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PHASE PORTRAITS AND INVARIANT STRAIGHT LINES
OF CUBIC POLYNOMIAL VECTOR FIELDS HAVING
A QUADRATIC RATIONAL FIRST INTEGRAL

JAUME LLIBRE, ADAM MAHDI AND NICOLAE VULPE

ABSTRACT. In this paper we classify all cubic polynomial
differential systems having a rational first integral of degree
two. In other words we characterize all the global phase
portraits of the cubic polynomial differential systems having
all their orbits contained in conics. We also determine their
configurations of invariant straight lines. We show that there
are exactly 38 topologically different phase portraits in the
Poincaré disc associated with this family of cubic polynomial
differential systems up to a reversed sense of their orbits.

1. Introduction and statement of the main results. Nonlinear
ordinary differential equations appear in many branches of applied
mathematics, physics and, in general, in applied sciences. For a
differential system or a vector field defined on the plane R?2, the
existence of a first integral determines completely its phase portrait.
Since for such vector fields the notion of integrability is based on the
existence of a first integral the following natural question arises: Given
a vector field on R?, how to recognize if this vector field has a first
integral? One of the easiest planar vector fields having a first integral
are the Hamiltonian ones. The integrable planar vector fields which
are not Hamiltonian are, in general, very difficult to detect. In this
paper we will characterize the cubic polynomial vectors fields having a
rational first integral of degree 2.
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We study cubic polynomial vector fields in R? defined by the systems

dz
(1) q = Po i@ y) +p2(z,y) + pa(e,y) = Pla,y),
1

d

d_z: =@+ a1 (2,y) + @2(2,y) + g3(2,y) = Q(, ),

where pg, g0 € R and p;(z,y), ¢;(z,y) are homogenous polynomials of
degree i (1 = 1,2,3) in = and y and (pg,(ac,y))2 + (q;:,(a:,y))2 Z£0. We
say that a polynomial differential system (1) is degenerate if P and @
have a common factor of degree > 1.

Our goal is to determine all phase portraits of systems (1) having a
quadratic rational first integral H that is

(2) 7o Coo + c10® + co1y + €202 + c112Y + co2y? _ ﬂ
doo + dioz + dory + doox? + diizy + do2y? Hp'

with ¢3y + ¢3; + 3y + d3y + d3; + d3y # 0 and with the numerator and
the denominator different from a constant, i.e., in this paper we do
not allow that H or 1/H be a polynomial because in these cases the
differential systems are essentially linear.

We remark that the quadratic vector fields having a rational first
integral of degree 2 and their phase portraits have been characterized
in [1, 3].

We note that the cubic polynomial differential systems having a
rational first integral of degree 2 have all their orbits contained in conics.
So, their orbits are very simple curves but this does not prevent their
phase portraits from exhibiting a rich variety of dynamics as it is shown
in our main result.

Theorem 1. The phase portrait of a non-degenerate planar cubic
polynomial differential system with a rational first integral of degree 2
1s topologically equivalent to one of the 27 phase portraits described in
Figure 1.

Further, we show that a real cubic system having a rational first
integral of degree 2 either has a finite number of invariant straight lines
(real or complex) of total multiplicity 6 or it has infinitely many of them,
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FIGURE 1. Phase portraits of non-degenerate cubic systems having a rational first
integral of degree two.
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FIGURE 2. Phase portraits of degenerate cubic systems having a rational first
integral of degree two.

see Section 3. We also study the configuration of the invariant straight
lines (for the definition see Section 3) that these kinds of systems
exhibit. If at least four invariant straight lines coincide, system (1)
becomes degenerate. In Figure 2 we gather all the degenerate phase
portraits of the vector field 3. These are in one sense limit cases of the
non-degenerate ones. Phase portraits in Figure 2 (28-32) correspond to
the cases when four invariant straight lines coincide and after removing
the common factor from P and @@ we get a quadratic system. In
Figure 2 (33-34) we have two phase portraits that we get when six
invariant straight lines coincide. Finally, we have four non-equivalent
phase portraits in Figure 2 (35-38) when system (1) admits infinitely
many invariant straight lines.

We remark that this paper includes as a subcase the results of [2].

The paper is organized as follows. In Section 2 we present some basic
results of the systems studied in Theorem 1. Playing with the different
configurations of the invariant straight lines we organize the proof of
Theorem 1 in eight subsections inside Section 3.
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2. Preliminaries. We note that the most general polynomial vector
fields having a rational first integral (2) are X = (P, Q) where

B Plew) = (o), Q)= B (Hp)*.

We denote by

M = Coo Cio Co1 C20 Ci11 Co2
doo dio dor doo dir  do2

the matrix of the coefficients of the polynomials Hy and Hp and by d;;,
1 <i < j <6, the minor of the matrix M constructed with columns i
and j. Then the differential systems corresponding to the vector fields
(3) take the form:

&= 013+ (8154 023) T+2016 y+ (025 — 034) ° + 26262y +636 y°
+a Ra(z,y),

§=—012—2614 T+ (023 —0615) Y — 24 &° — 2834 Y+ (526 — J35)y*
+y R (z,y),

(4)

where Ry (z,y) = 045 2 + 2046 Ty + 56 ¥>.

We say that the infinity is degenerate if it is full of singular points. In
what follows sometimes instead of cubic polynomial differential system
we will simply say cubic system.

Lemma 2. If a cubic system (1) possesses a rational first integral of
the form (2) then this system:

(a) has a line of singularities at infinity;

(b) becomes a quadratic system if and only if the homogeneous
quadratic part of the polynomials Hy and Hp from (2) are propor-
tional;

(c) becomes homogenous cubic degenerate of the form & = x Ra(x,y),
y =y Ra(z,y) if Hy and Hp are homogeneous quadratic forms.

Proof. As we said the most general form of the cubic vector fields
having a rational first integral of form (2) takes the form (4). The
cubic homogeneous part of the vector field is denoted by (P,Q). It
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is clear that (P,Q) = (zRy,yRz). Since zQ — yP = 0, statement (a)
follows. Homogeneous quadratic parts of the polynomials Hy and Hp
are proportional if and only if §45 = d46 = 056 = 0. This condition
is fulfilled if and only if R; = 0, and this shows statement (b). If we

assume that
_ 0 0 0 co9 €11 cCo2
M= (0 0 0 doo di1 d02> ’

then it is clear that (4) is as in statement (c). o
The vector field X' associated with system (1) is defined by
0 0
x=prPZ 102,
Oz +Q Oy

Let f € Clz,y], i-e., f is a polynomial with complex coefficients
in the variables  and y. The complex algebraic curve f(z,y) = 0
is an invariant algebraic curve of the real vector field X if, for some
polynomial K € C|z, y], we have

of

of
— =K.

Oy !

The polynomial K is called the cofactor of the invariant algebraic curve
f = 0. We note that if a polynomial system has degree m then every
cofactor has at most degree m — 1.

Lemma 3. Let X be a polynomial vector field in R?. If the
polynomial functions f and g are relatively prime, then f/g is a rational
first integral of X if and only if f and g are both invariant algebraic
curves with the same cofactor.

Proof. Let H = f/g be a first integral with f and g two non-constant
coprime polynomials. So X(f/g) =0, or equivalently f(Xg) = g(Xf).
Since f does not divide g, we have that X' f = K f for some polynomial
K € Clz,y|. Therefore, we also have X¢g = Kg. Conversely if we take
two algebraic curves f and g with the same cofactor K, then we have
K =(Xf)/f and K = (Xg)/g. Then (Xf)g — f(Xg) = 0. Since

X(§> _ (Xf)gg_zf(Xg) -0,

the lemma follows. |
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Corollary 4. If f/g is a rational first integral of X, then (af +
B89)/(vf +3g) is also a rational first integral of X for all a,3,7,5 € R
verifying the condition ad — By # 0.

Proof. Suppose that f/g is the first integral of X and a,b,c,d € R.
Then (af)/g +b = (af + bg)/g is another first integral of X and so
is cg/(af + bg) +d = (ad f + (c + bd)g)/(af + bg). Putting o = ad,
B =c+bd, v=aand § = b and by the assumption ad — By # 0 we
prove the corollary. o

3. Classification of the configurations of the invariant
straight lines. We say that the invariant straight line L(z,y) =
ur + vy + w = 0, where u,v,w € C for the cubic vector field X has
multiplicity m if there exists a sequence of real cubic vector fields X}
tending to X, such that each A has exactly m distinct (complex) in-
variant straight lines L; = 0,... ,L7" = 0, tending to L = 0 as k — oo
(with the topology of their coefficients).

In what follows, we construct the necessary and sufficient conditions
for a cubic system (4) to have an invariant straight line. We consider
the cubic system (1) and the following associated four polynomials:

Ci(xa y) = ypi(l‘a y) - xqi(l‘a y) € R[aa T, y]a = 0) ]-7 25 3.
Remark 1. For system (4) it follows immediately that Cs(z,y) = 0.

We denote by Res.(f(z),g(z)) the resultant of the polynomials f(z)
and g(z). Following [9] we shall prove the next results.

Proposition 5. The straight line E(a:, y) = ux + vy = 0 is invariant
for a cubic system (4) with p3 + g2 # 0 if and only if for i = 1,2 the
following relations hold:

x

Y
(5) Res, (C;,Cy) =0 <’y = o 7= ;)

Proof. The line Z(a:, y)=0 is invariant for system (4) if and only if
w(po +p1 +p2 +p3) + (g0 + q1 + g2 + ¢3) = (uz +vy)(So + S1 + S2),
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for some homogeneous polynomials S;(z,y) of degree ¢ in z and y. The
last equality is equivalent to

upo + vqo = 0,

up1(@,y) +vq1(z,y) = (uz + vy)So,

up2 (2, y) + vaz(x, y) = (uz + vy)S1(z,y),

’U,pg(il', y) + Uq;g(l‘, y) = (ua: + Uy)SQ(m7 y)
If x = —v,y = u, then the left-hand sides of the previous equalities
become Cy(—v,u), C1(—v,u), C2(—v,u)) and Cs5(—v,u)), respectively,
and the last polynomial vanishes (see Remark 1). At the same time the
right-hand sides of these identities vanish. Thus we obtain equations
Ci(—v,u) = 0 (i = 0,1,2) in which Cy (respectively, C; and C5) is
a homogeneous polynomial of degree 1 (respectively 2 and 3) in the
parameters u and v, and Co(z,y) # 0 because pZ + g2 # 0. Hence, by
the properties of the resultant, the necessary and sufficient conditions
for the existence of a common solution of this system of equations are
conditions (5). o

Let (xo,90) € R? be an arbitrary point on the phase plane of systems
(4). Consider a translation 7 bringing the origin of coordinates to the
point (zg,yo). We denote by (47) the system obtained after applying
the transformation 7, and by a = a(zg,yp) € R?® the 20-tuple of its
coefficients. If v = y/z or v = x/y then, for i = 1,2 we denote

Qi(av mO:yO) = Res'y (C’L (5,$7y)700 (57 z, y)) S R[a7 ZL’anO]a
gi(aaxvy) = Qi(aa wano)\{m:m, yo=y} € R[aamay]'

(6)

Remark 2. For j = 1,2 the polynomials £;(a, z, y) are affine comitants
(for more details see [9]), homogeneous in the coefficients of system (4)
and non-homogeneous in the variables z and y.

The geometrical meaning of these affine comitants is given by the
following lemma.

Lemma 6. The straight line L(z,y) = uz + vy + w = 0 is invariant
for a cubic system (4) if and only if the polynomial L(x,y) is a common
factor of the polynomials £ and & over C.
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Proof. Let (xg,y0) € R? be a non-singular point of system (4) (i.e.,
P(z0,90)? + Q(x0,v0)?> # 0) which lies on the line L(z,y) = 0, i.e.,
uzy + vyo + w = 0. Denote by L(z,y) = (Lo7) (z,y) = uz + vy (7
is a translation) and consider the line uz + vy = 0. By Proposition 5
the straight line L(z,y) = 0 will be an invariant line of systems (47)
if and only if the conditions (5) are satisfied for these systems, i.e.,
for i = 1,2, Q;(a,z0,y0) = 0 for each point (x,yp) on the line
L(z,y) = uz + vy + w = 0. Thus from Nullstellensatz we have
Qi(a, zo,y0) = (uzo + vyo + w)ﬁi(a, Zo,yo). Taking into account
relations (6) the lemma follows. O

Proposition 7. FEvery non-degenerate cubic system having a rational
first integral of the form (2) possesses invariant affine straight lines (real
and/or complex) of total multiplicity siz.

Proof. Calculating for systems (4) the affine invariant polynomials &;
and &, we obtain

& = Wieij, dij,z,y), E2 = Wicij, dij, z, y)W(cij, dij, ,y),

where W (c;j,d;j,x,y) (respectively W(cij,dij,x,y)) is a homogenous
polynomial of degree 6 (respectively, of degree 2) in the parameters
¢ij,d;; and a non-homogenous polynomial of degree 6 (respectively of
degree 2) in the variables z and y. As the polynomial W(c;;, dij, z,y)
is a common factor of the affine comitants £ and £ by Lemma 6 the
polynomial W (c;;,d;j, x,y) is a product of six invariant affine straight
lines, which could be real and/or complex, distinct and/or coinciding,
see [7, page 205]. This completes the proof of the proposition. ]

Note that the multiplicity of an invariant straight line uz +vy+w =0
is given by the number of times that uz 4+ vy + w divides &;, for more
details see [4].

From the proof the above proposition the next result follows imme-
diately.

Corollary 8. For a non-degenerate cubic system having a rational
first integral of the form (2) the affine invariant polynomial & (z,y)
gives six invariant straight lines taking into account their multiplicity.
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Information about the existence of invariant straight lines of total
multiplicity six will be crucial in determining all the phase portraits of
non-degenerate systems (4). Before we describe the way to achieve it we
recall some notions about algebraic curves and define a configuration
of invariant straight lines.

If F = F(z,y) € R[z,y] is a real polynomial of degree two then it is
known that this polynomial can be brought to one of the nine normal
forms (see Proposition 20 of the Appendix). In the Appendix we recall
two main invariants, A and ¢ of a conic. In this article we will often use
the following terminology. We say that a conic F' = 0 is of hyperbolic
type if 6 < 0, of parabolic type if 6 = 0, and of elliptic type if § > 0.

We say that a real conic F' = 0 is reducible if it factorizes in the
complex domain, i.e., if F' = (az + by)(cz + dy) for some a,b,c,d € C.
If F = 0 is not reducible we say that it is irreducible. Thus a reducible
conic of hyperbolic type is a real conic that factorizes in two real
intersecting straight lines; a reducible conic of parabolic type is a real
conic that factorizes in either two distinct real or complex parallel
straight lines or one real straight line of multiplicity two; finally, a
reducible conic of elliptic type is a real conic that factorizes in two
complex conjugate straight lines (which intersect in a real point).
Therefore, a reducible conic of hyperbolic, elliptic and parabolic types
via an affine transformation can be brought respectively to zy = 0,
2?2 +y? = 0; 22 + a = 0, where o € {0, +1}.

Assume that the differential system (4) admits a rational first integral
H = Hy/Hp. The pencil of conics generated by Hy and Hp has the
conic F' = 0 if there exist «, 8 € R such that

(7) F =oaHy + 8Hp.

In this case we will also say that system (4) has or possesses the conic
F = 0. Notice that the conic F = 0 coincides with H = —3/a for
a#0,and F' = Hp for o = 0.

Lemma 9. If system (4) has at least two non-proportional reducible
conics (say Hy =0 and Hy = 0), then the following statements hold.

(a) The rational function Hy/Hs also is a first integral for this system.

(b) The system becomes quadratic if and only if the homogeneous
quadratic parts of the quadratic polynomials H, and Hy are propor-
tional.
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(c) The system becomes homogenous cubic degenerate if Hy and Hy
are homogeneous polynomaials.

Proof. From our assumptions and the fact that system (4) has the
first integral Hy/Hp, we have

Hy =a1HyN + B1Hp, Hy; = axHyn + B2Hp,

so we have

Hy _ ayHy + fiHp
H, axHy+ (BHp'

Since H; and Hy are not proportional, we have o182 — asf; # 0, and
now (a) follows from Corollary 4.

Calculating X = (P, Q) as in (3) for H = Hy/Hp and choosing Hy
and Hp with a proportional quadratic homogeneous parts we obtain
(b), and for Hy and Hp homogeneous we have (c). o

Lemma 10. In a real linear system of conics, there is at least one
conic which contains a real line.

Proof. For the proof see [8, page 260]. O

We call the configuration of invariant straight lines (or simply the
configuration) of system (1) the set of all its invariant straight lines (real
or complex), each endowed with its multiplicity and together with all
the real isolated singular points of (1) located on these lines endowed
with their multiplicities. We recall that the multiplicity of a singular
point (zo,yo) of system (1) is defined as the intersection number of
algebraic curves P(z,y) = 0 and Q(z,y) = 0 at the point (zo,yo),
for more details see [6]. We indicate the multiplicity of an invariant
straight line only when it is greater than one by a number near it. If
the multiplicity of the singular point is not indicated it means that
the singular point is simple, i.e., it has multiplicity one. When the
multiplicity of the singular point is k& > 1, then it is indicated by (k)
near the singular point.

Using this information we divide the problem of finding all topolog-
ically nonequivalent phase portraits of systems (4) into 5 cases. We
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denote by h, p and e the reducible conic of hyperbolic, parabolic and
elliptic type respectively. By S(m,n) we denote the class of systems
(4) having at least two different reducible conics of the type m and n,
where m,n € {h,e,p}.

First we consider the family S(h,h) that consists of all system (3)
having two non-proportional reducible conics of hyperbolic type, say
H; =0 and Hy = 0. By Lemma 9 (a) H;/H> is a first integral of the
system and by Corollary 8 calculating £; = Hngﬁ , we find another
reducible invariant conic H = 0.

Then we study the family S(h, p) of all systems having two reducible
conics: one of hyperbolic type H; = 0 and the other of parabolic type
Hy, = 0 Calculating & = H1H2H we determine the third reducible
conic H = 0. Of course if H = 0 is of hyperbolic type then the system
belongs to S(h,h) since there are two reducible conics of hyperbolic
type, namely Hs = 0 and H = 0. Thus we exclude this case when
studying family S(h, p).

We are going to consider the following families S(h,h), S(h,p),
S(h,e), S(p,p), S(p,e) in this order. We notice that according to
Lemma 10 the family S(e, €) is included in one of the families mentioned
before. At each step we exclude the cases that have been studied before.
As a first step we shall construct all topologically distinct configurations
of invariant straight lines occurring for each of the mentioned classes
of systems (4). Then we consider systems having a reducible conic
either of hyperbolic or parabolic (excluding the case of two parallel
non-real lines) and no reducible conic of other type. At each step we
again exclude the cases that lead to phase portraits that have been
studied before. By Lemma 10 systems having only one reducible conic
of elliptic type or parallel non-real lines do not exist.

3.1. Systems of type S(h,h). Assume that a system (4) possesses
two distinct reducible conics of hyperbolic type, say Hl(li) = Lgi)Léi)
(1 = 1,2). We shall consider two geometrical distinct possibilities:

(i) either the centers of the conics Hk(ll) =0 and HI(IZ) =0 (i.e., the
intersection points of the lines ng’) = 0 and Lgi) =0 (i =1,2)) are
distinct,

(ii) or they coincide.
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Proposition 11. Assume that a cubic system has a rational first
integral of degree 2 of the form H}(ll)/H}(IZ) where H}(:) fori=1,21s
a reducible conic of hyperbolic type and the centers of these conics are
distinct. Then this system can be written in the form

i =x(b+ (1+b)z+2* + ay?),

(8) g =y(=b+ (b—a)y + 22 + ay?),

where a,b € R and a # —1 having the first integral H = (x —y+1)(z+
ay + b)/(zy). Moreover, the configurations of invariant straight lines
of this system are

Config. 1 <= ab(b— 1)(a+b)(a+b?) #0, a < 0;
Config. 2 <= ab(b—1)(a+b)(a+b*) #0, a > 0;
Config. 3= bla+0b)(b—1)=0, a>0;

Config. 4 < b(a+b)(b—1)=0, a <0;

Config. 5 <= a = —b? # 0;

Config. 6 <= a=0, b(b—1) £0;

Config. 7<= a=0, b=1;

Config. 8 <—= a=0, b=0.

Proof. In order to have a cubic system, according to Lemma 9,
we shall consider that the quadratic homogeneous parts of Hl(ll) and
Hl(lz) are not proportional. Therefore, since the centers of these conics
are distinct, there exists a component of a conic which intersects
both components of the other one in two distinct points. So without
loss of generality we can assume that HI(IQ) = zy (due to the affine
transformation x; = L§2) and y; = Lg2)), and that the line Lgl)
intersects both lines z = 0 and y = 0 in two distinct points, say (0, @)
and (3,0). Then we can assume that this line is z — y +1 = 0 due to
the rescaling (z,y) — (z/8,—y/a).

In short, we obtain the first integral H = (z—y+1)(cx+ay+b)/(zy)
and since a? + ¢ # 0 we can consider ¢ # 0 (due to the change
(z,y) — (—y,—z)). Finally, without loss of generality, we can assume
¢ = 1 (multiplying by 1/c this being equivalent to the time rescaling
t — t/c for systems (4)).
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Thus the first integral of systems (4) can be written in the form (8)
and, according to Corollary 8, they have the following real invariant
straight lines

(9) Ei=zy(r —y+1)(z+ay + b)(bx + ay + b)(x — by + b)
= Ly1LyL3L4LsLe =0,

where a,b € R and a # —1. It would be convenient to represent these

six lines in the matrix form

(L15L27L3aL47L57L6) = (l‘,y)M-‘r (0705 lvba b? b)a

10 1 1 b 1
M_<0 1 -1 a a —b>'
It is known that two lines Ajx+ B1y+Cy = 0 and Asx+ Boy+Cy =0
are parallel if and only A1 By — A2 By = 0. Thus, in order to have
six invariant straight lines in six different directions, all 2 X 2 minors
of matrix M have to be different from zero. We denote by d;j,

1 < i < j < 6, the minors of the matrix M constructed using the
columns ¢ and j. Then we have

where

dizo=1, diz=-1, diy=a, di5 = a, dig = —b,
doz = —1, doy=—1, dys = —b, dys = —1, d3g =a+1,
d35 = a+b, d36 7[)-’-1, d45 = a(].*b), d46 :4)27a, d56 :4)2711.

Taking into consideration that a # —1 (which must be fulfilled for
systems (8)) we conclude that the minors d;; #0 forall 1 <i < j <6
if and only if the condition

(10) ab(b —1)(a+ b)(a+b*) £ 0

holds. So we conclude that in this generic case there are six different
straight lines in six different directions, and we shall show that there
exist two distinct configurations depending on the sign of parameter a.

Indeed since all the invariant straight lines L; = 0, ¢ = 1,...,6
of system (8) are real, then clearly their intersection points are finite
singularities of this system. In the generic case (10) we shall see that the
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system has four star points, which are intersections of three invariant
straight lines.

Denoting by Int (L;, L;, Lj) the intersection point of the straight lines
L;, Lj and Ly, it is easy to determine the coordinates of the four star
points:

M1 = Int (Ll,Lg, LG) = (0, 1), M2 = IIlt (LQ, L3,L5) = (—1,0),
M3 := Int (LQ,L4, LG) = (—b, 0), M4 = Int (Ll, L4,L5) = (0, —b/a).

We observe that two star points have fixed coordinates (M; = (0,1)
and My = (—1,0)) as well as the singular point M(0,0). On the other
hand, the star points M3(zy,0) and My(0,y) (where zg = —b,yo =
—b/a) are moving on the axes when the parameters a and b vary.

It is easy to see that the quadrilateral formed by the points My, M,
M3 and M, is convex if xzgyy < 0, and concave if xgyy > 0. Since
sign (zoyo) = sign (b*/a), then we get Config. 1 if a < 0 and Config.
2ifa>0.

In what follows we assume that the condition ab(b—1)(a+b)(a+b?) =
0 is fulfilled. Then, considering all the different possibilities in order
that this expression be zero, we obtain the remaining six configurations
of the statement of the proposition. i

Phase portraits of systems of type S(h,h). The goal of this
subsection is to determine the phase portraits of the systems of type
S(h,h). In other words to determine all topologically non-equivalent
phase portraits for this family of systems. Thus, first we introduce
among other things the definition of the topological equivalence. Then
we enunciate the Markus-Neumann-Peixoto theorem that allows us to
determine all topologically equivalent systems by restricting ourselves
mainly to studying the flow of the system on the set of their separatri-
ces.

Let ¢ be a C* local flow with k& > 0 on the two-dimensional manifold
M. Of course, for k = 0, the flow is continuous. We say that (M, ¢1)
and (Mz, o) are Ck-equivalent if there is a C* diffeomorphism of
M; onto M, which takes orbits of ¢; onto orbits ¢o preserving or
reversing sense (but not necessarily the parametrization). Of course, a
C? diffeomorphism is a homeomorphism.
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We say that (M, ) is C*-parallel if it is C*-equivalent to one of the
following flows:

(i) R? with the flow defined by # =1, § = 0 (strip flow);

(i) R?\ {0} with the flow defined by # = 0, § = 1 (annular flow);

(iii) R2 \ {0} with the flow defined by 7 = r, § = 0 (spiral flow);

(iv) S x S! with rational flow (toral flow).
Let p € M; we denote by y(p) the orbit of the flow ¢ on M through
p, more precisely v(p) := {@p(t) : t € I,}, where I, is the maximal
open interval of the solution of ¢,. The positive semiorbit of p € M
is yt(p) = {t € I,,t > 0}. In a similar way we define the negative

semiorbit v~ (p) of p € M. We define the a-limit and w-limit of p € M
as

Let v(p) be an orbit of the flow ¢ defined on M. A parallel neighborhood
of the orbit v(p) is an open neighborhood N of 7 such that (N, ) is
C*-equivalent to a parallel flow for some k& > 0.

We say that v(p) is a separatriz of ¢ if vy(p) is not contained in a
parallel neighborhood N satisfying the following two assumptions:

(1) for every g € N, a(q) = a(p) and w(q) = w(p),

(2) N\ N consists of a(p), w(p) and exactly two orbits y(a), y(b) of
v, with a(a) = a(p) = a(b) and w(a) = w(p) = w(b).

We denote by X the union of all separatrices of . Then X is a closed
invariant subset of M. A component of the complement of ¥ in M,
with the restricted flow, is called a canonical region of .

Let (¢, M) be a continuous flow on the 2-manifold M, and let ¥
be the set of all separatrices of (¢, M). In every canonical region U
of (¢, M) we choose an orbit vy. Then a separatriz configuration of
(p, M) is formed by the union of the set 3 and the set of all orbits vy .
In this work we do not draw the orbit 4y in a canonical region unless
it is necessary.
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TABLE 1. The values of the determinant A and of the trace T at the singular
points of system (8).

Singular point A T

M; = (—1,0) (b—1)2 2(1 —b)
Mz = (070) —b? 0

Ms = (0,1) (a+ b)2 2(a+b)

My = (0,—b/a) b2(a + b)2/a? 2b(a + b)/a
My=( —22,222 ) —(b-1)%(a+b)?/(a+1)? 0

Ms = (—b,0) b2(b—1)2 2b(b — 1)
My = (=2t 20y g6 1)2(a+)*/(a+b°)? 0.

TABLE 2. The stability of the singular points of system (8).

Singular point Type  Stable Unstable

M; = (—1,0) Node b>1 b<1

M, = (0,0) Saddle —— _—

M3 = (0,1) Node a-+b<0 a+b>0

My = (0,—b/a) Node (a+b)b/a<0 (a+b)b/a>0
Ms=( -2, 22 ) Saddle

Mg = (=b,0) Node b€ (0,1) be R\ [0,1]
My = (- Yot 20))) Saddle ——— _

Theorem 12 (Markus-Neumann-Peixoto). Let (o1, M1) and (@2, M2)
be two continuous flows on the 2-manifolds My and Ms. Then two flows
are topologically equivalent if and only if there exists a homeomorphism
h : My — Ms, which takes the orbits of the separatriz configuration of
(p1, M1) into the orbits of the separatriz configuration of (2, Mz).

Now we shall determine the phase portraits of system (8).

First we focus on the generic case, i.e., when the condition (10) is
fulfilled. In this case we have seven singular points M;, i = 1,...,7.
In Table 1 we show the coordinates of M;, and the determinant A and
the trace T of the Jacobian matrix at M;.

We always have three saddles: Ms, M5 and M7 since A is negative
at these three singular points. The rest of the singular points M;, M3,
M, and Mg are nodes since the equation T2 = 4A holds for all of
them. Now we consider the stability of the nodes. The conditions for
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FIGURE 3. Configurations of the invariant straight lines of system (8) and their
corresponding phase portraits.

the stability and instability of the nodes are given in Table 2. Thus
when the condition (10) is fulfilled we get two topologically distinct
phase portraits. For a < 0 we get a phase portrait that is topologically
equivalent to Picture 1 and for @ > 0 we have a phase portrait that is
topologically equivalent to Picture 2, see Figure 3.

Now we analyze the phase portraits of system (8) in a non-generic
case, i.e., when condition (10) is not fulfilled.

First we determine the phase portraits of system (8) having the
configurations of the invariant straight lines Config.3 and 4. Thus
we consider system (8) when b(a +b)(b—1) =0 for a > 0 and a < 0.

Assume that b = 0 and a(a + 1) # 0 then system (8) takes the form
(11) §=y(—ay +2* +ay?).

(—=1,0) and
and one degenerate singularity

&= x(x+ 2 + ay?),
The system has four singular points: two nodes M; =

M; = (0,1) one saddle (7#1,[1_}&),
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(see [5] for the definition of different types of singularities) at the origin.
The trace T of the Jacobian matrix of system (11) at M;, denoted by
T(My), is equal to 2 and at My we have T'(Mz) = 2a. So the first
node Mj is unstable and the second is stable for a < 0 and unstable
for @ > 0. Thus, we get respectively pictures that are topologically
equivalent to Pictures 3 and 4 of Figure 3.

Now assume that b =1 and a(a — 1) # 0; then system (8) becomes
(12) & = z(1 + 2z + 2% + ay?), g =y(-14+ (1 —a)y + 22 + ay?).

The system has four singular points: two nodes M; = (0,1), My =
(0,—1/a), one saddle at the origin, and one degenerate singularity at
(—1,0). Similarly, as in the previous case for system (12), we have
T (M) = 2(a+1) and T(M2) = 2(a + 1)/a. We consider the product
T(M1)T(Mz)) = 4(a + 1)?/a. So the stability of the two nodes M;
and M, are distinct for a < 0, and we get the phase portrait that
is topologically equivalent to Picture 3. The stability of the nodes
coincide for ¢ > 0, and we get a phase portrait that is topologically
equivalent to Picture4.

Now assume that b = —a and a(a + 1) # 0; then system (8) becomes
(13) & = z(—a+ (1 — a)z + 22 + ay?), 7 =yla — 2ay + 2% + ay?).

System (13) has four singular points: two nodes M; = (—1,0) and
M, = (a,0), one saddle at the origin and one degenerate singularity
(0,1). In this case we also get Picture 3 for ¢ > 0 and Picture4 for
a < 0, see Figure 3. We showed that if b(b + 1)(a + b) = 0, a > 0 then
system (8) has the phase portrait of Picture 3, and if b(b+1)(a+b) =0
and a < 0 then Picture 4, see Figure 3.

Now we determine the phase portrait of system (8) having the
configuration Config. 5. Thus we consider system (8) when a = —b?
and b # 0,1, i.e.,

t=x(b+(1+bz+z?-0%y?),  §=y(-b+b(1+by+az?—0by?).

The system has six singular points: four nodes M; = (—1,0), My =
(0,1), M3 = (0,1/b) and M4y = (—b,0), and two saddles one at the

origin and the other at (fb_%l, 1), Since we have T'(M;) = 2(1 — b),
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T(Ms3) = 2b(1 — b), T(M3) = —2(1 — b) and T'(My) = 2b(b—1). We
determine the stability of the nodes and we get the phase portraits that
are all topologically equivalent to the one of Picture 5 in Figure 3.

To determine the phase portrait of system (8) having the configura-
tion Config. 6 we consider (8) when a =0 and b(b—1) # 0, i.e.,

=+ (1+bz+2?), g=y(—b+by+a?).

Our system has six singular points: three nodes M; = (—1,0), My =
(0,1) and M3 = (—b,0) and three saddles, one at the origin, (—b, —b+1)
and (—1,(b —1)/b). We also have T'(M;) = 2(1 = b), T(M3) = 2b
and T'(M3) = 2b(b — 1). We obtain the unique phase portrait that is
topologically equivalent to the one of Picture 6, see Figure 3.

We determine the phase portrait of system (8) having the configura-
tion Config. 7. Thus we consider (8) when a =0 and b =1, i.e.,

& =z(1+ 2z + z?), 7 =y(-1+y+2?).

Then system (8) has three singular points: a degenerate one (—1,0), a
saddle (0,0) and a node (0,1). We get the phase portrait Picture 7 in
Figure 3.

Finally we determine the phase portrait of system (8) having the

configuration Config. 8. Thus we consider system (8) when a = 0 and
b=0,ie.,

(14) i=x(1+2z), =y’

This system is degenerate since it has the common factor 2. Thus it
has the line of singularities x = 0. We have the unique phase portrait,
see Picture 8 in Figure 3.

Proposition 13. Assume that a cubic system has a rational first
integral of degree two of the form Ht(ll)/H}(lz) where H}(li) =01is a
reducible conic of hyperbolic type for i = 1,2, and that the centers
of the conics Hl(ll) =0 and Hl(lz) = 0 coincide. Then this system can be
written in the form

(15) T = m(az2 + ay2), y= y(a:2 + ay2),
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FIGURE 4. Configurations of invariant straight lines of system (15) and their
corresponding phase portraits.

where a € R\ {—1} having the first integral H = (z —y)(z + ay)/(zy).
Moreover, the configurations of invariant straight lines of this system
are

Config. 9 <— a <0,

Config. 10 <= a =0,
Config. 11 <= a > 0.

Proof. In this case providing that H1(12) = zy we obtain that all
four lines pass through the origin. By Lemma 9 there exist at least
three directions. Then, without loss of generality, we can assume
Hl(ll) = (z—y)(bz+ay), where a®+b* # 0, and we can consider b = 1 due
to the change (z,y) — (—y, —2) and a # —1 otherwise H}, would not be
of hyperbolic type. Thus we get one-parameter family of systems (15).
Then studying all the possible configurations of the system varying the
parameter a, we obtain Config.9 if ¢ < 0, Config. 10 if a = 0 and
Config. 11 if a > 0.

Evidently the configurations determined above lead to the respective
phase portraits of Figure 4. ]

3.2. Systems of type S(h,p). Assume that system (4) possesses
only one reducible conic of hyperbolic type, say H, = 0, and at least
one reducible conic of parabolic type, Hp, = 0. In this subsection
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we show all the configurations of the invariant straight lines that the
system can have and their corresponding phase portraits.

Proposition 14. Assume that a cubic system has a rational first
integral of degree two of the form Hp/Hy where Hn = 0 and Hp =0
are reducible conics of hyperbolic and parabolic type respectively. Then
this system can be written in the form

(16) i =x(cd+ (c+d)z + z° — b*y?),
§ = y(—cd —bc+d)y + 2* - by?),

where b € R, and either ¢,d € R or d = ¢ € C\ R, having the first
integral H = (x + by + ¢)(x + by + d)/(xy). Moreover, all the possible
configurations of the invariant straight lines of this system which have
not appeared in Propositions 11 and 13 are given in Figure 5.

Proof. We can consider Hy, = xy and the factorization over C of the
parabolic conic will be Hp = (ax + by + ¢)(ax + by + d) = 0. As the
conic H, = 0 must be real we have a = @ and b = b, ie., a,b € R.
Moreover, since a? 4 b?> # 0 we can consider a # 0 due to the change
(z,y) — (y,x), and then via the rescaling * — z/a we can assume
a=1.

In short, we obtain the first integral H = (z+by+c)(z+by+d)/(zy)
and hence system (4) becomes of the form (16). To determine the type

of the third reducible conic (say H= 0) of this system, by Corollary 8,
we calculate

(17) & = 2zy(z + by + ¢)(x + by + d)(dz + bey + ed) (cx + bdy + cd).

Therefore H = (dx + bey + cd)(cxz + bdy + cd) = 0. Since all systems
with two different hyperbolic conics were considered in the previous
section, we assume that H is either non-hyperbolic or it is exactly
zy = 0. We are in the latter case if and only if cd = 0. Suppose that
¢ = 0; then we have the first integral H = (z + by)(z + by + d)/(zy).
We assume that bd # 0; otherwise we get degenerate systems that
were already considered. So by rescaling we get the first integral
H=(z+y)(x+y+1)/(zy) of the system

(18) :&::v(:v+:c2—y2), y:y(mZ—y—yz).



ON CUBIC POLYNOMIAL VECTOR FIELDS 1607

2
@ 2

C

Config. 12

(7
'.J,'
&

Config. 13 Picture 13

@

Picture. 12

&
&

Config. 14 Picture 14

&
S

Config.15 Picture 15

AR
"
D

o
o
3
=h

ig. 17 Picture 17

z

Config. 19 Picture. 19

@
&

Config. 16 Picture. 16

C
S

Config. 18 Picture. 18

¢
S

Config. 20 Picture. 20

FIGURE 5. Configurations of invariant straight lines and corresponding phase

portraits of system (16).

Calculating

& =22 (x+y) (L +z+y),
we get the configuration of invariant straight lines Config. 12.

We assume now that the third reducible conic H = 0 is not of
hyperbolic type. Then the condition § > 0 (for the definition see the
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Appendix) must hold. That is,
(19) b?(c — d)*(c+d)* <0.
Without loss of generality, we can assume b € {0, 1} due to the rescaling

y — y/bif b # 0, and we shall consider these two cases.

Case: b*(c — d)*(c+d)?> < 0. Then ¢,d € C\ R and b # 0. More
precisely, ¢ = r + is and d = r — is such that rs 2 0 and b = 1. So
system (16) can be written as

i =z[(r? + 8%) + 2rz + 22 — o7,
g=y[-(r* + %)~ 2ry + 2% — y’].
Since rs # 0 we can assume that 7 = 1 due to the rescaling
(z,y,t) — (rz,ry,t/r?). Finally, we arrive at the one-parameter family

of systems
i =z[(1+s%) + 2z + 2 — %,

y=yl-(1+5%) =2y +2® — ¢’

having the configuration £ of the invariant straight lines

2ey(x+y+1+si)(z+y+1—si)
[(s—i)z—(s+i)y—i(1+5*)][(s+d)z—(s—1)y+i(1+5)],
that correspond to Config. 20, see Figure 5.

Case: b*(c — d)?(c + d)? = 0. In this case the third conic is of
parabolic type.

1) Assuming b =1 we have (¢ — d)(c +d) = 0.

a) If d = c then this parameter must be real and we get the following
degenerate systems

(200 z=z(z—y+c)(z+ty+c), Y=ylz-y—c)(z+y+c),

where ¢ € {0,1} due to the rescaling (z,y,t) — (cz,cy,t/c?) if ¢ # 0.
So if ¢ = 1 we get Config. 13 and if ¢ = 0 we get a configuration
topologically equivalent to Config. 9.

b) If d = —c, then we obtain the systems

(21) T = :v(—02 +22 - y2), y= y(02 +2? - yz),
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where either ¢ € R, or 0 # ¢ = ir € R. In the first case we can
assume ¢ € {0, 1} due to the rescaling (x,y,t) — (cx, cy,t/c?) if c # 0,
whereas in the second case we can assume ¢ = ¢ due to the rescaling
(z,y,t) — (rz,ry,t/r?). System (21) possesses the following invariant
straight lines

zy(r+y+c)z+y—c)(r—y+c)lx—y—c)=0.

We skip the case ¢ = 0; we get the degenerate system belonging to the
S(h,h) family. We then obtain Config. 14 if ¢ = 1, and Config. 18 if
¢ =1, see Figure 5.

2) Assume now that b = 0. Then we get the family of systems
(22) & =z(z+c)(z+d), v = y(—cd + %),

where either ¢,d € R or d = ¢ € C\ R. Using (17) we obtain the
following invariant straight lines

zy(z +c)*(z +d)* = 0.

a) Assume first that ¢, d € R. Due to rescaling (z,y,t) — (cz,y,t/c?)
if ¢ # 0 we may assume ¢ € {0,1}. If ¢ = 1, then it is easy to observe
that the configurations of invariant straight lines of systems (22) are
given by Config. 15 if d < 0, by Config. 16 if d > 0, d # 1, and by
Config. 17 if d = 1. In the case ¢ = 0, by the same reasons as above,
we can assume that d € {0,1}. For d = 0 we get the configuration that
is topologically equivalent to Config. 10. Finally, when ¢ =1, d = 0,
and ¢ = 0, d =1 we get exactly system (14) that was considered in the
previous section.

b) Suppose now that d =¢ € C\ R and assume ¢ = r +is (s # 0
and we can consider s = 1 due to the rescaling (z,y,t) — (sz,y,t/s?)).
So we obtain the following one-parameter family of systems

i=zx[1+ (z+7)?, g =y[-1—7r*+2?,

having the configuration of invariant straight lines corresponding to
Config. 19, see Figure 5. u]

Phase portraits of systems of type S(h, p). In this subsection we
determine the phase portraits for each of the configurations of invariant
straight lines of system (16).
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First we determine the phase portrait of system (16) having the
configuration of invariant straight lines Config. 12; thus, we consider
system (18). The system has three singular points: one degenerate at
the origin, one stable node at (0, —1) and one unstable node at (—1,0).

We determine the phase portrait of system (16) having the config-
uration Config. 13 of the invariant straight lines. Thus we consider
system (16) with b=1and c=d =1, i.e.,

t=z(z—y+1(z+y+1), y=ylz—y—(z+y+1).

The system has a common factor « + y + 1; hence, the phase portraits
will contain the line of singular points z + y + 1 = 0. There is one
isolated singular point at the origin which is a saddle. For the phase
portrait see Picture 13 in Figure 5.

To determine the phase portrait of system (16) having the configura-
tion Config. 14 we consider system (16) with b =1 and ¢ = —d = 1,
ie.,

i =z(-14 2% y?), g =y(l+ 2% 9.

The system has five singular points which are two stable nodes (0,1)
and (0, —1), two unstable nodes (1,0) and (—1,0), and one saddle at
the origin, see Picture 14.

We determine the phase portrait of system (16) having the configu-
ration Config.k, for k = 15,16,17. So we consider system (16) with
b=0,c=1,1ie.,

i=z(@+1)(z+d), §=y(-d+a?),

and respectively d < 0, 1 # d > 0 and d = 1. Suppose that
d € R\ {0,1}. Then the system has three singular points: a saddle
M; = (0,0), and two nodes My = (—1,0) and M35 = (—d,0). My is
stable for d > 1 and unstable for d < 1. Finally, M3 is stable for
d € (0,1), and unstable for d € (—00,0) U (1,400). This leads to two
topologically distinct phase portraits see Picture 15 for d < 0, and see
Picture 16 for d > 0.

If d = 1, then the above system has a line of singular points
x4+ 1 = 0. The only isolated singularity is the origin which is a saddle,
see Picture 17.
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FIGURE 6. Configurations of the invariant straight lines and corresponding phase
portraits of system (23).

We determine the phase portrait of system (16) having the con-
figuration Config.20. Thus we consider system (16) with b = 1,
d=c¢=1+4+si€Cands#0,ie.,

z=z[(1+ 32) +2z+ 2% — y2], y=y[-(1+ 32) —2y+a? — y2].

The system has two singular points: a saddle at the origin and a center
at (—1/2[1 + s%], —1/2[1 + s?]), see Picture 20.

We determine the phase portrait of system (16) having the configu-
ration Config. 18. Thus we consider system (16) for b =1 and ¢ = 1,
ie.,

i =xz(1+2% —y?), g =y(—14+2* —y%).

The system has only one singular point at the origin which is a saddle,
see Picture 18.

We determine the phase portrait of system (16) having the config-
uration Config.19. Thus we consider system (16) for b = 1 and
d=c=r+1€C,ie.,

d=z[l+(z+7), §=y[-1-r>+27%
The system has only one singular point at the origin which is saddle,

see Picture 19.

3.3. Systems of type S(h,e). Assume that system (4) possesses
only one reducible conic of hyperbolic type, say H, = 0 and at least
one reducible conic of elliptic type He = 0.

Proposition 15. Assume that a cubic system has a rational first
integral of degree two of the form He/Hy, where Hy, = 0 and He = 0
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are reducible conics of hyperbolic and elliptic type respectively. Then
this system can be written in the form

& =z[b? +d® +2(b+ cd)z + (2 + 1)a® — y?],

23
(23) y:y[fb27d272dy+(cz+l)x2fyz],

where d € {0,1}, having the first integral H = ((z + b)? + (cz +
Yy + d)z)/(xy) Moreover, all the possible configurations of invariant
straight lines of this system which have not appeared in Propositions
11, 13 and 14 are given in Figure 6.

Proof. Since the conic He = 0 is reducible we may assume He =
22 + y? due to an affine transformation. On the other hand, we have
Hy, = Ly L5, and since a rotation keeps the form of He, we may consider
Ly =ax+band Ly = cx + ey + d, where ae # 0 (as H, = 0 is of
hyperbolic type). Then, via the affine transformation z; = L1, y; = Lo
we obtain Hy, = x1y1 and He = (z1—b)%+(cz1/e—ay1/e+(ad—bc)/e)?.
Since ae # 0, applying the change (z1,y1) — (z,ey/a) and renaming
the parameters we arrive to the first integral H = ((z +b)?+ (cz +y +
d)?)/(zy).

In short, systems (4) become of the form (23) where we may assume
d € {0,1} due to the rescaling (z,y,t) — (dz,dy,t/d?) if d # 0. To
determine the type of the third reducible conic (say H= 0) of these
systems according to Corollary 8 we calculate

& = —2zy[(z +b) + (cz + y + d)?]
[(bez — dz — by)? + (b* + d* + bz + cdz + dy)?].

Hence the third reducible conic H = (bex — da — by)? + (b% + d2 + bz +
cdx + dy)? = 0 is of elliptic type if

(24) b? + 2bcd — d* # 0;

for the details, see Appendix 1. Otherwise, H = 0 are two complex
parallel lines so we do not analyze this case since we have already
considered these types of systems in the previous section. Calculating
the resultant of the quadratic homogenous parts of the conics He = 0
and H = 0 with respect to the variable y, we obtain

Res, [H{?), H?)] = 16b? (bc — d)?(c® + 1)a*.
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Hence, the components (i.e., complex lines) of these conics are parallel
if and only if the condition b(bc — d) = 0 holds. In fact, we show that
they coincide when this condition holds.

To show this, we notice that (b2 + d2)H, — H = 4b(bc — d)zy.
This means that if b(bc — d) = 0 then the following equality holds
(b2 +d*)H, = H.

First we consider system (23) when d = 0. We exclude b = 0 because
of condition(24). As we showed before the two conics He = 0 and H = 0
in this case coincide if and only if ¢ = 0 and we get the configuration
Config. 21, see Figure 6. If ¢ # 0, then all reducible conics are different
and we get the unique configuration Config. 22.

Now we consider system (23) for d = 1. By the previous comment
the two conics He = 0 and H = 0 coincide if and only if b(bc — 1) = 0.
If b = 0, then the two elliptic conics He = 0 and H = 0 coincide and
this gives us a real point (0, —d) of multiplicity four and we have the
configuration Config.21. If bc — 1 = 0, then again the two conics
coincide, and this gives a point (—b,0) of multiplicity four and we
get the configuration homeomorphically equivalent to the previous one.
Assume now that b(bc — 1) # 0. Then all three conics zy = 0, He =0
and H = 0 are distinct and their centers are real singular points. We
get Config. 22. O

Thus we have completed the study of the invariant straight lines of
system (4) in the case when, among the three reducible conics, there is
one of hyperbolic type and another one of elliptic type.

Phase portraits of systems of type S(h,e). In this subsection
we determine the phase portraits for each configuration of invariant
straight lines of system (23).

First consider system (23) when d = 0, i.e.,

& =z [b> 4+ 2bz + (* + 1)z — y?],

(25) y:y[—b2+(cz+1)x2—y2].

Because of condition (24) we have b # 0.

Assume that ¢ # 0. Then the system has three singular points:
one saddle at the origin and two centers (—b, —bc) and (—b,bc), see
Picture 22 in Figure 6.
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FIGURE 7. Configurations of invariant straight lines and their corresponding phase
portraits of system (27).

Now assume that ¢ = 0; then system (25) has two singular points:
one saddle at the origin and one degenerate singular point (—b,0), see
Picture 21.

Consider now system (23) when d = 1, i.e.,
g=z[b®+1+2(b+c)z+ (*+1)z° —y?],

26
(26) y:y[—b2—1—2y+(c2—|—1):1:2—y2].

Because of the condition (24) we have b? + 2bc — 1 # 0.

If b(bc — 1) # 0, then system (26) has three singular points: one
saddle at the origin and two centers (—b,bc —1) and ((b+b%)/(1 —b* —
2bc)), —((1 4 b%)(bc — 1)) /(=1 + b% + 2bc), see Picture 22.

If b(be — 1) = 0, then system (26) has two singular points: one saddle
at the origin and one degenerate singular point (—(b+ ¢)/(1 + ¢?),0),
see Picture 21.

3.4. Systems of type S(p,p). Assume that system (4) possesses
two different reducible conics of parabolic type, say H,E,l) = 0 and
HI(,Q) = 0. In this subsection we determine all the configurations of

invariant straight lines that the system can have and their correspond-
ing phase portraits.

Proposition 16. Assume that a cubic system has a rational first
integral of degree two of the form Hl(gl)/Hr(,Z) where Hr(,l) = 0 and
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HI(,Z) = 0 are reducible conics of parabolic type. Then this system can
be written in the form

(27) g =y(@®+a), y=xy®+b),

where a,b € R, having the first integral H = (2% + a)/(y? + b).
Moreover, all the possible configurations of invariant straight lines of
this system which have not appeared in Propositions 11, 13, 14 and 15
are given in Figure 7.

Proof. Assume that system (4) possesses two distinct reducible conics
of parabolic type Hr(,i) = Lgi)Lg) (¢ = 1,2). In order to have a cubic
system, according to Lemma 9 we will consider the situation when the
quadratic homogeneous parts of Hr(,l) and HI(,Z) are not proportional.
This means that we have two couples of parallel lines crossing in two
distinct directions, say the direction of the line L; = ax + by = 0
and Ly = cx + dy = 0, with ad — be # 0. Then, via the linear
transformation 1y = Ly and y; = Lo, we get the following first integral
H = (2° + a)/(y® + b). Therefore, applying the time rescaling ¢ — t/2
we arrive at the family of systems (27) where a,b € R. Moreover, due
to the rescaling (z,y,t) — (Ja|'/?z,y,|a| t) if a # 0 we may assume
a € {0,£1}.

To determine the type of the third reducible conic (say H = 0) of
this system according to Corollary 8 we calculate

(28) & = (a+2%)(b+y?)(ay” - ba?).

So H = ay? — bz?. If ab > 0, then the conic H = 0 is of hyperbolic
type and system (27) is included in the family S(h, p) that has been
studied before. Thus we assume ab < 0.

If ab < 0 H is of elliptic type and we get the configuration Config. 23
of Figure 7.

If ab = 0 we my assume a = 0 (due to the change (z,y) — (y,z)).
So if b > 0 we get Config.24 and if b < 0 we get Config.25. If
b = 0, then we get a degenerate system that was already examined
(Config.9). O

Phase portraits of systems of type S(p,p). In this subsection
we determine the phase portraits for each configuration of invariant
straight lines of system (27) given in Figure 7.
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Consider system (27) having Config. 23 of invariant straight lines,
i.e., when ab < 0. The system has only one singular point at the origin
which is a center. There are also two parallel lines surrounding the
origin either 22 +a = 0 when a < 0 or y? + b = when b < 0. Thus the
phase portrait corresponding to Config. 23 is Picture 23, see Figure 7.

Now consider system (27) having the configuration Config. 24, i.e.,
(29) i = z%y, v =z(y® +b),

where b > 0. There is a line of singular points = 0 and no isolated
singular points. There are no real invariant straight lines because
& = —bx*(b+ y?). We get the phase portrait Picture 24.

Finally, we determine the phase portrait of system (27) having Con-
fig. 25, i.e., system (29) when b < 0. There are two straight invariant
lines 42 4+ b = 0 and a line of singular points z = 0. We get the phase
portrait Picture 25.

3.5. Systems of type S(p,e). Assume that system (4) possesses
two different reducible conics, one of parabolic type, say H, = 0, and
another one of elliptic type He = 0. In this subsection we determine all
the configurations of invariant straight lines that these kind of systems
can have and their corresponding phase portraits.

Proposition 17. Assume that a cubic system has a rational first
integral of degree two of the form Hy/He where Hp = 0 and He = 0
are reducible conics of parabolic and elliptic type respectively. Then this
system can be written in the form

T = 2y(a2+b+2ax+m2),

30
(30) Y= —2((a2+b)m+ax2 — ay? —a:y2),

where a,b € R, having the first integral H = ((z + a)? + b)/(2? + y?).
Moreover, all the possible configurations of invariant straight lines of
this system which have not appeared in Propositions 11, 13-16 are given
in Figure 8.

Proof. Assume that system (4) possesses one reducible conic of
parabolic type, say Hp = 0, and one reducible conic of elliptic type
H. = 0. Then by Proposition 20 we may assume He = x> + 3>
due to an affine transformation and Hp = (cz + dy + a)? + b where
a,b,c,d € R. Moreover, due to a rotation (which keeps the form of
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FIGURE 8. Configurations of invariant straight lines and their corresponding phase
portraits of system (30).

H,) we may consider that the couple of parallel lines Hy, is of the form
(z+a)?+b. Thus we can assume that the system has the first integral
H=((z+a)*+b)/(z* + y?).

If @ = 0, then the system belongs (up to a time rescaling) to the
family (27) (when a = —b). So we do not obtain new configurations of
invariant straight lines. Thus we assume that a # 0.

To determine the type of the third reducible conic (say H = 0) of
this system according to Corollary 8 we calculate

(31) & =8(2* +y7)((z +a)’ + b)H,

where H = a2(a2 + 2b) + b2 + 2a(a? + b)z + a2z® — by?. For the conic
H = 0 we have the invariants A = 0 and § = —ba? (see the Appendix).
So for b > 0 we have § < 0 and the third reducible conic is of hyperbolic
type. We skip this case since systems of S(h, p) type have already been
considered. If b < 0, then 6 > 0 and the His of elliptic type. If b # —a?,
i.e., when the reducible conics 2 + y? = 0 and (z + a)? + b = 0 have
no points in common in the real plane we have Config. 26 of Figure 8.
If b = —a?, then we have Config. 27. Finally, if b = 0, we get the
degenerate system

(32) &= 2(x+a)2y, y: 72($+a)(a$7y2)7

and we have Config. 28. o
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Phase portraits of systems of type S(p, e). In this subsection we
determine the phase portraits for each of the configurations of invariant
straight lines of system (30) given in Figure 8.

We determine the phase portraits of system (30) having the con-
figuration of invariant straight lines Config. 26, i.e., when b < 0
and b # —a?. We have two centers: one at the origin and one at
((—a® — b)/a,0). Moreover, we have two real invariant straight lines
given by (z + a)? + b = 0. We get the phase portrait Picture 26 of
Figure 8.

Now we determine the phase portrait of system (30) having Config.
27, ie.,

T = 2y(2am + x2), Y= —2(aa:2 —ay® — :cyQ),

where a # 0. There is only one singular point at the origin (which is
of multiplicity four) and two real straight parallel invariant lines given
by z(z + 2a) = 0, see Picture 27.

Finally, we consider the phase portrait of system (30) having Config.
28, i.e., system (32). There is a line of singular points z + a = 0 and
one center at the origin. For the phase portrait see Picture 28.

3.6. The subfamily of system (4) which possesses a single
reducible conic—which is of hyperbolic type. Assume that system
(4) possesses only one reducible conic of hyperbolic type. In this
subsection we determine all the configurations of invariant straight
lines that these kinds of system can have and their corresponding phase
portraits.

Proposition 18. Assume that a cubic system possesses a single
reducible conic of hyperbolic type and does mot have other reducible
conics. Then this system can be written in the form

(33) :ic:w(e+ca:+aw2—by2), y:y(—e—dy+a:1c2—by2),

where a® + b® # 0 having the first integral H = (ax® + by* + cx + dy +
e)/(zy). Moreover, the configurations of invariant straight lines of this
system which have not appeared in Propositions 11, 13-17 are given in
Figure 9.

Proof. Assume that system (4) possesses a single reducible conic of
hyperbolic type. Then, without loss of generality, we may assume that
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FIGURE 9. Configuration of invariant straight lines of system (33) and their
corresponding phase portraits.

the system has a first integral of the form H = w(z,y)/(zy), where
w(z,y) = ax® + by? + cx + dy + e. We notice that the polynomial
w(z,y) must be irreducible otherwise w(z,y) = 0 would consist of two
real or complex lines, and these kinds of systems were studied before.

Moreover, we can assume that w(z,y) = 0 does not intersect the conic
zy = 0 in two points (zg,0) and (0,yo) such that zgyo # 0; otherwise,
the straight line passing through these two points would be invariant
and again we would be in a case studied before. We consider two cases:
w(0,0) = 0 and w(0,0) # 0.

Case: w(0,0) = 0. This implies that e = 0. Moreover, without
loss of generality, we can assume that w(z,y) = 0 is tangent to y = 0
(otherwise w(z,y) intersects zy = 0 in two points) so we have ¢ = 0.
Since ¢ = e = 0 we get that d # 0; otherwise, the conic w(z,y) = 0
would be reducible. By a time rescaling we can assume d = —1. Now
we consider two possibilities: either w(z,y) intersects the line z = 0 at
two points or only at one.
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Consider that w(z,y) = az? + by? —y = 0 intersects the line z = 0 in
two different points, one the origin and the other say (0,y). By a time
rescaling y — ay we can assume that y = 1. In short, we get the first
integral H = (ax?® + y* — y)/(zy) of the system

(34) T = :1c(a:1c2 — yz), Y= y(a:/r:2 +y— y2).

Finally, since a # 0, otherwise az?+y? —y would not be irreducible, we
can assume that a = £1. There are two singular points, the origin and
(0,1). Calculating £ = az3y> we see that the only invariant reducible
conic of system (34) is zy = 0 having multiplicity 3. We get Config.
29, see Figure 9.

Now we assume that w(x,y) = az? + by? —y = 0 intersects the
line x = 0 only at the origin. This implies that b = 0 and by
(z,y) — (z/a,y/a) and the time rescaling we can assume that a = 1.
We get the first integral H = (22 — y)/(zy) of the system

=2  g=y@+y).

Similarly, calculating & = 23y® we conclude that zy = 0 is the only
reducible conic having multiplicity 3, and we get Config. 30.

Case: w(0,0) # 0. So e # 0 (by rescaling e = 1); thus, we can
assume that w(z,y) = az? + by? + cz + dy + 1. Now we consider two
cases: b=0and b #0.

If b = 0, then d # 0; otherwise, w(z,y) would factorize. By rescaling
y — —y/d we get d = —1. We assume that a > 0 to avoid having a
new invariant straight line different than zy = 0. Now by a rescaling
of the z-axis we can assume that a = 1. Thus we get the first integral
H = (2% + cx — y + 1)/(zy) of the system

(35) i =xz(1+cz+a?%), y=y(—1+y+2?).

Since z2+cx —y+1 = 0 must not have points in common with y = 0 we
have |c| < 2. To determine all six invariant straight lines we calculate

&1 =xy(1 +cx + 2*)(1 + cx — 2y + 2° — cxy + v°).

We show that, even though we have six invariant straight lines, the
only real reducible conic that system (35) possesses, according to (7),
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is zy = 0. Consider the conic 1+cz+x% = 0. It is clear that there do not
exist & and 3 (as in (7)) such that 1+cz+2? = a(2?+cx—y+1)+8(zy),
so system (35) does not possess the conic 1 + cz + 2 = 0. This shows
that, even though this reducible conic is invariant for system (35), its
two imaginary invariant straight lines lie on different level sets (complex
conjugate) of the first integral H. The same can be shown for the conic
1+ cx — 2y + 22 — cxy + y* = 0. For this reason we cannot introduce
more then one reducible invariant conic into the expression of the first
integral H. We get Config. 31.

Assume now that b # 0. We can assume that a # 0 since, otherwise,
doing the change of variables (z,y) — (y,z) we would arrive at the
system considered previously (system (35)). We consider two cases:
ab > 0 and ab < 0. If ab > 0 it is not restrictive to assume that a > 0
and b > 0. By a rescaling of both axes (z,y) — (x/+/a,y/v/b) and the
time rescaling we get w(z,y) = 2% + y? + cx + dy + 1. So we have the
first integral H = (22 + y? + cx + dy + 1) /(zy) of the system

(36) a'::a:(1+c:v+ac2—y2), y:y(—l—dy+:v2—y2).

Since w(z,y) = 0 must not have points in common with y = 0 we get
le] < 2. The oval w(z,y) has to cross z = 0 in two distinct points so
|d| > 2; otherwise, we get a system that belongs to the family S(h,e).
To determine all the invariant straight lines we calculate

& =ay(l+2cx+ (2+ A x? 4 2cx® + 2* 4 2dy + 3cdry
+ (2d + d)x?y + cdx®y + (=2 + d*)y? + (—2¢ + cd?)xy?
+ (2 — 4+ d*)2*y* — 2dy® — cdxy® + y4).

For the fixed real values of ¢,d the polynomial & always factorizes
since according to Corollary 8 it describes six invariant straight lines.
Each invariant conic (real or complex) of system(36) passes through
four points: two imaginary I;» = (¢/2 £ (¢ — 4)}/2,0) and two
real Ry o = (0,d/2 + (d? — 4)1/2) defined by the system of equations
Hy =22 +y?’+cx+dy+1=0, Hp := 2y = 0. We denote again
by (AB) a line passing through a point A and B. Then we have six
invariant lines: two real xy=0, and four imaginary (I1R;), ([1R2),
(IzRy) and (I3R2). Analogously to the previous case, we can show
that the only reducible conic that system (36) possesses is zy = 0, and
we get Config. 32.
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Finally consider now ab < 0. Without loss of generality, we can
assume that a > 0 and b < 0. By rescaling (z,y) — (z/v/a,y/v/—b)
and time rescaling we get w(x,y) = 2 — > + cx + dy + 1. So we have
the first integral H = (z* — y® + cz + dy + 1) /(zy) of the system

37)  d=a(l+ex+a®+y?), G=y(—1-dy+a’+¢°).

Again, since w(z,y) = 0 must not have points in common with y = 0,
we get |c| < 2. So to determine the configuration we calculate

& =ay(l+ 2+ (2+ )x? + 2cx® + z* + 2dy + 3cdzy
+ (2d + Pd)z?y + cdx®y + (2 + d*)y* + (2¢ + cd?)zy?
+ (=24 + d*)z?y? + 2dy® + cdxy® + y4).

Here also the only reducible conic that system (37) possesses is zy = 0.
The four other invariant straight lines are (I3 R;), (I1R2), (I2R1) and
(I3R»), where I » = (¢/2 + (¢ — 4)/2,0) and R, » = (0,d/2 + (d* +
4)'/2). Thus we have Config. 33. o

Phase portraits of system (33). In this subsection we determine
the phase portraits for each configuration of invariant straight lines of
system (33).

First consider system (33) having the configuration of invariant

straight lines Config. 29, i.e., the system

i=z(az? —y?), §=y(y+az?—y?),

where a # 0. We have two singular points: one at the origin and one
at (0,1). For a > 0 we get Picture 29a, and for a < 0 we get Picture
29b.

We determine the phase portrait of system (33) having Config. 30.
Thus we consider system

T =azx”, y':y(y+ax2),

where a # 0. We have only one degenerate singular point at the origin
and no other singular points. We get the phase portrait Picture 30.
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We now consider system (33) having Config. 31, i.e., system (35).
The system has two singular points: one saddle at the origin and a
node at (0,1). The phase portrait is given in Picture 31.

To determine the phase portrait of system (33) having Config. 32
we consider system (36). There are three singular points: one saddle
at the origin and two nodes (0, —d/2 £ v/ d? — 4/2). We have the phase
portrait Picture 32.

Finally, we study the phase portrait of system (33) having Config.
33. Thus we consider system (37). There are three singular points:
one saddle at the origin and two nodes (0, —d/2 £ v/d? +4/2). We get
Picture 33.

3.7. The subfamily of systems (4) which possesses a single
reducible conic—which is of parabolic type. Assume that system
(4) possesses only one reducible conic of parabolic type. In this
subsection we shall determine all configurations of invariant straight
lines that these kinds of systems can have and their corresponding
phase portraits.

As we know (see the Appendix) there are three normal forms of the
reducible conic of parabolic type, namely, real parallel lines, complex
parallel lines and double line.

Proposition 19. Assume that a cubic system possesses a single
reducible conic of parabolic type and does not have other reducible
conics. Then this system can be written in the form

g P ra)(etbotla),
y=dp—2fx — dz® + bpy — 2exy — b’y — 2cxy?,

having the first integral H = (bxy+cy?+dz+ey+f)/(x?+p). Moreover,
all configurations of invariant straight lines of this system which have
not appeared in Propositions 11, 13—18 are given in Figure 10.

Proof. 'We assume that system (3) has a single reducible conic of
parabolic type Hp = 0. By an affine change of variables we assume that
Hy, = z* + p where p € {0, +1}. Thus, the first integral of the systems
possessing only one reducible conic of parabolic type can be written as
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FIGURE 10. Configurations of invariant straight lines of system (33) and their
corresponding phase portraits.

H = w(z,y)/(x* + p), where w(x,y) = az? + bxy + cy? + dz + ey + f.
We notice that w(z,y) must be irreducible otherwise w(z,y) = 0 would
consist of two straight lines (complex or real) which would contradict
our assumption of having only one reducible conic. Since by Lemma 10
in a pencil of conics there is at least one conic which contains a real line,
and recall in our case the infinity is always degenerate, we can assume
that p € {0, —1}. Without loss of generality, we can also assume that
a = 0. Now we consider two cases: ¢ =0 and ¢ # 0.

Case c = 0. We have the first integral H = (bzy+dz+ey+ f)/(z?+
p), and we have to assume that b # 0; otherwise, system (3) would be
quadratic. So by a time rescaling we have b = 1 as well as d = 0 by the
change of variables y — y — d. Clearly f # 0; otherwise, the numerator
factorizes so by the time rescaling, f = 1. We end up with the first
integral H = (zy + ey + 1)/(z% + p).

If p = —1, then we have to assume that e = =£1; otherwise,
we would have another invariant straight line passing through points
(1,-1/(e+1)) and (—1,—1/(e — 1)). We can assume that e = 1 since
if it is negative we change the variables (z,y) — (—z, —y) and we are
done. Finally, we get the following system

t=14z—az?—23, g =2z —y—2zy — z’y,

having the first integral H = (zy + y + 1)/(z?). To determine the
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configuration of invariant straight lines according to Corollary 8 we
calculate & = 2(z — 1)3(z + 1)3, and we get Config. 34.

Now, if p = 0 we have the first integral H = (zy + ey + 1)/2%. If
e = 0, then we have a degenerate system

i=-z%  y=-x(2+zy).

To determine the configuration of invariant straight lines we calculate
& = 2z2% and we get Config. 35. If e # 0, then by an appropriate
time and axes rescaling we arrive at H = (zy+y + 1) /z?; thus, system
(3) is

& =—2?(1+2), y=—-z(24 2y + zy),

and we have a configuration that is topologically equivalent to Config.
20.

Case ¢ # 0. Here by a time rescaling we have ¢ = 1. So we get
the first integral H = (bzy + y? + dx + ey + f)/(z? + p). Now we can
assume that b = 0, first by the change of variables y — —b/2z 4+ y
and then by canceling the coefficient of z2 in the numerator of the
first integral which appears after the change of variables. We have the
first integral H = (y? + dz + ey + f)/(z* + p). Again by the change
y — y—e/2 we have e = 0. We can also assume that d = 1 by rescaling
z — z/d and the time rescaling. We end up with the first integral
H=(y*+z+ f)/(®+ p). Let p = —1; then, we get

(39) & =2y — 227y, §=—1-2fx — 2% — 2xy?,

having the first integral H = (y* + z + f)/(z* — 1), where |f| < 1.
Calculating & = 8(z —1)(w +1)H, where H = 1+4fx + (2+4f2)z2 +
dfxd + x* + 4fy? + 8xy? + 4fx%y? + 4y*, we get the configuration
of invariant straight lines. These lines pass through four points: two
imaginary I; » = (£i(—f—1)!/2,0) and two real R; » = (0, £(1— f)/?)
defined by the system of equations y?+z+f = 0, (z2—1) = 0. We have
two real invariant straight lines zy = 0 and four imaginary: (I1R;),
(I1R2), (IzRq) and (I3Rs). The only reducible conic that system (39)
possesses is zy = 0. We get Config. 36.

If p = 0 we have the first integral H = (y? + z + f)/2%. We consider
two possibilities: f =0or f #0. If f =0, then we get the system

(40) &= —22%y, y = —x® — 2xy°,
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having the first integral H = (y? +)/x?, and we get the configuration
of the invariant straight lines Config. 37.

If f # 0, then by the change of variables  — fz, y — |f|'/?y, and
the time rescaling we get H = (+y? + = + 1) /2% We skip the system

T = —2$2y, y = —$(2 +x+ 2y2)7

having the first integral H = (y? +x + 1)/2?, since it belongs to family
S(p,e). We also skip the system

a'c:2a72y, y':—a:(?—i—:v—?yz),

having the first integral H = (—y? + x + 1)/2?, because it has been
studied before (Config. 13). O

Phase portraits of system (38). In this subsection we determine
the phase portraits for each configuration of invariant straight lines of
system (38).

Consider system (38) having Config. 34, i.e.,
i=—(22-1)(1+2), §=—2x —y—2zy — Y.

There is only one singular point, a node, at (1,—1/2). We have the
phase portrait Picture 34.

Now we consider (38) having Config. 35. Thus we study the system

i=—z®  g=-x(2+azy).

There is a line of singular points £ = 0 and no other singular point.
We get the phase portrait Picture 35.

We consider the phase portrait of system (38) having the configura-
tion of invariant straight lines Config. 36. Thus, we study

&= —2y(z? - 1), =—1-2fx —a?—2xy?,

where |f| < 1. The only singular points of the system are two nodes
(0,£+/1—f), and we get the phase portrait Picture 36.
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Finally, we determine the phase portrait of system (40). We notice
that there is a line of singular points = 0 and no other singular point.
We get the phase portrait Picture 37.
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APPENDIX

1. Affine conics. Here we recall basic information about the conics.
The starting point is to note that every conic

(A.1) az?® 4+ 2hxy + by® + 29z + 2fy +c =0

can be written in matrix form as vAvT = 0 where

a h
A= h b
g f

o = Q
S
I
<

and A is called the matriz of the conic (41). By B we denote the leading

matriz of A, i.e.,
a h
s (2 )

We define two numbers A = det A and § = det B.

After an affine change of coordinates, any conic can be represented as
one of the nine canonical forms shown in Proposition 20. By calculating
the A and § invariants for a given conic, we can tell to which class it
belongs as is shown in the next proposition. We do not distinguish
between real parallel lines, complex parallel lines and a double line.
We also do not distinguish between real and complex ellipses.

Proposition 20. Let g = 0 be a conic in R%2. Then g is affinely
equivalent to one of the nine normal forms shown in Table 3.

Proof. For the proof, see [7]. o
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TABLE 3.
Normal Forms Conic A invariant  § invariant
22 +y2 —1=0 real ellipse A#0 6>0
22 +y2+1=0 complex ellipse A#0 §>0
z2 —y?2 —1=0 hyperbola A#0 6<0
22 —y=0 parabola A#0 =0
z2 —y2 =0 real line-pair A=0 <0
z2 4+ y2 =0 complex line-pair A=0 6§>0
z2-1=0 real parallel lines A=0 =0
z241=0 complex parallel lines A =0 6=0
22 =0 double line A=0 §=0.
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