain

H%g - 1”@ = 15(Fa — 1l
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for every f € Aand g € B~!. Foreach f € A, g € B~!, and n € N,
we have -
[, 1
T(1) " loo

since ng € B~!. Taking n — oo, we have, for every f € Aand g € B,
that

)g—l

n

)

3

o0

H e H 15l

—_—

We show that T'(f) = T(l)S(f) on Mjp for every f € A. Let f € Aand
y € ChB. Set 4 = T( )(y)/T( )(y) and v = S(]/”\)( ). If v = 0, then for
each n € N there exists a g, € Pg-1(y) such that [|S(F)anllee < 1/n.
Hence

1

Mg = 1I1s(Ponll < 1

bl = |pgn(y)] < Hﬁgn

(o]

and consequently, © = 0 = v. By a quite similar argument, we see that
@ = 0 implies v = 0. If pv # 0, then Lemma 2.1 shows that there exists

g Pp-1(y) such that o (T(f)g/T(1)) = {p} and - (S(f)s) = {v}.

o —HAgH 15Dl = Il

Since —g/v € B™1, we have

DA -lol-0)-o -

Note that ||T( )g/(Z/T(l))Hoo = 1. Thus, there exists a y’ € Ch(B)
such that

Therefore, |T( )(y )g
(

VT )] = v] = |ul. Since ox(T(o/T (1)) =
{u}, we have T(f)(y)s(

(
¥ )a(y)/T(1)(y') = p. Consequently, we have
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~

= v. Hence Zf(f\)(y) = 1{(1\)(y)5(f)(y), as claimed. Now it is obvious
by the definition of S that

— — {f(¢(y)) ye K
f(é(y)) yeChB\K

for every f € A. O

Proof of Corollary 3.4. Let T : A — B be a surjection such that

(4.1) o(T(£)m(T(9))) = o(fr(9))

for all f,g € A. Then

o(T(f)m(T(g9)) = 1) = o(fp(g) — 1),

which implies that

r(T(f)m(T(9)) = 1) =r(fplg) — 1)

for all f,g € A. Applying Corollary 3.3, B is semi-simple, and there

~

exists a clopen subset K of Ch(cl(B)) and a homeomorphism ¢ from

~ ~

Ch (cl(B)) onto Ch (cl(.A)) such that the equality

(T(H)/T)(y)

~

F(#(y)) ye€Ch(cl(B)\ K

holds for every f € A. Since p is surjective, there exists an f; € A such
that p(f1) = 1. By (4.1), we have o(T(1)7(T(f1))) = o(p(f1)) = {1}.
Thus T'(1)7(T(f1)) = 1, and consequently T(1)~! = 7(T(f1)). Then
T(i)T(1)! = isince o(T(H)T(1) ") = o(T(Q)7(T(f1))) = o(ip(f1)) =

.

{i}. This implies that K = Ch(cl(B)). It follows that the equality

—

T(f) = T(l)(fo ¢) holds on Ch(cl(B)) for every f € A. Set
S = T(1)7'T. Then S is an algebra isomorphism from A onto B.
For any y € Mg, a mapping .S, defined by S,(f) = ?(7)(3/) for fe A
is a multiplicative linear functional on A with S, (1) = 1. Thus, we
may define a map ® from Mp into M4 by ®(y) = S, for y € Mp.
Then we see that ® is a continuous map from Mp onto M 4 with ® = ¢

I :{f(¢(y)) yeK
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-~

on Ch(cl(B)). Since S is bijective, we may define a continuous map
U from M, into Mg by ¥(y) = (S°1), for z € M4 as in the same
manner. We see that ¥ = ®~!; thus, ® is a homeomorphism. By the
definition of S, we have

for every f € A and y € Mp. O
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